
6.231 DYNAMIC PROGRAMMING

LECTURE 20

LECTURE OUTLINE

• Discounted problems - Approximation on sub-
space {Φr | r ∈ ℜs}
• Approximate (fitted) VI

• Approximate PI

• The projected equation

• Contraction properties - Error bounds

• Matrix form of the projected equation

• Simulation-based implementation

• LSTD and LSPE methods
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REVIEW: APPROXIMATION IN VALUE SPACE

• Finite-spaces discounted problems: Defined by
mappings Tµ and T (TJ = minµ TµJ).

• Exact methods:

− VI: Jk+1 = TJk

− PI: Jµk = TµkJµk , Tµk+1Jµk = TJµk

− LP: minJ c′J subject to J ≤ TJ

• Approximate versions: Plug-in subspace ap-
proximation with Φr in place of J

− VI: Φrk+1 ≈ TΦrk

− PI: Φrk ≈ TµkΦrk, Tµk+1Φrk = TΦrk

− LP: minr c′Φr subject to Φr ≤ TΦr

• Approx. onto subspace S = {Φr | r ∈ ℜs}
is often done by projection with respect to some
(weighted) Euclidean norm.

• Another possibility is aggregation. Here:

− The rows of Φ are probability distributions

− Φr ≈ Jµ or Φr ≈ J*, with r the solution of
an “aggregate Bellman equation” r = DTµ(Φr)
or r = DT (Φr), where the rows of D are
probability distributions
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APPROXIMATE (FITTED) VI

• Approximates sequentially Jk(i) = (T kJ0)(i),
˜k = 1, 2, . . ., with Jk(i; rk)

• The starting function J0 is given (e.g., J0 ≡ 0)

• Approximate (Fitted) Value Iteration: A se-
˜ ˜ ˜quential “fit” to produce Jk+1 from Jk, i.e., Jk+1

˜ ˜ ˜
≈

TJk or (for a single policy µ) Jk+1 ≈ TµJk

• ˜After a large enough numberN of steps, JN (i; rN )
is used as approximation to J∗(i)

• Possibly use (approximate) projection Π with
respect to some projection norm,

J̃k+1 ≈ ˜ΠTJk
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WEIGHTED EUCLIDEAN PROJECTIONS

• Consider a weighted Euclidean norm

‖J‖ξ =

√

√

√

√

n
∑

ξi
i=1

(

J(i)
)2
,

where ξ = (ξ1, . . . , ξn) is a positive distribution
(ξi > 0 for all i).

• Let Π denote the projection operation onto

S = {Φr | r ∈ ℜs}

with respect to this norm, i.e., for any J ∈ ℜn,

ΠJ = Φr∗

where
r∗ = arg min

r∈ℜs
‖Φr − J‖2ξ

• Recall that weighted Euclidean projection can
be implemented by simulation and least squares,
i.e., sampling J(i) according to ξ and solving

k
∑

(

−
)2

min φ(it)′r J(it)
r∈ℜs

t=1
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FITTED VI - NAIVE IMPLEMENTATION

• Select/sample a “small” subset Ik of represen-
tative states

• For each i ∈ ˜Ik, given Jk, compute

n

˜ ˜(TJk)(i) = min
∑

pij(u)
(

g(i, u, j) + αJk(j; r)
u∈U(i)

j=1

)

• ˜“Fit” the function Jk+1(i; rk+1) to the “small”
˜set of values (TJk)(i), i ∈ Ik (for example use

some form of approximate projection)

• “Model-free” implementation by simulation

• Error Bound: If the fit is uniformly accurate
within δ > 0, i.e.,

˜max |J̃k+1(i)− TJk(i)
i

| ≤ δ,

then

δ˜lim sup max
(

J (i, r )− J∗
k k (i)

i=1,...,nk→∞

)

≤
1− α

• But there is a potential serious problem!
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AN EXAMPLE OF FAILURE

• Consider two-state discounted MDP with states
1 and 2, and a single policy.

− Deterministic transitions: 1 → 2 and 2
∗ ∗

→ 2

− Transition costs ≡ 0, so J (1) = J (2) = 0.

• Consider (exact) fitted VI scheme that approx-
imates cost functions within S =

{

(r, 2r) | r ∈ ℜ
}

′with a weighted least squares fit; here Φ = ( 1, 2 )

• ˜ ˜Given Jk = (rk, 2rk), we find Jk+1 = (rk+1, 2rk+1),
where J̃k+1 = Πξ(T J̃k), with weights ξ = (ξ1, ξ2):

2 2
rk+1 = argmin

[

ξ1
(

˜ ˜r (
r

−(TJk)(1) +ξ2 2r− TJk)(2)
]

• With straightforward calcula

)

tion

( )

rk+1 = αβrk, where β = 2(ξ1+2ξ2)/(ξ1+4ξ2) > 1

• So if α > 1/β (e.g., ξ1 = ξ2 = 1), the sequence
{rk} ˜diverges and so does {Jk}.
• Difficulty is that T is a contraction, but ΠξT
(= least squares fit composed with T ) is not.
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NORM MISMATCH PROBLEM

• For fitted VI to converge, we need ΠξT to be a
contraction; T being a contraction is not enough

• We need a ξ such that T is a contraction w. r.
to the weighted Euclidean norm ‖ · ‖ξ
• Then ΠξT is a contraction w. r. to ‖ · ‖ξ
• We will come back to this issue, and show how
to choose ξ so that ΠξTµ is a contraction for a
given µ
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APPROXIMATE PI

Approximate Policy

Evaluation

Policy Improvement

Guess Initial Policy

Evaluate Approximate Cost

J̃µ(r) = Φr Using Simulation

Generate “Improved” Policy µ

• Evaluation of typical µ: Linear cost function
˜approximation Jµ(r) = Φr, where Φ is full rank

n×smatrix with columns the basis functions, and
ith row denoted φ(i)′.

• Policy “improvement” to generate µ:
n

µ(i) = arg min
∑

p ′
ij(u)

u∈U(i)
j=

(

g(i, u, j) + αφ(j) r
1

)

• Error Bound (same as approximate VI): If

max |J̃µk(i, rk)− Jµk(i)| ≤ δ, k = 0, 1, . . .
i

the sequence {µk} satisfies

( ) 2αδ
lim supmax Jµ (i)

ik→∞
− J∗

k (i) ≤
(1− α)2
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APPROXIMATE POLICY EVALUATION

• Consider approximate evaluation of Jµ, the cost
of the current policy µ by using simulation.

− Direct policy evaluation - generate cost sam-
ples by simulation, and optimization by least
squares

− Indirect policy evaluation - solving the pro-
jected equation Φr = ΠTµ(Φr) where Π is
projection w/ respect to a suitable weighted
Euclidean norm

Subspace S = {Φr | r ∈ ℜs} Set

= 0

Subspace S = {Φr | r ∈ ℜs} Set

= 0

Direct Method: Projection of cost vector Jµ Π

µ ΠJµ

Tµ(Φr)

Φr = ΠTµ(Φr)

Indirect Method: Solving a projected form of Bellman’s equation

Projection onIndirect Method: Solving a projected form of Bellman’s equation

Direct Method: Projection of cost vector

( ) ( ) ( )Direct Method: Projection of cost vector Jµ

• Recall that projection can be implemented by
simulation and least squares
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PI WITH INDIRECT POLICY EVALUATION

Approximate Policy

Evaluation

Policy Improvement

Guess Initial Policy

Evaluate Approximate Cost

J̃µ(r) = Φr Using Simulation

Generate “Improved” Policy µ

• Given the current policy µ:

− We solve the projected Bellman’s equation

Φr = ΠTµ(Φr)

− We approximate the solution Jµ of Bellman’s
equation

J = TµJ

˜with the projected equation solution Jµ(r)
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KEY QUESTIONS AND RESULTS

• Does the projected equation have a solution?

• Under what conditions is the mapping ΠTµ a
contraction, so ΠTµ has unique fixed point?

• Assumption: The Markov chain corresponding
to µ has a single recurrent class and no transient
states, with steady-state prob. vector ξ, so that

ξj = lim
N→∞

1
N
∑

P (ik = j 0

k=1

| i = i) > 0
N

Note that ξj is the long-term frequency of state j.

• Proposition: (Norm Matching Property) As-
sume that the projection Π is with respect to ‖·‖ξ,
where ξ = (ξ1, . . . , ξn) is the steady-state proba-
bility vector. Then:

(a) ΠTµ is contraction of modulus α with re-
spect to ‖ · ‖ξ.

(b) The unique fixed point Φr∗ of ΠTµ satisfies

1‖Jµ − Φr∗‖ξ ≤ √
1− α2

‖Jµ −ΠJµ‖ξ
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PRELIMINARIES: PROJECTION PROPERTIES

• Important property of the projection Π on S
with weighted Euclidean norm ‖ · ‖ξ. For all J ∈
ℜn, Φr ∈ S, the Pythagorean Theorem holds:

‖J − Φr‖2ξ = ‖J −ΠJ‖2ξ + ‖ΠJ − Φr‖2ξ

• The Pythagorean Theorem implies that the pro-
jection is nonexpansive, i.e.,

‖ΠJ − ¯ΠJ‖ξ ≤ ‖J − J̄‖ ¯
ξ, for all J, J ∈ ℜn.

To see this, note that

∥

∥Π(J − 2
J)
∥

∥

ξ
≤
∥

∥Π(J − J)
∥

∥

2

ξ
+
∥

∥(I −Π)(J − J)
∥

∥

2

ξ

= ‖J − J‖2ξ 12



PROOF OF CONTRACTION PROPERTY

• Lemma: If P is the transition matrix of µ,

‖Pz‖ξ ≤ ‖z‖ξ, z ∈ ℜn,

where ξ is the steady-state prob. vector.
Proof: For all z ∈ ℜn

2
n



n n n

‖Pz‖2 =
∑

ξi
∑

pijzj ≤
∑

ξi
∑

p 2
ijξ zj

i=1 j=1 i=1 j=1

n n n

=
∑

j=1

∑

ξ 2
ipijz2j = ξ zj = z 2

j ξ .
i=1

∑

j=1

‖ ‖

The inequality follows from the convexity of the
quadratic function, and the next to last equality

n
follows from the defining property i=1 ξipij = ξj

• Using the lemma, the nonexpansiveness of Π,
and the definition TµJ = g + αPJ

∑

, we have

‖ΠT J−ΠT J̄‖ ≤ ‖T J−T J̄ J̄µ µ ξ µ µ ‖ξ = α‖P (J− )‖ξ ≤ α‖J−J̄‖ξ

¯for all J, J ∈ ℜn. Hence ΠTµ is a contraction of
modulus α.

13



PROOF OF ERROR BOUND

• Let Φr∗ be the fixed point of ΠT . We have

1‖Jµ − Φr∗‖ξ ≤ √
1− α2

‖Jµ −ΠJµ‖ξ.

Proof: We have

‖Jµ − Φr∗‖2ξ = ‖Jµ −ΠJµ‖2ξ +
∥

∥ΠJµ − 2
Φr∗

∥

∥

ξ

‖ − ‖
∥

− 2
= Jµ ΠJ 2

µ ξ +
∥ΠTJ ΠT (Φr∗µ )

‖

∥

ξ

≤ ‖Jµ −ΠJ 2
µ‖2ξ + α Jµ − Φr∗‖2ξ ,

∥

where

− The first equality uses the Pythagorean The-
orem

− The second equality holds because Jµ is the
fixed point of T and Φr∗ is the fixed point
of ΠT

− The inequality uses the contraction property
of ΠT .

Q.E.D.
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MATRIX FORM OF PROJECTED EQUATION

• The solution Φr∗ satisfies the orthogonality con-
dition: The error

Φr∗ − (g + αPΦr∗)

is “orthogonal” to the subspace spanned by the
columns of Φ.

• This is written as

Φ′Ξ
(

Φr∗ − (g + αPΦr∗) = 0,

where Ξ is the diagonal matrix w

)

ith the steady-
state probabilities ξ1, . . . , ξn along the diagonal.

• Equivalently, Cr∗ = d, where

C = Φ′Ξ(I − αP )Φ, d = Φ′Ξg

but computing C and d is HARD (high-dimensional
inner products). 15



SOLUTION OF PROJECTED EQUATION

• Solve Cr∗ = d by matrix inversion: r∗ = C−1d

• Alternative: Projected Value Iteration (PVI)

Φrk+1 = ΠT (Φrk) = Π(g + αPΦrk)

Converges to r∗ because ΠT is a contraction.

• PVI can be written as:

2
rk+1 = arg min Φr

∈ℜs
− (g + αPΦrk) ξr

By setting to 0 the gr

∥

∥

adient with respect

∥

∥

to r,

Φ′Ξ
(

Φrk+1 − (g + αPΦrk)
)

= 0,

which yields

rk+1 = rk − (Φ′ΞΦ)−1(Crk − d)
16

S: Subspace spanned by basis functions

Φrk

T(Φrk) = g + αPΦrk

0

Φrk+1

Value Iterate

Projection
on S



SIMULATION-BASED IMPLEMENTATIONS

• Key idea: Calculate simulation-based approxi-
mations based on k samples

Ck ≈ C, dk ≈ d

• Approximate matrix inversion r∗ = C−1d by

r̂k = C−1
k dk

This is the LSTD (Least Squares Temporal Dif-
ferences) method.

• PVI method rk+1 = rk − (Φ′ΞΦ)−1(Crk − d) is
approximated by

rk+1 = rk −Gk(Ckrk − dk)

where
Gk ≈ (Φ′ΞΦ)−1

This is the LSPE (Least Squares Policy Evalua-
tion) method.

• Key fact: Ck, dk, and Gk can be computed
with low-dimensional linear algebra (of order s;
the number of basis functions).
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SIMULATION MECHANICS

• We generate an infinitely long trajectory (i0, i1, . . .)
of the Markov chain, so states i and transitions
(i, j) appear with long-term frequencies ξi and pij .

• After generating each transition (it, it+1), we
compute the row φ(i )′t of Φ and the cost compo-
nent g(it, it+1).

• We form

dk =
1

k
∑

φ(it) ( ′g it, it+1) ≈
∑

ξipijφ(i)g(i, j) = Φ Ξg = d
k + 1

t=0 i,j

1
Ck =

k
∑

φ(it)
(

φ(it)−αφ(it+1)
)′

≈ Φ′Ξ(I−αP )Φ = C
k + 1

t=0

Also in the case of LSPE

1
Gk =

k

φ(i )′ Φ′
t)φ(it ΞΦ

k + 1

∑

t=0

≈

• Convergence based on law of large numbers.

• Ck, dk, and Gk can be formed incrementally.
Also can be written using the formalism of tem-
poral differences (this is just a matter of style)
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OPTIMISTIC VERSIONS

• Instead of calculating nearly exact approxima-
tions Ck ≈ C and dk ≈ d, we do a less accurate
approximation, based on few simulation samples

• Evaluate (coarsely) current policy µ, then do a
policy improvement

• This often leads to faster computation (as op-
timistic methods often do)

• Very complex behavior (see the subsequent dis-
cussion on oscillations)

• The matrix inversion/LSTD method has serious
problems due to large simulation noise (because of
limited sampling) - particularly if the C matrix is
ill-conditioned

• LSPE tends to cope better because of its itera-
tive nature (this is true of other iterative methods
as well)

• A stepsize γ ∈ (0, 1] in LSPE may be useful to
damp the effect of simulation noise

rk+1 = rk − γGk(Ckrk − dk)
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