6.231 DYNAMIC PROGRAMMING

LECTURE 20

LECTURE OUTLINE

- Discounted problems - Approximation on subspace $\left\{\Phi r \mid r \in \Re^{s}\right\}$
- Approximate (fitted) VI
- Approximate PI
- The projected equation
- Contraction properties - Error bounds
- Matrix form of the projected equation
- Simulation-based implementation
- LSTD and LSPE methods

REVIEW: APPROXIMATION IN VALUE SPACE

- Finite-spaces discounted problems: Defined by mappings T_{μ} and $T\left(T J=\min _{\mu} T_{\mu} J\right)$.
- Exact methods:
- VI: $J_{k+1}=T J_{k}$
- PI: $J_{\mu^{k}}=T_{\mu^{k}} J_{\mu^{k}}, \quad T_{\mu^{k+1}} J_{\mu^{k}}=T J_{\mu^{k}}$
- LP: $\min _{J} c^{\prime} J$ subject to $J \leq T J$
- Approximate versions: Plug-in subspace approximation with Φr in place of J
- VI: $\Phi r_{k+1} \approx T \Phi r_{k}$
- PI: $\Phi r_{k} \approx T_{\mu^{k}} \Phi r_{k}, \quad T_{\mu^{k+1}} \Phi r_{k}=T \Phi r_{k}$
- LP: $\min _{r} c^{\prime} \Phi r$ subject to $\Phi r \leq T \Phi r$
- Approx. onto subspace $S=\left\{\Phi r \mid r \in \Re^{s}\right\}$ is often done by projection with respect to some (weighted) Euclidean norm.
- Another possibility is aggregation. Here:
- The rows of Φ are probability distributions
- $\Phi r \approx J_{\mu}$ or $\Phi r \approx J^{*}$, with r the solution of an "aggregate Bellman equation" $r=D T_{\mu}(\Phi r)$ or $r=D T(\Phi r)$, where the rows of D are probability distributions

APPROXIMATE (FITTED) VI

- Approximates sequentially $J_{k}(i)=\left(T^{k} J_{0}\right)(i)$, $k=1,2, \ldots$, with $\tilde{J}_{k}\left(i ; r_{k}\right)$
- The starting function J_{0} is given (e.g., $J_{0} \equiv 0$) - Approximate (Fitted) Value Iteration: A sequential "fit" to produce \widetilde{J}_{k+1} from \tilde{J}_{k}, i.e., $\tilde{J}_{k+1} \approx$ $T \tilde{J}_{k}$ or (for a single policy μ) $\tilde{J}_{k+1} \approx T_{\mu} \tilde{J}_{k}$

Fitted Value Iteration

- After a large enough number N of steps, $\tilde{J}_{N}\left(i ; r_{N}\right)$ is used as approximation to $J^{*}(i)$
- Possibly use (approximate) projection Π with respect to some projection norm,

$$
\tilde{J}_{k+1} \approx \Pi T \tilde{J}_{k}
$$

WEIGHTED EUCLIDEAN PROJECTIONS

- Consider a weighted Euclidean norm

$$
\|J\|_{\xi}=\sqrt{\sum_{i=1}^{n} \xi_{i}(J(i))^{2}}
$$

where $\xi=\left(\xi_{1}, \ldots, \xi_{n}\right)$ is a positive distribution ($\xi_{i}>0$ for all i).

- Let Π denote the projection operation onto

$$
S=\left\{\Phi r \mid r \in \Re^{s}\right\}
$$

with respect to this norm, i.e., for any $J \in \Re^{n}$,

$$
\Pi J=\Phi r^{*}
$$

where

$$
r^{*}=\arg \min _{r \in \Re^{s}}\|\Phi r-J\|_{\xi}^{2}
$$

- Recall that weighted Euclidean projection can be implemented by simulation and least squares, i.e., sampling $J(i)$ according to ξ and solving

$$
\min _{r \in \Re} \sum_{t=1}^{k}\left(\phi\left(i_{t}\right)^{\prime} r-J\left(i_{t}\right)\right)^{2}
$$

FITTED VI - NAIVE IMPLEMENTATION

- Select/sample a "small" subset I_{k} of representative states
- For each $i \in I_{k}$, given \tilde{J}_{k}, compute

$$
\left(T \tilde{J}_{k}\right)(i)=\min _{u \in U(i)} \sum_{j=1}^{n} p_{i j}(u)\left(g(i, u, j)+\alpha \tilde{J}_{k}(j ; r)\right)
$$

- "Fit" the function $\tilde{J}_{k+1}\left(i ; r_{k+1}\right)$ to the "small" set of values $\left(T \tilde{J}_{k}\right)(i), i \in I_{k}$ (for example use some form of approximate projection)
- "Model-free" implementation by simulation
- Error Bound: If the fit is uniformly accurate within $\delta>0$, i.e.,

$$
\max _{i}\left|\tilde{J}_{k+1}(i)-T \tilde{J}_{k}(i)\right| \leq \delta,
$$

then
$\lim \sup _{k \rightarrow \infty} \max _{i=1, \ldots, n}\left(\tilde{J}_{k}\left(i, r_{k}\right)-J^{*}(i)\right) \leq \frac{\delta}{1-\alpha}$

- But there is a potential serious problem!

AN EXAMPLE OF FAILURE

- Consider two-state discounted MDP with states 1 and 2, and a single policy.
- Deterministic transitions: $1 \rightarrow 2$ and $2 \rightarrow 2$ - Transition costs $\equiv 0$, so $J^{*}(1)=J^{*}(2)=0$.
- Consider (exact) fitted VI scheme that approximates cost functions within $S=\{(r, 2 r) \mid r \in \Re\}$ with a weighted least squares fit; here $\Phi=(1,2)^{\prime}$
- Given $\tilde{J}_{k}=\left(r_{k}, 2 r_{k}\right)$, we find $\tilde{J}_{k+1}=\left(r_{k+1}, 2 r_{k+1}\right)$, where $\tilde{J}_{k+1}=\Pi_{\xi}\left(T \tilde{J}_{k}\right)$, with weights $\xi=\left(\xi_{1}, \xi_{2}\right)$: $r_{k+1}=\arg \min _{r}\left[\xi_{1}\left(r-\left(T \tilde{J}_{k}\right)(1)\right)^{2}+\xi_{2}\left(2 r-\left(T \tilde{J}_{k}\right)(2)\right)^{2}\right]$
- With straightforward calculation

$$
r_{k+1}=\alpha \beta r_{k}, \quad \text { where } \beta=2\left(\xi_{1}+2 \xi_{2}\right) /\left(\xi_{1}+4 \xi_{2}\right)>1
$$

- So if $\alpha>1 / \beta$ (e.g., $\xi_{1}=\xi_{2}=1$), the sequence $\left\{r_{k}\right\}$ diverges and so does $\left\{\tilde{J}_{k}\right\}$.
- Difficulty is that T is a contraction, but $\Pi_{\xi} T$ (= least squares fit composed with T) is not.

NORM MISMATCH PROBLEM

- For fitted VI to converge, we need $\Pi_{\xi} T$ to be a contraction; T being a contraction is not enough

Fitted Value Iteration with Projection

- We need a ξ such that T is a contraction w. r. to the weighted Euclidean norm $\|\cdot\|_{\xi}$
- Then $\Pi_{\xi} T$ is a contraction w. r. to $\|\cdot\|_{\xi}$
- We will come back to this issue, and show how to choose ξ so that $\Pi_{\xi} T_{\mu}$ is a contraction for a given μ

APPROXIMATE PI

Approximate Policy Evaluation

- Evaluation of typical μ : Linear cost function approximation $\tilde{J}_{\mu}(r)=\Phi r$, where Φ is full rank $n \times s$ matrix with columns the basis functions, and i th row denoted $\phi(i)^{\prime}$.
- Policy "improvement" to generate $\bar{\mu}$:

$$
\bar{\mu}(i)=\arg \min _{u \in U(i)} \sum_{j=1}^{n} p_{i j}(u)\left(g(i, u, j)+\alpha \phi(j)^{\prime} r\right)
$$

- Error Bound (same as approximate VI): If

$$
\max _{i}\left|\tilde{J}_{\mu^{k}}\left(i, r_{k}\right)-J_{\mu^{k}}(i)\right| \leq \delta, \quad k=0,1, \ldots
$$

the sequence $\left\{\mu^{k}\right\}$ satisfies

$$
\limsup _{k \rightarrow \infty} \max _{i}\left(J_{\mu^{k}}(i)-J^{*}(i)\right) \leq \frac{2 \alpha \delta}{(1-\alpha)^{2}}
$$

APPROXIMATE POLICY EVALUATION

- Consider approximate evaluation of J_{μ}, the cost of the current policy μ by using simulation.
- Direct policy evaluation - generate cost samples by simulation, and optimization by least squares
- Indirect policy evaluation - solving the projected equation $\Phi r=\Pi T_{\mu}(\Phi r)$ where Π is projection w/ respect to a suitable weighted Euclidean norm

Direct Method: Projection of cost vector J_{μ}

Indirect Method: Solving a projected form of Bellman's equation

- Recall that projection can be implemented by simulation and least squares

PI WITH INDIRECT POLICY EVALUATION

Approximate Policy Evaluation

Policy Improvement

- Given the current policy μ :
- We solve the projected Bellman's equation

$$
\Phi r=\Pi T_{\mu}(\Phi r)
$$

- We approximate the solution J_{μ} of Bellman's equation

$$
J=T_{\mu} J
$$

with the projected equation solution $\tilde{J}_{\mu}(r)$

KEY QUESTIONS AND RESULTS

- Does the projected equation have a solution?
- Under what conditions is the mapping ΠT_{μ} a contraction, so ΠT_{μ} has unique fixed point?
- Assumption: The Markov chain corresponding to μ has a single recurrent class and no transient states, with steady-state prob. vector ξ, so that

$$
\xi_{j}=\lim _{N \rightarrow \infty} \frac{1}{N} \sum_{k=1}^{N} P\left(i_{k}=j \mid i_{0}=i\right)>0
$$

Note that ξ_{j} is the long-term frequency of state j.

- Proposition: (Norm Matching Property) Assume that the projection Π is with respect to $\|\cdot\|_{\xi}$, where $\xi=\left(\xi_{1}, \ldots, \xi_{n}\right)$ is the steady-state probability vector. Then:
(a) ΠT_{μ} is contraction of modulus α with respect to $\|\cdot\|_{\xi}$.
(b) The unique fixed point Φr^{*} of ΠT_{μ} satisfies

$$
\left\|J_{\mu}-\Phi r^{*}\right\|_{\xi} \leq \frac{1}{\sqrt{1-\alpha^{2}}}\left\|J_{\mu}-\Pi J_{\mu}\right\|_{\xi}
$$

PRELIMINARIES: PROJECTION PROPERTIES

- Important property of the projection Π on S with weighted Euclidean norm $\|\cdot\|_{\xi}$. For all $J \in$ $\Re^{n}, \Phi r \in S$, the Pythagorean Theorem holds:

$$
\|J-\Phi r\|_{\xi}^{2}=\|J-\Pi J\|_{\xi}^{2}+\|\Pi J-\Phi r\|_{\xi}^{2}
$$

Subspace $S=\left\{\Phi r \mid r \in \Re^{s}\right\}$

- The Pythagorean Theorem implies that the projection is nonexpansive, i.e.,

$$
\|\Pi J-\Pi \bar{J}\|_{\xi} \leq\|J-\bar{J}\|_{\xi}, \quad \text { for all } J, \bar{J} \in \Re^{n} .
$$

To see this, note that

$$
\begin{aligned}
\|\Pi(J-\bar{J})\|_{\xi}^{2} & \leq\|\Pi(J-\bar{J})\|_{\xi}^{2}+\|(I-\Pi)(J-\bar{J})\|_{\xi}^{2} \\
& =\|J-\bar{J}\|_{\xi}^{2}
\end{aligned}
$$

PROOF OF CONTRACTION PROPERTY

- Lemma: If P is the transition matrix of μ,

$$
\|P z\|_{\xi} \leq\|z\|_{\xi}, \quad z \in \Re^{n}
$$

where ξ is the steady-state prob. vector.
Proof: For all $z \in \Re^{n}$

$$
\begin{aligned}
\|P z\|_{\xi}^{2} & =\sum_{i=1}^{n} \xi_{i}\left(\sum_{j=1}^{n} p_{i j} z_{j}\right)^{2} \leq \sum_{i=1}^{n} \xi_{i} \sum_{j=1}^{n} p_{i j} z_{j}^{2} \\
& =\sum_{j=1}^{n} \sum_{i=1}^{n} \xi_{i} p_{i j} z_{j}^{2}=\sum_{j=1}^{n} \xi_{j} z_{j}^{2}=\|z\|_{\xi}^{2} .
\end{aligned}
$$

The inequality follows from the convexity of the quadratic function, and the next to last equality follows from the defining property $\sum_{i=1}^{n} \xi_{i} p_{i j}=\xi_{j}$

- Using the lemma, the nonexpansiveness of Π, and the definition $T_{\mu} J=g+\alpha P J$, we have
$\left\|\Pi T_{\mu} J-\Pi T_{\mu} \bar{J}\right\|_{\xi} \leq\left\|T_{\mu} J-T_{\mu} \bar{J}\right\|_{\xi}=\alpha\|P(J-\bar{J})\|_{\xi} \leq \alpha\|J-\bar{J}\|_{\xi}$
for all $J, \bar{J} \in \Re^{n}$. Hence ΠT_{μ} is a contraction of modulus α.

PROOF OF ERROR BOUND

- Let Φr^{*} be the fixed point of ΠT. We have

$$
\left\|J_{\mu}-\Phi r^{*}\right\|_{\xi} \leq \frac{1}{\sqrt{1-\alpha^{2}}}\left\|J_{\mu}-\Pi J_{\mu}\right\|_{\xi}
$$

Proof: We have

$$
\begin{aligned}
\left\|J_{\mu}-\Phi r^{*}\right\|_{\xi}^{2} & =\left\|J_{\mu}-\Pi J_{\mu}\right\|_{\xi}^{2}+\left\|\Pi J_{\mu}-\Phi r^{*}\right\|_{\xi}^{2} \\
& =\left\|J_{\mu}-\Pi J_{\mu}\right\|_{\xi}^{2}+\left\|\Pi T J_{\mu}-\Pi T\left(\Phi r^{*}\right)\right\|_{\xi}^{2} \\
& \leq\left\|J_{\mu}-\Pi J_{\mu}\right\|_{\xi}^{2}+\alpha^{2}\left\|J_{\mu}-\Phi r^{*}\right\|_{\xi}^{2}
\end{aligned}
$$

where

- The first equality uses the Pythagorean Theorem
- The second equality holds because J_{μ} is the fixed point of T and Φr^{*} is the fixed point of $П Т$
- The inequality uses the contraction property of ΠT.
Q.E.D.

MATRIX FORM OF PROJECTED EQUATION

- The solution Φr^{*} satisfies the orthogonality condition: The error

$$
\Phi r^{*}-\left(g+\alpha P \Phi r^{*}\right)
$$

is "orthogonal" to the subspace spanned by the columns of Φ.

- This is written as

$$
\Phi^{\prime} \Xi\left(\Phi r^{*}-\left(g+\alpha P \Phi r^{*}\right)\right)=0,
$$

where Ξ is the diagonal matrix with the steadystate probabilities ξ_{1}, \ldots, ξ_{n} along the diagonal.

- Equivalently, $C r^{*}=d$, where

$$
C=\Phi^{\prime} \Xi(I-\alpha P) \Phi, \quad d=\Phi^{\prime} \Xi g
$$

but computing C and d is HARD (high-dimensional inner products).

SOLUTION OF PROJECTED EQUATION

- Solve $C r^{*}=d$ by matrix inversion: $r^{*}=C^{-1} d$
- Alternative: Projected Value Iteration (PVI)

$$
\Phi r_{k+1}=\Pi T\left(\Phi r_{k}\right)=\Pi\left(g+\alpha P \Phi r_{k}\right)
$$

Converges to r^{*} because ΠT is a contraction.

- PVI can be written as:

$$
r_{k+1}=\arg \min _{r \in \Re^{s}}\left\|\Phi r-\left(g+\alpha P \Phi r_{k}\right)\right\|_{\xi}^{2}
$$

By setting to 0 the gradient with respect to r,

$$
\Phi^{\prime} \Xi\left(\Phi r_{k+1}-\left(g+\alpha P \Phi r_{k}\right)\right)=0
$$

which yields

$$
r_{k+1}=r_{k}-\left(\Phi^{\prime} \Xi \Phi\right)^{-1}\left(C r_{k}-d\right)
$$

SIMULATION-BASED IMPLEMENTATIONS

- Key idea: Calculate simulation-based approximations based on k samples

$$
C_{k} \approx C, \quad d_{k} \approx d
$$

- Approximate matrix inversion $r^{*}=C^{-1} d$ by

$$
\hat{r}_{k}=C_{k}^{-1} d_{k}
$$

This is the LSTD (Least Squares Temporal Differences) method.

- PVI method $r_{k+1}=r_{k}-\left(\Phi^{\prime} \Xi \Phi\right)^{-1}\left(C r_{k}-d\right)$ is approximated by

$$
r_{k+1}=r_{k}-G_{k}\left(C_{k} r_{k}-d_{k}\right)
$$

where

$$
G_{k} \approx\left(\Phi^{\prime} \Xi \Phi\right)^{-1}
$$

This is the LSPE (Least Squares Policy Evaluation) method.

- Key fact: C_{k}, d_{k}, and G_{k} can be computed with low-dimensional linear algebra (of order s; the number of basis functions).

SIMULATION MECHANICS

- We generate an infinitely long trajectory $\left(i_{0}, i_{1}, \ldots\right)$ of the Markov chain, so states i and transitions (i, j) appear with long-term frequencies ξ_{i} and $p_{i j}$.
- After generating each transition $\left(i_{t}, i_{t+1}\right)$, we compute the row $\phi\left(i_{t}\right)^{\prime}$ of Φ and the cost component $g\left(i_{t}, i_{t+1}\right)$.
- We form
$d_{k}=\frac{1}{k+1} \sum_{t=0}^{k} \phi\left(i_{t}\right) g\left(i_{t}, i_{t+1}\right) \approx \sum_{i, j} \xi_{i} p_{i j} \phi(i) g(i, j)=\Phi^{\prime} \Xi g=d$
$C_{k}=\frac{1}{k+1} \sum_{t=0}^{k} \phi\left(i_{t}\right)\left(\phi\left(i_{t}\right)-\alpha \phi\left(i_{t+1}\right)\right)^{\prime} \approx \Phi^{\prime} \Xi(I-\alpha P) \Phi=C$
Also in the case of LSPE

$$
G_{k}=\frac{1}{k+1} \sum_{t=0}^{k} \phi\left(i_{t}\right) \phi\left(i_{t}\right)^{\prime} \approx \Phi^{\prime} \Xi \Phi
$$

- Convergence based on law of large numbers.
- C_{k}, d_{k}, and G_{k} can be formed incrementally. Also can be written using the formalism of temporal differences (this is just a matter of style)

OPTIMISTIC VERSIONS

- Instead of calculating nearly exact approximations $C_{k} \approx C$ and $d_{k} \approx d$, we do a less accurate approximation, based on few simulation samples
- Evaluate (coarsely) current policy μ, then do a policy improvement
- This often leads to faster computation (as optimistic methods often do)
- Very complex behavior (see the subsequent discussion on oscillations)
- The matrix inversion/LSTD method has serious problems due to large simulation noise (because of limited sampling) - particularly if the C matrix is ill-conditioned
- LSPE tends to cope better because of its iterative nature (this is true of other iterative methods as well)
- A stepsize $\gamma \in(0,1]$ in LSPE may be useful to damp the effect of simulation noise

$$
r_{k+1}=r_{k}-\gamma G_{k}\left(C_{k} r_{k}-d_{k}\right)
$$

MIT OpenCourseWare
http://ocw.mit.edu

6.231 Dynamic Programming and Stochastic Control

Fall 2015

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

