6.231 DYNAMIC PROGRAMMING

LECTURE 5

LECTURE OUTLINE

- Stopping problems
- Scheduling problems
- Minimax Control

PURE STOPPING PROBLEMS

- Two possible controls:
- Stop (incur a one-time stopping cost, and move to cost-free and absorbing stop state)
- Continue [using $x_{k+1}=f_{k}\left(x_{k}, w_{k}\right)$ and incurring the cost-per-stage]
- Each policy consists of a partition of the set of states x_{k} into two regions:
- Stop region, where we stop
- Continue region, where we continue

EXAMPLE: ASSET SELLING

- A person has an asset, and at $k=0,1, \ldots, N-1$ receives a random offer w_{k}
- May accept w_{k} and invest the money at fixed rate of interest r, or reject w_{k} and wait for w_{k+1}. Must accept the last offer w_{N-1}
- DP algorithm (x_{k} : current offer, T : stop state):

$$
\begin{gathered}
J_{N}\left(x_{N}\right)= \begin{cases}x_{N} & \text { if } x_{N} \neq T, \\
0 & \text { if } x_{N}=T,\end{cases} \\
J_{k}\left(x_{k}\right)= \begin{cases}\max \left[(1+r)^{N-k} x_{k}, E\left\{J_{k+1}\left(w_{k}\right)\right\}\right] & \text { if } x_{k} \neq T, \\
0 & \text { if } x_{k}=T .\end{cases}
\end{gathered}
$$

- Optimal policy;

$$
\begin{array}{ll}
\text { accept the offer } x_{k} & \text { if } x_{k}>\alpha_{k}, \\
\text { reject the offer } x_{k} & \text { if } x_{k}<\alpha_{k},
\end{array}
$$

where

$$
\alpha_{k}=\frac{E\left\{J_{k+1}\left(w_{k}\right)\right\}}{(1+r)^{N-k}}
$$

FURTHER ANALYSIS

- Can show that $\alpha_{k} \geq \alpha_{k+1}$ for all k
- Proof: Let $V_{k}\left(x_{k}\right)=J_{k}\left(x_{k}\right) /(1+r)^{N-k}$ for $x_{k} \neq$ T. Then the DP algorithm is
$V_{N}\left(x_{N}\right)=x_{N}, \quad V_{k}\left(x_{k}\right)=\max \left[x_{k},(1+r)^{-1} \underset{w}{E}\left\{V_{k+1}(w)\right\}\right]$
We have $\alpha_{k}=E_{w}\left\{V_{k+1}(w)\right\} /(1+r)$, so it is enough to show that $V_{k}(x) \geq V_{k+1}(x)$ for all x and k. Start with $V_{N-1}(x) \geq V_{N}(x)$ and use the monotonicity property of DP. Q.E.D.
- We can also show that if w is bounded, $\alpha_{k} \rightarrow \bar{a}$ as $k \rightarrow-\infty$. Suggests that for an infinite horizon the optimal policy is stationary.

GENERAL STOPPING PROBLEMS

- At time k, we may stop at cost $t\left(x_{k}\right)$ or choose a control $u_{k} \in U\left(x_{k}\right)$ and continue

$$
\begin{gathered}
J_{N}\left(x_{N}\right)=t\left(x_{N}\right), \\
J_{k}\left(x_{k}\right)=\min \left[t\left(x_{k}\right), \min _{u_{k} \in U\left(x_{k}\right)} E\left\{g\left(x_{k}, u_{k}, w_{k}\right)\right.\right. \\
\left.\left.+J_{k+1}\left(f\left(x_{k}, u_{k}, w_{k}\right)\right)\right\}\right]
\end{gathered}
$$

- Optimal to stop at time k for x in the set

$$
T_{k}=\left\{x \mid t(x) \leq \min _{u \in U(x)} E\left\{g(x, u, w)+J_{k+1}(f(x, u, w))\right\}\right\}
$$

- Since $J_{N-1}(x) \leq J_{N}(x)$, we have $J_{k}(x) \leq J_{k+1}(x)$ for all k, so

$$
T_{0} \subset \cdots \subset T_{k} \subset T_{k+1} \subset \cdots \subset T_{N-1}
$$

- Interesting case is when all the T_{k} are equal (to T_{N-1}, the set where it is better to stop than to go one step and stop). Can be shown to be true if
$f(x, u, w) \in T_{N-1}, \quad$ for all $x \in T_{N-1}, u \in U(x), w$.

SCHEDULING PROBLEMS

- We have a set of tasks to perform, the ordering is subject to optimal choice.
- Costs depend on the order
- There may be stochastic uncertainty, and precedence and resource availability constraints
- Some of the hardest combinatorial problems are of this type (e.g., traveling salesman, vehicle routing, etc.)
- Some special problems admit a simple quasianalytical solution method
- Optimal policy has an "index form", i.e., each task has an easily calculable "cost index", and it is optimal to select the task that has the minimum value of index (multiarmed bandit problems - to be discussed later)
- Some problems can be solved by an "interchange argument" (start with some schedule, interchange two adjacent tasks, and see what happens). They require existence of an optimal policy which is open-loop.

EXAMPLE: THE QUIZ PROBLEM

- Given a list of N questions. If question i is answered correctly (given probability p_{i}), we receive reward R_{i}; if not the quiz terminates. Choose order of questions to maximize expected reward.
- Let i and j be the k th and $(k+1)$ st questions in an optimally ordered list

$$
\begin{gathered}
L=\left(i_{0}, \ldots, i_{k-1}, i, j, i_{k+2}, \ldots, i_{N-1}\right) \\
E\{\text { reward of } L\}=E\left\{\text { reward of }\left\{i_{0}, \ldots, i_{k-1}\right\}\right\} \\
+p_{i_{0}} \cdots p_{i_{k-1}}\left(p_{i} R_{i}+p_{i} p_{j} R_{j}\right) \\
+p_{i_{0}} \cdots p_{i_{k-1}} p_{i} p_{j} E\left\{\text { reward of }\left\{i_{k+2}, \ldots, i_{N-1}\right\}\right\}
\end{gathered}
$$

Consider the list with i and j interchanged

$$
L^{\prime}=\left(i_{0}, \ldots, i_{k-1}, j, i, i_{k+2}, \ldots, i_{N-1}\right)
$$

Since L is optimal, $E\{$ reward of $L\} \geq E\left\{\right.$ reward of $\left.L^{\prime}\right\}$, so it follows that $p_{i} R_{i}+p_{i} p_{j} R_{j} \geq p_{j} R_{j}+p_{j} p_{i} R_{i}$ or

$$
p_{i} R_{i} /\left(1-p_{i}\right) \geq p_{j} R_{j} /\left(1-p_{j}\right) .
$$

MINIMAX CONTROL

- Consider basic problem with the difference that the disturbance w_{k} instead of being random, it is just known to belong to a given set $W_{k}\left(x_{k}, u_{k}\right)$.
- Find policy π that minimizes the cost

$$
\begin{aligned}
J_{\pi}\left(x_{0}\right)=\max _{\substack{w_{k} \in W_{k}\left(x_{k}, \mu_{k}\left(x_{k}\right)\right) \\
k=0,1, \ldots, N-1}}[& g_{N}\left(x_{N}\right) \\
& \left.+\sum_{k=0}^{N-1} g_{k}\left(x_{k}, \mu_{k}\left(x_{k}\right), w_{k}\right)\right]
\end{aligned}
$$

- The DP algorithm takes the form

$$
\begin{gathered}
J_{N}\left(x_{N}\right)=g_{N}\left(x_{N}\right) \\
J_{k}\left(x_{k}\right)=\min _{u_{k} \in U\left(x_{k}\right)} \max _{w_{k} \in W_{k}\left(x_{k}, u_{k}\right)}\left[g_{k}\left(x_{k}, u_{k}, w_{k}\right)\right. \\
\left.+J_{k+1}\left(f_{k}\left(x_{k}, u_{k}, w_{k}\right)\right)\right]
\end{gathered}
$$

(Section 1.6 in the text).

DERIVATION OF MINIMAX DP ALGORITHM

- Similar to the DP algorithm for stochastic problems. The optimal cost $J^{*}\left(x_{0}\right)$ is

$$
\left.\left.\left[g_{N-1}\left(x_{N-1}, \mu_{N-1}\left(x_{N-1}\right), w_{N-1}\right)+J_{N}\left(x_{N}\right)\right]\right]\right]
$$

- Interchange the min over μ_{N-1} and the max over w_{0}, \ldots, w_{N-2}, and similarly continue backwards, with $N-1$ in place of N, etc. After N steps we obtain $J^{*}\left(x_{0}\right)=J_{0}\left(x_{0}\right)$.
- Construct optimal policy by minimizing in the RHS of the DP algorithm.

$$
\begin{aligned}
& J^{*}\left(x_{0}\right)=\min _{\mu_{0}} \cdots \min _{\mu_{N-1}} \max _{w_{0} \in W\left[x_{0}, \mu_{0}\left(x_{0}\right)\right]} \cdots \max _{w_{N-1} \in W\left[x_{N-1}, \mu_{N-1}\left(x_{N-1}\right)\right]} \\
& {\left[\sum_{k=0}^{N-1} g_{k}\left(x_{k}, \mu_{k}\left(x_{k}\right), w_{k}\right)+g_{N}\left(x_{N}\right)\right]} \\
& =\min _{\mu_{0}} \cdots \min _{\mu_{N-2}}\left[\min _{\mu_{N-1}} \max _{w_{0} \in W\left[x_{0}, \mu_{0}\left(x_{0}\right)\right]} \cdots \max _{w_{N-2} \in W\left[x_{N-2}, \mu_{N-2}\left(x_{N-2}\right) .\right.}\right. \\
& {\left[\sum_{k=0}^{N-2} g_{k}\left(x_{k}, \mu_{k}\left(x_{k}\right), w_{k}\right)+\max _{w_{N-1} \in W\left[x_{N-1}, \mu_{N-1}\left(x_{N-1}\right)\right]}\right.}
\end{aligned}
$$

UNKNOWN-BUT-BOUNDED CONTROL

- For each k, keep the x_{k} of the controlled system

$$
x_{k+1}=f_{k}\left(x_{k}, \mu_{k}\left(x_{k}\right), w_{k}\right)
$$

inside a given set X_{k}, the target set at time k.

- This is a minimax control problem, where the cost at stage k is

$$
g_{k}\left(x_{k}\right)= \begin{cases}0 & \text { if } x_{k} \in X_{k}, \\ 1 & \text { if } x_{k} \notin X_{k} .\end{cases}
$$

- We must reach at time k the set

$$
\bar{X}_{k}=\left\{x_{k} \mid J_{k}\left(x_{k}\right)=0\right\}
$$

in order to be able to maintain the state within the subsequent target sets.

- Start with $\bar{X}_{N}=X_{N}$, and for $k=0,1, \ldots, N-1$,

$$
\begin{array}{r}
\bar{X}_{k}=\left\{x_{k} \in X_{k} \mid \text { there exists } u_{k} \in U_{k}\left(x_{k}\right)\right. \text { such that } \\
\left.f_{k}\left(x_{k}, u_{k}, w_{k}\right) \in \bar{X}_{k+1}, \text { for all } w_{k} \in W_{k}\left(x_{k}, u_{k}\right)\right\}
\end{array}
$$

MIT OpenCourseWare
http://ocw.mit.edu

6.231 Dynamic Programming and Stochastic Control

Fall 2015

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

