LECTURE SLIDES - DYNAMIC PROGRAMMING
BASED ON LECTURES GIVEN AT THE

MASSACHUSETTS INST. OF TECHNOLOGY
CAMBRIDGE, MASS

FALL 2015
DIMITRI P. BERTSEKAS

These lecture slides are based on the two-
volume book: “Dynamic Programming and
Optimal Control” Athena Scientific, by D.
P. Bertsekas (Vol. I, 3rd Edition, 2005; Vol.
I1, 4th Edition, 2012); see

http://www.athenasc.com/dpbook.html
Two related reference books:

(1) “Abstract Dynamic Programming,” by
D. P. Bertsekas, Athena Scientific, 2013

(2) “Neuro-Dynamic Programming,” Athena
Scientific, by D. P. Bertsekas and J. N.
Tsitsiklis, 1996

Athena is MIT's UNIX-based computing environment. OCW does not provide access to it.

1


http://www.athenasc.com/dpbook.html

6.231: DYNAMIC PROGRAMMING
LECTURE 1
LECTURE OUTLINE

Problem Formulation
Examples

The Basic Problem
Significance of Feedback



DP AS AN OPTIMIZATION METHODOLOGY

e Generic optimization problem:

min g(u)

where u is the optimization/decision variable, g(u)
is the cost function, and U is the constraint set
e (Categories of problems:

— Discrete (U is finite) or continuous

— Linear (g is linear and U is polyhedral) or
nonlinear

— Stochastic or deterministic: In stochastic prob-
lems the cost involves a stochastic parameter
w, which is averaged, i.e., it has the form

g(u) — Ew{G(uv w)}

where w is a random parameter.

e DP can deal with complex stochastic problems
where information about w becomes available in
stages, and the decisions are also made in stages
and make use of this information.



BASIC STRUCTURE OF STOCHASTIC DP

e Discrete-time system

azk+1:fk(xk,uk,wk), k:O,l,...,N—l

— k: Discrete time

— x1: State; summarizes past information that
is relevant for future optimization

— ug: Control; decision to be selected at time
k from a given set

— wg: Random parameter (also called distur-
bance or noise depending on the context)

— N: Horizon or number of times control is
applied

e (Cost function that is additive over time
N-1
E {gN(xN) + > gk(xk,uk,wk)}
k=0
e Alternative system description: P(xg+1 | Tk, uk)

Tip+1 = wg with P(wk ‘ a:k,uk) = P(ka ’ xk,uk)

4



INVENTORY CONTROL EXAMPLE

Wk lDemand at Period k

Stock at Period k Stock at Period k + 1

Xk — = |nventory System -
\ Xk +1 = Xk + Uk - Wk
Stock ordered at
Period k

Cost of Period k
r(xk) + cuk

———— Uk

e Discrete-time system

Trr1 = [fp(Tg, Uk, W) = Tk + up — Wk

e (ost function that is additive over time

E {gN(xN) + z_: gk (T, Uk, wk)}

k=0

:E{Z(Cuk+T(ﬂ?k+Uk_wk))}

k=0

e Optimization over policies: Rules/functions uy =
uir () that map states to controls

5



ADDITIONAL ASSUMPTIONS

e The set of values that the control ux can take
depend at most on x; and not on prior x or u

e Probability distribution of w; does not depend
on past values wg_1,...,wo, but may depend on
rr and ug

— Otherwise past values of w or z would be
useful for tuture optimization

e Sequence of events envisioned in period k:

— x occurs according to
Lk = fk—l(xk—l,uk—l,wk—1)
— wuy 1s selected with knowledge of xg, i.e.,
ug € Ur(xr)

— wy, 1s random and generated according to a
distribution



DETERMINISTIC FINITE-STATE PROBLEMS

e Scheduling example: Find optimal sequence of
operations A, B, C, D

e A must precede B, and C must precede D

e Given startup cost S4 and S¢, and setup tran-
sition cost C,,, from operation m to operation n

Initial
State




STOCHASTIC FINITE-STATE PROBLEMS

e Example: Find two-game chess match strategy

e Timid play draws with prob. p; > 0 and loses
with prob. 1 —p4. Bold play wins with prob. p,, <
1/2 and loses with prob. 1 — py,

2nd Game / Timid Play 2nd Game / Bold Play



BASIC PROBLEM

e System xpi11 = fr(vp,uk,wr), k=0,...,N—1
e Control contraints ug € Ug(xk)
e Probability distribution Pg(- | xx, ur) of wg

e Policies m = {uo,...,un—1}, where pui maps
states xj into controls ury = ug(xg) and is such
that ur(xr) € Uk (xk) for all xy

e [ixpected cost of m starting at xg is
N-1
Jr(20) = E {QN(xN) + > gk(xkaﬂk(xk)awk)}

k=0

e Optimal cost function

J* (xo) — min JW(ZE())

e Optimal policy 7* satisfies
Jr=(20) = J*(20)

When produced by DP, 7* is independent of xy.



SIGNIFICANCE OF FEEDBACK

e Open-loop versus closed-loop policies

lwk

up = pi(Tk) System Xk

> Xg 4 1= X0y, wy)

A

A

[k

e In deterministic problems open loop is as good
as closed loop

e Value of information; chess match example
e Example of open-loop policy: Play always bold

e C(Consider the closed-loop policy: Play timid if
and only if you are ahead

10



VARIANTS OF DP PROBLEMS

Continuous-time problems
Imperfect state information problems
Infinite horizon problems

Suboptimal control



LECTURE BREAKDOWN

e Finite Horizon Problems (Vol. 1, Ch. 1-6)
— Ch. 1: The DP algorithm (2 lectures)

— Ch. 2: Deterministic finite-state problems (1
lecture)

— Ch. 4: Stochastic DP problems (2 lectures)

— Ch. 5: Imperfect state information problems
(2 lectures)

— Ch. 6: Suboptimal control (2 lectures)

e Infinite Horizon Problems - Simple (Vol. 1, Ch.
7, 3 lectures)

3k ok ok ok ok ok ok skoskook ok ok sk sk sk ok ok sk sk ok ok ok sk skosk sk sk ok sk skoskskook kosk skosk skok skosk sk kok

e Infinite Horizon Problems - Advanced (Vol. 2)

— Chs. 1, 2: Discounted problems - Computa-
tional methods (3 lectures)

— Ch. 3: Stochastic shortest path problems (2
lectures)

— Chs. 6, 7: Approximate DP (6 lectures)



COURSE ADMINISTRATION

e Homework ... once a week or two weeks (30%
of grade)

e In class midterm, near end of October ... will

cover finite horizon and simple infinite horizon ma-
terial (30% of grade)

e Project (40% of grade)

e C(ollaboration in homework allowed but indi-
vidual solutions are expected

e Prerequisites: Introductory probability, good
gasp of advanced calculus (including convergence
concepts)

e Textbook: Vol. I of text is required. Vol. II
is strongly recommended, but you may be able to
get by without it using OCW material (including
videos)



A NOTE ON THESE SLIDES

e These slides are a teaching aid, not a text

e Don’t expect a rigorous mathematical develop-
ment or precise mathematical statements

e Figures are meant to convey and enhance ideas,
not to express them precisely

e Omitted proofs and a much fuller discussion
can be found in the textbook, which these slides
follow



6.231 DYNAMIC PROGRAMMING
LECTURE 2

LECTURE OUTLINE

The basic problem

Principle of optimality

DP example: Deterministic problem
DP example: Stochastic problem
The general DP algorithm

State augmentation



BASIC PROBLEM

e System xpi11 = fr(vp,uk,wr), k=0,...,N—1
e Control constraints ug € Ug(xg)
e Probability distribution Pg(- | xx, ur) of wg

e Policies m = {uo,...,un—1}, where pu; maps
states xj into controls uy = ug(xg) and is such
that ur(xr) € Uk (xk) for all xy

e [ixpected cost of m starting at xg is
N-1
Jr(20) = E {QN(xN) + > gk(xkaﬂk(xk)awk)}

k=0

e Optimal cost function

J* (xo) — min JW(ZE())

T

e Optimal policy 7* is one that satisfies

- (x()) = J* (x())

16



PRINCIPLE OF OPTIMALITY

o Let m* = {ug,u3,...,w_1} be optimal policy

e Consider the “tail subproblem” whereby we are
at r; at time ¢ and wish to minimize the “cost-to-
go” from time 7 to time NV

E {gN(CCN) + Z_ gk(ﬁk,ﬂk(xk)awk)}
k=1

and the “tail policy” {u}, uly 1, ..., Wy_1}

Xj Tail Subproblem

-
0 i N

e Principle of optimality: The tail policy is opti-
mal for the tail subproblem (optimization of the
future does not depend on what we did in the past)

e DP first solves ALL tail subroblems of final
stage

e At the generic step, it solves ALL tail subprob-
lems of a given time length, using the solution of
the tail subproblems of shorter time length

17



DETERMINISTIC SCHEDULING EXAMPLE

e Find optimal sequence of operations A, B, C,
D (A must precede B and C must precede D)

e Start from the last tail subproblem and go back-
wards

e At each state-time pair, we record the optimal
cost-to-go and the optimal decision



STOCHASTIC INVENTORY EXAMPLE

Wy l Demand at Period k

Stock at Period k Inventory Stock at Period k+ 1
X ——— L
System X 41 X + Uy - Wy
l T Stock Ordered at
Cost of Period k u Period k
——— k

CUy + 1 (X, + Uy -wy)

e Tail Subproblems of Length 1:
Jn-1(zn-1)= min  E {cun—
un—120wn_

+r(ry_1 Fun—1 — wN—l)}

e Tail Subproblems of Length N — k:

Ji(xr) = min F {cuk + r(xr + up — wg)

up >0 wy

+ Jpt1(zr + uk — wi) }

e Jo(xo) is opt. cost of initial state xg



DP ALGORITHM

e Start with

IN(zN) = gn(2N),
and go backwards using

J = '
k(@) oo ﬂ{gk(aﬁk, Uk, W)

T ‘]I€+1 (fk(xkaukawk))}7 k= 07 ]-7 R 7N — 1.

e Then Jy(xp), generated at the last step, is equal
to the optimal cost J*(xzg). Also, the policy

T ={ps, N1}

where 117 (21 ) minimizes in the right side above for
each z; and k, is optimal

e Justification: Proof by induction that Jg(xy) is
equal to J;(xy), defined as the optimal cost of the
tail subproblem that starts at time k at state xy
e Note:

— ALL the tail subproblems are solved (in ad-
dition to the original problem)

— Intensive computational requirements



PROOF OF THE INDUCTION STEP

o Let mp = {Mk,/,bk_l_l,...,/,LN_l} denote a tail
policy from time k£ onward

e Assume that Jyiq(zpe1) = JI;k+1(aj]§_|_1). Then

Jp(rg) = min E {gk(xkaﬂk(mk)awk)

(B Th41) W, WN —1

N—1
+gn(zN) + Z gi(xiaﬂi(xi)awi)}

1=k+1

=min F {gk (2, ik (1), wpe)

P wg
N-1
+£inl LHU?’W\” {gN(mN)+¢;1gi(mi,m(%),wi)}} }
= ILILII £ {or (2r r @n)s wr ) + Ty y (Fr (k0 ik (@n), wr ) )
— rﬂzn £ {or (2r, x(@x), wr ) + Tir (fr (2r, ix(@n), wr ) ) §

= min FE {gk($k,ukawk)+<]k+l (fk(wk’uk’wk))}

up €U (71 ) wy,

= Jp(xk)

21



LINEAR-QUADRATIC ANALYTICAL EXAMPLE

Initial Final

Temperature X, Oven 1 X, Oven 2 Temperature X,
—_— Temperature — Temperature — >
Yo Uy

e System
Trr1 = (1 —a)xk + auy, kE=0,1,

where a is given scalar from the interval (0, 1)

e (Cost
r(ze —T)2 + ud + u?

where r is given positive scalar

e DP Algorithm:

Jo(xa) =r(xe — T)2

J1(x1) = min {u% +r((1 —a)z1 + aur — T)Q}

u1

Jo(20) = min[u + J1 ((1 — a)zo + auo)]

uo

22



STATE AUGMENTATION

e When assumptions of the basic problem are
violated (e.g., disturbances are correlated, cost is
nonadditive, etc) reformulate/augment the state

e DP algorithm still applies, but the problem gets
BIGGER

e [ixample: Time lags

i1 = fu(Tr, Tp—1, Uk, WE)

e Introduce additional state variable y. = xp_1.
New system takes the form

Lk+1 _ fk(xkvykaukawk)>
Yk+1 Lk

View T = (xk,yr) as the new state.
e DP algorithm for the reformulated problem:

Ji(%k, k—1) = min E {gk(xkaukawk)
ur €U (Tr) wg

+ Ji1 (fe(@n, Th—1, up, wi), xk)}

23



6.231 DYNAMIC PROGRAMMING
LECTURE 3
LECTURE OUTLINE

Deterministic finite-state DP problems
Backward shortest path algorithm
Forward shortest path algorithm
Shortest path examples

Alternative shortest path algorithms

24



DETERMINISTIC FINITE-STATE PROBLEM

Terminal Arcs
with Cost Equal
to Terminal Cost

s/

Avrtificial Terminal

Initial State Node

Stage O Stage 1 Stage 2 ... StageN -1 Stage N

e States <==> Nodes
e (Controls <==> Arcs

e Control sequences (open-loop) <==> paths
from initial state to terminal states

. afj: Cost of transition from state ¢ € Sy, to state
j € Sky1 at time k (view it as “length” of the arc)

e alY: Terminal cost of state i € Sy

e Cost of control sequence <==> Cost of the cor-
responding path (view it as “length” of the path)

25



BACKWARD AND FORWARD DP ALGORITHMS

e DP algorithm:
JN(i) — ag, 1 € Sn,

Ji(i) = jé%i}ilrl a4 Jr1(4)], i€ Sk, k=0,...,N-1

The optimal cost is Jo(s) and is equal to the
length of the shortest path from s to ¢

e Observation: An optimal path s — t is also an
optimal path ¢ — s in a “reverse” shortest path
problem where the direction of each arc is reversed
and its length is left unchanged

e Forward DP algorithm (= backward DP algo-

rithm for the reverse problem):
jN(]) — agjv )€ S1,

Jk(J) = un ay, "+ T (D)), € Sk

The optimal cost is Jo(t) = mines, [a + J1(7)]

o View Ji(j) as optimal cost-to-arrive to state j
from initial state s

26



A NOTE ON FORWARD DP ALGORITHMS

e There is no forward DP algorithm for stochastic
problems

e DMathematically, for stochastic problems, we
cannot restrict ourselves to open-loop sequences,
so the shortest path viewpoint fails

e (Conceptually, in the presence of uncertainty,
the concept of “optimal-cost-to-arrive” at a state
xr does not make sense. For example, it may be
impossible to guarantee (with prob. 1) that any
given state can be reached

e DBy contrast, even in stochastic problems, the
concept of “optimal cost-to-go” from any state xx
makes clear sense

27



GENERIC SHORTEST PATH PROBLEMS

e {1,2,...,N,t}: nodes of a graph (¢: the desti-
nation)

® a;;: cost of moving from node i to node j

e Find a shortest (minimum cost) path from each
node ¢ to node ¢

e Assumption: All cycles have nonnegative length.
Then an optimal path need not take more than N
moves

e We formulate the problem as one where we re-
quire exactly N moves but allow degenerate moves
from a node ¢ to itself with cost a;; = 0

Ji(1) = opt. cost of getting from i to t in N —k moves

Jo(i): Cost of the optimal path from ¢ to ¢.

e DP algorithm:

Jo(@) = min Jaij+dpa(f)],  k=01,...,N=2

with Jy_1(1) = a4, 1 =1,2,..., N

28



Destination

EXAMPLE

State i A

29



ESTIMATION / HIDDEN MARKOV MODELS

e Markov chain with transition probabilities p;;
e State transitions are hidden from view

e For each transition, we get an (independent)
observation

e 1r(z;i¢,7): Prob. the observation takes value z
when the state transition is from ¢ to j

e 'Irajectory estimation problem: Given the ob-
servation sequence Zy = {z1, 22,..., 2N}, what is
the “most likely” state transition sequence X N =
{Zo,Z1,...,2ZN} |one that maximizes p(Xn | Zn)
over all Xy = {xo,z1,...,2N}].

30



VITERBI ALGORITHM

e We have

p(X | Zy) = PO 2N

p(ZN)

where p(Xn, Zn) and p(Zn ) are the unconditional
probabilities of occurrence of (X, Zn) and Zy

e Maximizing p(Xn | Zn) is equivalent with max-
imizing In(p(Xy, Zn))

e We have (using the “multiplication rule” for
cond. probs)

N

p(XN7 ZN) — Txg H pxk—lxkr(zk; Lk—1, xk)
k=1

so the problem is equivalent to

N

minimize — In(m,) — g ln(pxk_lxkr(zk; Th_1,Tk)
k=1

over all possible sequences {zo,x1,...,TnN}.

e This is a shortest path problem.

31

)



GENERAL SHORTEST PATH ALGORITHMS

e There are many nonDP shortest path algo-
rithms. They can all be used to solve deterministic
finite-state problems

e They may be preferable than DP if they avoid
calculating the optimal cost-to-go of EVERY state

e Lissential for problems with HUGE state spaces.

e (Combinatorial optimization is prime example
(e.g., scheduling/traveling salesman)

A Origin Node s

5 1 15

AB AC AD

20 4 20 3 4 3

ABC ABD ACB ACD ADB ADC

ABCD ABDC ACBD ACDB ADBC ADCB

Artificial Terminal Node t

51|15
5 20| 4
1 (20 3
1514 (3

32



LABEL CORRECTING METHODS

o Given: Origin s, destination ¢, lengths a;; > 0.

e Idea is to progressively discover shorter paths
from the origin s to every other node ¢

e Notation:
— d; (label of 7): Length of the shortest path
found (initially ds = 0, d; = oo for i # s)
— UPPER: The label d; of the destination

— OPEN list: Contains nodes that are cur-
rently active in the sense that they are candi-
dates for further examination (initially OPEN={s})

Label Correcting Algorithm

Step 1 (Node Removal): Remove a node i from
OPEN and for each child 5 of 7, do step 2

Step 2 (Node Insertion Test): If d; + a;; <
min{d;, UPPER}, set d; = d; + a;; and set ¢ to
be the parent of j. In addition, if § # t, place j in
OPEN if it is not already in OPEN, while if j = ¢,
set UPPER to the new value d; + a;; of d;

Step 3 (Termination Test): If OPEN is empty,
terminate; else go to step 1

33



VISUALIZATION/EXPLANATION

e Given: Origin s, destination ¢, lengths a;; > 0

e d; (label of 7): Length of the shortest path found
thus far (initially ds = 0, d; = oo for i £ s). The
label d; is implicitly associated with an s — ¢ path

e UPPER: The label d; of the destination

e OPEN list: Contains “active” nodes (initially

OPEN={s})

Set dJ: di+ aij

INSERT

OPEN

YES

y

.%Oi/g
~O

REMOVE

Is d; + aj < UPPER ?

(Does the path s --> i --> |
have a chance to be part
of a shorter s --> t path ?)

TYES

Is di + aij < dj ?
(Is the path s --> 1 -->j
better than the

current path s -->j ?)




EXAMPLE

11 A Origin Node s

5 1 15
2| AB 71 AC 10| Aabp
20 4 20 3 4 3
3| ABC 5| ABD ACB 8| ACD ADB ADC
3 3 4 4 20 20
4. 1ABCD 6 | ABDC ACBD 9 ACDB ADBC ADCB
1 15 5 1

15

Artificial Terminal Node t

Iter. No.

© 00 N O O W N+ O

[t
o

7,
8,
9,

© 00 N O O kx W N -

[t
o

1

2, 7,10

3,5, 7, 10

4, 5,17, 10
5,7, 10
6, 7, 10

10
10
10

10
Empty

Node Exiting OPEN | OPEN after Iteration

UPPER

43
43
13
13
13
13
13

e Note that some nodes never entered OPEN

35




VALIDITY OF LABEL CORRECTING METHODS

Proposition: If there exists at least one path from
the origin to the destination, the label correcting
algorithm terminates with UPPER equal to the
shortest distance from the origin to the destina-
tion

Proof: (1) Each time a node j enters OPEN, its
label is decreased and becomes equal to the length
of some path from s to j

(2) The number of possible distinct path lengths
is finite, so the number of times a node can enter
OPEN is finite, and the algorithm terminates

(3) Let (s,j1,72,---,Jk,t) be a shortest path and
let d* be the shortest distance. If UPPER > d*
at termination, UPPER will also be larger than
the length of all the paths (s,j1,...,Jjm), m =
1,...,k, throughout the algorithm. Hence, node
Jr will never enter the OPEN list with d;, equal
to the shortest distance from s to ji. Similarly
node jr_1 will never enter the OPEN list with
d;,_, equal to the shortest distance from s to ji_1.
Continue to j; to get a contradiction

36



6.231 DYNAMIC PROGRAMMING

LECTURE 4

LECTURE OUTLINE

e Examples of stochastic DP problems
e Linear-quadratic problems

e Inventory control

37



LINEAR-QUADRATIC PROBLEMS

e System: xp11 = Arxr + Brur + wg

e (Quadratic cost

N—1
FE {:%VQNSCN + Z (2}, Qr) + %Rkuk)}
N—1

Wi
k=0,1,..., k=0

where QQr > 0 and Ry > 0 [in the positive (semi)definite
sense).

e w; are independent and zero mean

e DP algorithm:
In(zn) = 2yQNzN,

Ji () = min E{ZC%Q]{(L';C + up Rpug

U
+ Jpt1(Arzr + Brug + wy) }
e Key facts:
— Ji(xk) is quadratic
— Optimal policy {ug, ..., _1} is linear:
pi (k) = Ly

— Similar treatment of a number of variants

38



DERIVATION

e By induction verify that
pi(xr) = Ly, Ji (1) = 27 Kjx), + constant,
where L; are matrices given by

Ly = — (B, Ky+1Br + Ri) 1B} K41 Ay,

and where K are symmetric positive semidefinite
matrices given by

Ky =Qn,

Ky = A, (Kk+1 — Ky+1Bi(B), Ky11By
+ Ry) 1B, Kj41) Ak + Qp

e This is called the discrete-time Riccati equation

e Just like DP, it starts at the terminal time N
and proceeds backwards.

e Certainty equivalence holds (optimal policy is

the same as when w; is replaced by its expected
value F{wg} = 0).

39



ASYMPTOTIC BEHAVIOR OF RICCATI EQ.

e Assume stationary system and cost per stage,
and technical assumptions: controlability of (A, B)

and observability of (A, C) where @ = C'C

e The Riccati equation converges limy_, o, Ki =
K, where K is pos. definite, and is the unique
(within the class of pos. semidefinite matrices) so-
lution of the algebraic Riccati equation

K =A(K - KB(B'/KB+ R)-'B'K)A +Q

e The optimal steady-state controller p*(x) = Lx
L=—(B'KB+ R)"1B'KA,

is stable in the sense that the matrix (A 4+ BL) of
the closed-loop system

Tht1 = (A + BL)SCk + W

satisfies limg_, oo (A + BL)* = 0.

40



GRAPHICAL PROOF FOR SCALAR SYSTEMS

oy

e Riccati equation (with P, = Kny_g):

B2P?
Py = A2 P, — k
s ( " B2Pk+R> e

or Pyy1 = F(Py), where

F(P):A?(P B2 P2 >+Q: A2RP

- B2P L+ R B2P+R+Q

e Note the two steady-state solutions, satistying
P = F(P), of which only one is positive.

41



RANDOM SYSTEM MATRICES

e Suppose that {Agp, Bo},...,{ANx—1,Bn_1} are
not known but rather are independent random
matrices that are also independent of the wy

e DP algorithm is
In(zn) = 2yQNTN,
Ji(xr) =min  F {x;ch:iEk:

U wy,Ag,Bg

+ up Riur, + Ji1 (Apzy, + Brug + wy) |

e Optimal policy uj(zr) = Lrzk, where

—1
Ly = —(Rk + E{B,Ki+1Br}) E{BKi+1Ak},

and where the matrices K are given by
Ky =Qn,
Ky = E{A, Ki11Ar} — E{A} Ky1+1By}
(Ri + E{B,K}11Bi})  E{B,Ki11 4} + Qs

42



PROPERTIES

e (Certainty equivalence may not hold

e Riccati equation may not converge to a steady-
state

A
F(P)
/Q
R 0 = P>
E{B 2}

~

e We have Py = F(Py), where

- . E{A2}RP T P2
F(P) = E{B2}P+ R e E{B2}P+ R’

T = E{A2}E{B2} — (E~{A})2(E{B})2

43



INVENTORY CONTROL

e x: stock, uy: stock purchased, wy: demand
Tht1 = Tk + UL — Wk, k=0,1,...,N —1
e Minimize
N—1
E{Z(cuk + H(xg +uk))}
k=0
where
H(x+u)=F{r(r4+u—w)}

is the expected shortage/holding cost, with r de-
fined e.g., for some p > 0 and h > 0, as

r(x) = pmax(0, —x) + h max(0, )
e DP algorithm:
JN(ZEN) — 0,

Ji(rr) = min [cuk+H(xk+uk)+E{Jk+1($k+Uk—wk)H

uk 20
44



OPTIMAL POLICY

e DP algorithm can be written as Jy(xn) = 0,

Ji(xr) = mi>% [Cuk + H(xk + ug) + E{Jk+1(9€k + up — wk:)}]
uk_

= min Gg(xr + ur) — crr = min Gg(y) — cxy,
ukZO yZin

where
Gi(y) = cy + H(y) + E{Jpt1(y — w) }

o If Gy is convex and lim ;o Gr(x) = 00, We

have .
*(x)_{Sk—xk lfa?k<5k;,
Hk k)= 0 lf Il Z Sk,

where S, minimizes G (y).

e This is shown, assuming that H is convex and
¢ < p, by showing that J is convex for all k&, and

lim Jg(x) — oo

|x|— o0

45



JUSTIFICATION

Graphical inductive proof that Jx is convex.

A
cy + H(y)
) H(y)
1
T~ <
55\ I ~~~
| ! _
S s
oy N-1 y
JN—l(XN-l)A
I ~~~~~~
55\5 I =
Sy ! _

46



6.231 DYNAMIC PROGRAMMING
LECTURE 5
LECTURE OUTLINE

e Stopping problems
e Scheduling problems

e Minimax Control

a7



PURE STOPPING PROBLEMS

e T'wo possible controls:

— Stop (incur a one-time stopping cost, and
move to cost-free and absorbing stop state)

— Continue [using zx+1 = frx(zr, wr) and incur-
ring the cost-per-stage]
e Each policy consists of a partition of the set of
states x; into two regions:
— Stop region, where we stop
— Continue region, where we continue

CONTINUE STOP
REGION REGION

Stop State

48



EXAMPLE: ASSET SELLING

e A person has an asset, and at k=0,1,..., N —1
receives a random offer wy

e May accept wr and invest the money at fixed
rate of interest r, or reject wx and wait for wgy1.
Must accept the last offer wy_1

e DP algorithm (zx: current offer, T: stop state):

if T
In(zN) = {gN ;f iz iT’

Ji(zy) = {glax[(l )N Fag, B{Jrpr (wr) } i ii 7:&;’

e Optimal policy;

accept the offer x; if zp > ag,
reject the offer xzy if xr < ag,
where
 E{Jrs1(wi) }

T T ) NF

49



FURTHER ANALYSIS

ACCEPT

REJECT

0 1
e (Can show that ar > axs1 for all k&

e Proof: Let Vk(:ck) = Jk(xk)/(l —I—T)N_k for zx 75
T. Then the DP algorithm is

Vn(zn) = zn, Vi(zr) = max |zx, (14+7)7" 5{Vk+1(w)}

We have oy = Ew{VkH(w)}/(l + r), so it is enough
to show that Vi () > Viy1(x) for all x and k. Start
with Vn_1(x) > Vn(x) and use the monotonicity
property of DP. Q.E.D.

e We can also show that if w is bounded, ar — @
as k — —oo. Suggests that for an infinite horizon
the optimal policy is stationary.

50



GENERAL STOPPING PROBLEMS

e At time k, we may stop at cost ¢(xx) or choose
a control uy € U(xr) and continue

In(zn) = t(zN),

Jk(xk):min[t(wk), min E{g(xk,uk,wk)
ukGU(xk)

+ Jr+1 (f(xk, Uk wk)) H

e Optimal to stop at time k for x in the set

Tk:{x

e Since Jy_1(x) < Jn(x), we have Ji(x) < Jx11(x)
for all k, so

t(x) < ug%]i?x) E{g(a;, u, w) + Jg41 (f(33> u, w)) }}

ToC”’CTkCTk_|_1C"'CTN_1.

e Interesting case is when all the T} are equal (to
Tn_1, the set where it is better to stop than to go
one step and stop). Can be shown to be true if

flz,u,w) € Tn_1, for all x € Ty—1, u € U(x), w.

51



SCHEDULING PROBLEMS

e We have a set of tasks to perform, the ordering
is subject to optimal choice.

e (Costs depend on the order

e There may be stochastic uncertainty, and prece-
dence and resource availability constraints

e Some of the hardest combinatorial problems
are of this type (e.g., traveling salesman, vehicle
routing, etc.)

e Some special problems admit a simple quasi-
analytical solution method
— Optimal policy has an “index form”, i.e.,
each task has an easily calculable “cost in-
dex”, and it is optimal to select the task
that has the minimum value of index (multi-
armed bandit problems - to be discussed later)

— Some problems can be solved by an “inter-
change argument” (start with some schedule,
interchange two adjacent tasks, and see what
happens). They require existence of an op-
timal policy which is open-loop.

52



EXAMPLE: THE QUIZ PROBLEM

e Given a list of N questions. If question i is an-
swered correctly (given probability p;), we receive
reward R;; if not the quiz terminates. Choose or-
der of questions to maximize expected reward.

e Let ¢ and j be the kth and (k + 1)st questions
in an optimally ordered list

L= (0, iko1,0, 0042, 0inN—1)
E {reward of L} = E{reward of {io,... ix—1}}
+ Pig *+ Piy_ (PiRi + pip; Ry)
+ Dig " -pik_lpiij{reward of {ikt2,... ,iN—l}}

Consider the list with ¢ and j interchanged
L' = (0, yik—1,7,%, k42, .-, iN—1)

Since L is optimal, E{reward of L} > E{reward of L'},
so it follows that p; R; +pip; R; > pjR; + pjp: R; or

piRi/(1 —pi) > p; R; /(1 — pj).

53



MINIMAX CONTROL

e Consider basic problem with the difference that
the disturbance wy instead of being random, it is
just known to belong to a given set Wy (zy, uk).

e Find policy = that minimizes the cost

J(xp) = max [gN TN
( ) W EWp (1 (Tg)) ( )
k=0,1,...,N—1

N—-1

+ Z Jk (CUk:, tr(Tk), wk:)}

k=0

e The DP algorithm takes the form

JN(zN) = gn(zN),

Jk(azk) = min max [gk(xk,uk,wk)

ukEU(J?k) kaWk(a:k,uk)
+ Jr+1 (fk-(xk, Uk, ’wk))}

(Section 1.6 in the text).

54



DERIVATION OF MINIMAX DP ALGORITHM

e Similar to the DP algorithm for stochastic prob-
lems. The optimal cost J*(x¢) is

J*(xg) = min--- min max max
10 unN—1 woEW [xo,uo(x0)] wny_1EW[zN_1,uN—1(xN_1)]

N-1
[Z gk (e, k(1) i) + gN(CUN):|

k=0

= min--- min min max cee max
10 uN—2 | pnN—1 woEW [x0,10(x0)] wy_2€EW[rN_o,uN_2(xN_2)

N -2
|:ng($/%7/%(371€>7101€) + max

—y wy_1EW[zn_1,un—_1(xN_1)]

|:9N—1 ($N—17NN—1($N—1)7’LUN—1) + JN(CUN)H }

e Interchange the min over uny_1 and the max over
wo, ..., wnN—2, and similarly continue backwards,
with N — 1 in place of N, etc. After N steps we
obtain J* (CE()) = Jo(CE()).

e Construct optimal policy by minimizing in the
RHS of the DP algorithm.

55



UNKNOWN-BUT-BOUNDED CONTROL

e For each k, keep the zx of the controlled system

Trk+1 = [k (xk, ur (), wk:)

inside a given set Xy, the target set at time k.

e This is a minimax control problem, where the
cost at stage k is

[0 if:EkGXk,
gr(Tr) = {1 if zp ¢ Xk.

e We must reach at time k the set
X = {azk | Je(xk) = ()}

in order to be able to maintain the state within
the subsequent target sets.

o Start with Xy = Xn, and for k=0,1,...,N—1,

X = {ack € X1 | there exists uy € Uk(xx) such that

fk(xk,uk,wk) c Yk:—i—l, for all WE € Wk(:ck,uk)}

56



6.231 DYNAMIC PROGRAMMING
LECTURE 6

LECTURE OUTLINE

Problems with imperfect state info
Reduction to the perfect state info case
Linear quadratic problems

Separation of estimation and control

57



BASIC PROBL. W/ IMPERFECT STATE INFO

e Same as basic problem of Chapter 1 with one
difference: the controller, instead of knowing xz,
receives at each time k an observation of the form

20 — hO(CUO,'U()), Rk — hk(xkauk:—lavk)y k 2 1

e The observation z; belongs to some space Zx.

e The random observation disturbance vy is char-
acterized by a probability distribution

P,Uk(-‘xk,...,xg,uk_l,...,uo,wk_l,...,wo,vk_l,...,UO)

e The initial state zg is also random and charac-
terized by a probability distribution P, .

e The probability distribution Py, (- | z&, ux) of wy
is given, and it may depend explicitly on z; and
Uk but not on Wy .o, Wk—1,0V0y+-+,Vk—1-

e The control uy is constrained to a given subset
Uk (this subset does not depend on zx, which is
not assumed known).

58



INFORMATION VECTOR AND POLICIES

e Denote by I, the information vector, i.e., the
information available at time k:

Ik — (20,21,. e Rk, U0, UL, . .. ,uk_l), k Z 1,
Iy = 2o
e We consider policies m = {uo, p1, ..., un—1}, where

each pur maps I into a ug and
pr(Ix) € Ug, for all I, k>0

e We want to find a policy = that minimizes

:co,wk,'uk
k=0,...,N—1 k=0

Jr = E {gN(CEN)-I- ng(xk,uk([k),wk)}

subject to the equations
Ll+1 = fk: (xkauk(lk)awk)a k Z 07

20 = ho(Zo,v0), 2r = hi (wk,uk_l(lk_l),vk), k>1

59



REFORMULATION AS PERFECT INFO PROBL.

e System: We have
Ik+1:(lk,zk+1,uk), kZO,l,...,N—Q, ]():Z()

View this as a dynamic system with state I, con-
trol ug, and random disturbance zp1

e Disturbance: We have

P(zi41 | Ty ur) = P(zk41 | T, uks 20, 215 - - -5 25),
since zo, 21, ..., 2z, are part of the information vec-
tor I. Thus the probability distribution of zxy;

depends explicitly only on the state I, and control
ur and not on the prior “disturbances” z, ..., 2o

e (Cost Function: Write
E{gk(a:k,Uk,wk)} = E{ E {gk(xk,m,ww | Ik»uk}}
Tl ,WE

so the cost per stage of the new system is

gk(lkauk) = b {gk(xkaukawk) | Ikauk}
Tp W

60



DP ALGORITHM

e Writing the DP algorithm for the (reformulated)
perfect state info problem:

Jk:([k:): min [ E {gk(xk,uk,wk)
ugp €U Lag, wy, 249

+ Je+1 (T, 2k41, uk) | Ik, Uk}}

for k=0,1,..., N -2, and for k=N — 1,
IN_1(UN—1) = min { E {QN—l(fEN—l,UN—1,wN—1)
un_1€UN_1 | zny_1,wN_1

+ 9N (fN—l(xN—lauN—lawN—l)) | IN1,UN1}}

e The optimal cost J* is given by

J* = g{JO(ZO)}

61



LINEAR-QUADRATIC PROBLEMS

° System: Tht1 = Az + Brur + we

e Quadratic cost

N—1
E {.’EQVQNCCN + Z("E%Qk;xk + U;nguk)}
N—1

Wi
k=0,1,..., k=0

where Qr > 0 and Rx > 0

e Observations
2z = Crxr + Vi, k=0,1,...,N —1

® wp,...,WN_1, Vo,...,Un_1 Indep. zero mean

e Key fact to show:
— Optimal policy {ug, ..., uxn_1} is of the form:

pr(Ik) = LeE{xy | I}

Li: same as for the perfect state info case

— Estimation problem and control problem can
be solved separately

62



DP ALGORITHM 1

e Last stage N — 1 (supressing index N — 1):

In-ln-1) = min | Boy gy {ohoQan
UN—1

+ u?\f—lRUN—1 + (Azn_1 + Buy—1+wn-1)

- Q(Azxn_1 +Bun_1+wn_1) | IN—1,UN—1}}

® Since E{’UJN_l | IN_l,uN_l} — E{wN_l} — O,
the minimization involves

min [u?v_l(B/QB + R)un—1
UN -1
+2E{zN_1 | IN—l}/A/QBUN—l]
The minimization yields the optimal pi_q:
uny_1 =pn_1(In—1) = Ln_1E{zn-1 | IN-1}

where

Lyv_1=—(B'QB+R) 'B'QA

63



DP ALGORITHM II

e Substituting in the DP algorithm

IJNn_1(In21) = E {xgv_lKN—lxN—l | IN—l}

TN-—1

+ b {(xN—l—E{CUN—l | IN—l})/
TN—1

'PN—l(SUN—l — F{xn_1 | IN—1}) | IN—1}

+ F {w§V—1QNwN—1},
WN —1

where the matrices Ky_1 and Py_; are given by

Py_1=AN_1QNBN_1(Rn_1+ BN_1QNBnx_1)""
- Bn_1QNAN_1,
Knv_1=AN_1QNAN_1 — Pn_1+Qn_1

e Note the structure of Jy_1: in addition to the
quadratic and constant terms, it involves a (> 0)
quadratic in the estimation error

xn—1— F{en_1 | InN-1}

64



DP ALGORITHM III

e DP equation for period N — 2:

JN—2(Iny—2) = min { E {$§V—2Q$N—2
UN—2 ITN-2WN_22N—1

—|—u§V_2R’UJN_2 + JN—l(IN—l) ‘ IN—27uN_2}}
= E{:BEV_QQIEN—2 | IN—Q}

+ min |:’U,3V_2R'U/N2
UN 2

+E{$§V_1KN_1JJN—1 | IN—27UN—2}}
/
+ B{ (en-1 — Ben—1 | In-1})
.PN_l(a’;N_l — FE{zn_1 | IN_1}) | IN—27UN—2}

—|_ E’wN_l{wEV_lQNwN—l}

e Key point: We have excluded the estimation
error term from the minimization over un—_»

e This term turns out to be independent of un_»

65



QUALITY OF ESTIMATION LEMMA

e C(Current estimation error is unaffected by past
controls: For every k, there is a function M s.t.

xr — E{xr | It} = Mg(zo,wo, ..., Wk—1,v0,...,Vk),

independently of the policy being used

e (onsequence: Using the lemma,

rn-1— E{zn_1 | IN-1} =&n-1,
where

€N—1: function of To,Woy.+., WN—-2,V0,...,UN—-1

e Since £ny-_7 is independent of uy_2, the condi-
tional expectation of £y Pnv_1&n_1 satisfies

E{ény_1PN—1én—1 | IN—2,un—2}
= E{&y_1Pn-1&n—-1 | IN—2}

and is independent of uyx_o.

e So minimization in the DP algorithm yields

UNn_o = U*N—Q(IN—Q) = Ln_2 E{CCN—Q | IN—z}

66



FINAL RESULT

e Continuing similarly (using also the quality of
estimation lemma)

pi(Ik) = L E{wk | Ir},
where L; is the same as for perfect state info:
Ly = —(Ry + BpKy+1Br) ™' B K14y,
with K generated using the Riccati equation:
Ky = @n, Ky = Ay K41 Ar — P + Qx,
Py = A, Kri1Br(Ri + By Kiy1Br) "B K1 Ak
" 5

> X+ 1= AX t Buy +wy > 2, =Cxt v

Y

Delay

Y

A=

Uy _ E{x Z

Estimator

A
r
/

67



SEPARATION INTERPRETATION

e The optimal controller can be decomposed into

(a) An estimator, which uses the data to gener-
ate the conditional expectation E{xy | Ix}.

(b) An actuator, which multiplies E{zx | It} by
the gain matrix L, and applies the control
input Uk = LkE{CEk | Ik}.

e Generically the estimate 2 of a random vector x
given some information (random vector) I, which
minimizes the mean squared error

E{llz — 2|* | I} = |lz]|® - 2B{z | I} + ||2|°
is EB{z | I} (set to zero the derivative with respect

to & of the above quadratic form).

e The estimator portion of the optimal controller
is optimal for the problem of estimating the state
xk assuming the control is not subject to choice.

e The actuator portion is optimal for the control
problem assuming perfect state information.

68



STEADY STATE/IMPLEMENTATION ASPECTS

e As N — oo, the solution of the Riccati equation
converges to a steady state and Ly — L.

o If zo, wi, and vx are Gaussian, E{x, | Ix} is
a linear function of I and is generated by a nice
recursive algorithm, the Kalman filter.

e The Kalman filter involves also a Riccati equa-
tion, so for N — oo, and a stationary system, it
also has a steady-state structure.

e Thus, for Gaussian uncertainty, the solution is
nice and possesses a steady state.

e For nonGaussian uncertainty, computing E{xy | Ix}
maybe very difficult, so a suboptimal solution is
typically used.

e Most common suboptimal controller: Replace
E{zy | I} by the estimate produced by the Kalman
filter (act as if zo, wi, and v, are Gaussian).

e It can be shown that this controller is optimal
within the class of controllers that are linear func-
tions of Ik.

69



6.231 DYNAMIC PROGRAMMING
LECTURE 7

LECTURE OUTLINE

e DP for imperfect state info
e Sufficient statistics

e (Conditional state distribution as a sufficient
statistic

e Finite-state systems

e Examples

70



REVIEW: IMPERFECT STATE INFO PROBLEM

e Instead of knowing xx, we receive observations

z0o = ho(xo,v0), 2k = hr(xk,uk—1,v%), k>0

e [.: information vector available at time k:

Io =20, I = (20,21, 2k, U0, UL, ..., Uk—1), k>1

e Optimization over policies 7 = {uo, p1,..., un—17,
where ux(Ix) € Uy, for all I, and k.

e Find a policy = that minimizes

Jr = E {gN(CCN)+ ng(xk,uk;(]k),wk)}

k=0
subject to the equations

Lk4+1 = fk (:'Ckaluk(lk)awk)a k Z 07

z0 = ho(xo,v0), zr = hg (ﬂfk,uk—l(fk—l),vk), kE>1

71



DP ALGORITHM

e DP algorithm:
Jk([k): min { E {gk(xk,uk,wk)

up €U Lop, wy, 211

+ Jr+1 (T, 2k+1, uk) | Ik, uk}}

for k=0,1,...,N -2, and for k=N — 1,

INn—1(UNn=1) = min E {QN—l(xN—la’UJN—lawN—l)
uN—1€UN—-1 | zny_1,wN_1

+ 9N (fN—l(ﬂfN—1,uN—1,wN—1)) | INla’UJNl}:|

e The optimal cost J* is given by

J” zg{Jo(zo)}.

72



SUFFICIENT STATISTICS

e Suppose there is a function Sk (I) such that the
min in the right-hand side of the DP algorithm can
be written in terms of some function Hj as

uinelgk Hy, (Sk(lk)auk)

e Such a function S is called a sufficient statistic.

e An optimal policy obtained by the preceding
minimization can be written as

pi(Ie) = T, (Sk (k).

where 71, is an appropriate function.
e Example of a sufficient statistic: Sk (Ix) = I

e Another important sufficient statistic

Sk(Uk) = Poy 1y,

assuming that v, is characterized by a probability
distribution Pfuk ( | LThk—1,UL—1, wk_l)

73



DP ALGORITHM IN TERMS OF Px, 1,

o Filtering Equation: P, ;_ is generated recur-
sively by a dynamic system (estimator) of the form

ka:—l—llfk—kl — @k(ka|Ik7uk7Zk+l)

for a suitable function @,

e DP algorithm can be written as

YkSYE Lo, w2k

—|—7k_|_1 (CI)k:(kaukauka Zk‘l-l)) ’ Ik’uk}i|

e It is the DP algorithm for a new problem whose
state is P,, |7, (also called belief state)

" 5

Uy System Xk Measurement Zk
- X 41 = fielXic . Ui W) | ze=hdxiou v o
Uk -1
Y Y
A
> Delay =
Px 11 . i -1 ) z
- Actuator - Estimator - k

Ty P -1

74



EXAMPLE: A SEARCH PROBLEM

e At each period, decide to search or not search
a site that may contain a treasure.

e If we search and a treasure is present, we find
it with prob. g and remove it from the site.

e Treasure’s worth: V. Cost of search: C
e States: treasure present & treasure not present

e Fach search can be viewed as an observation of
the state

e Denote
pr . prob. of treasure present at the start of time k

with po given.

e p; evolves at time k according to the equation

(P if not search,
prs1 =4 0 if search and find treasure,
Py U—F) if search and no treasure
\ Pr(1=8)+1—-pg ‘

This is the filtering equation.

75



SEARCH PROBLEM (CONTINUED)

e DP algorithm

J1(pr) = max {O, —C + prBV

+ (1 = prB) k11 (pk(lp_k(ﬁl);ﬁl)_ pk> :|7

with Tx(pn) = 0.

e Can be shown by induction that the functions
J 1 satisfy

y
|4

|
™

=0 1if pkﬁéia

Jre(Pr) 4

: C
>0 if pr > 55

™

e Furthermore, it is optimal to search at period
k if and only if
prBV > C

(expected reward from the next search > the cost
of the search - a myopic rule)

76



FINITE-STATE SYSTEMS - POMDP

e Suppose the system is a finite-state Markov
chain, with states 1,...,n.

e Then the conditional probability distribution

Py 1, 1S an n-vector

(P(xk:1|lk),,P(:ck:n|Ik))

e The DP algorithm can be executed over the n-
dimensional simplex (state space is not expanding
with increasing k)

e When the control and observation spaces are
also finite sets the problem is called a POMDP
(Partially Observed Markov Decision Problem).

e For POMDP it turns out that the cost-to-go
functions J, in the DP algorithm are piecewise
linear and concave (Exercise 5.7)

e Useful in practice both for exact and approxi-
mate computation.

77



INSTRUCTION EXAMPLE 1

e Teaching a student some item. Possible states
are L: Item learned, or L: Item not learned.

e Possible decisions: T: Terminate the instruc-
tion, or T: Continue the instruction for one period
and then conduct a test that indicates whether the
student has learned the item.

e Possible test outcomes: R: Student gives a cor-
rect answer, or R: Student gives an incorrect an-
Swer.

e Probabilistic structure

e Cost of instruction: I per period

e (Cost of terminating instruction: 0 if student
has learned the item, and C > 0 if not.

78



INSTRUCTION EXAMPLE II

e Let pi: prob. student has learned the item given
the test results so far

Pk :P(xk :L|Zo,21,...,zk).

e Filtering equation: Using Bayes’ rule

Pe+1 = q)(pk7 Zk—|—1)
1—(1—t)(1—py) : B
— 1—(1—t)(1—r)(1]ipk) lf Zk+4+1 = R7
0 if 241 = R.

e DP algorithm:

Jk(pr) = min [(1 —p)C, I+ E {Tey1(®0r, 2011)) }

ZE+4+1

starting with

jN—l(pN—l) = min[(l—pN_l)C, I—I—(l—t)(l—pN_l)C].

79



INSTRUCTION EXAMPLE III

e Write the DP algorithm as

Jr(pr) = min{(1 = pr)C, T + Ax(pr)],

where

Ay(pr) = P(zk41 = R | Ir) Jii1 (®(pr, R))
+ P(zk41 = R | Ix) i1 (®(pr, R))

e Can show by induction that Ax(p) are piecewise
linear, concave, monotonically decreasing, with

Ar-1(p) < Ai(p) < Art1(p); for all p € [0, 1].

(The cost-to-go at knowledge prob. p increases as
we come closer to the end of horizon.)

I+Ay_1(P)

80



6.231 DYNAMIC PROGRAMMING
LECTURE 8

LECTURE OUTLINE

Suboptimal control

Cost approximation methods: Classification
Certainty equivalent control: An example
Limited lookahead policies

Performance bounds

Problem approximation approach

Parametric cost-to-go approximation

81



PRACTICAL DIFFICULTIES OF DP

e The curse of dimensionality

— Exponential growth of the computational and
storage requirements as the number of state
variables and control variables increases

— Quick explosion of the number of states in
combinatorial problems

— Intractability of imperfect state information
problems
e The curse of modeling
— Mathematical models
— Computer/simulation models

e There may be real-time solution constraints

— A family of problems may be addressed. The
data of the problem to be solved is given with
little advance notice

— The problem data may change as the system
is controlled — need for on-line replanning

82



COST-TO-GO FUNCTION APPROXIMATION

e Use a policy computed from the DP equation
where the optimal cost-to-go function Ji1 is re-
placed by an approximation Jxy;. (Sometimes F { gk}

is also replaced by an approximation.)

e Apply 5, (zx), which attains the minimum in

min E{gk(xk,m,wk) + Jr1 (fk(xkaukaw’f))}
ukEUk(xk)

e There are several ways to compute Jg1:

— Off-line approximation: The entire function
Jr+1 1s computed for every k, before the con-
trol process begins.

— On-line approximation: Only the values Jxi1(zrs1)
at the relevant next states xypi1 are com-
puted and used to compute uy just after the
current state x, becomes known.

— Simulation-based methods: These are off-
line and on-line methods that share the com-
mon characteristic that they are based on
Monte-Carlo simulation. Some of these meth-
ods are suitable for are suitable for very large
problems.

83



CERTAINTY EQUIVALENT CONTROL (CEC)

e Idea: Replace the stochastic problem with a
deterministic problem

e At each time k, the future uncertain quantities
are fixed at some “typical” values

e On-line implementation for a perfect state info
problem. At each time k:

(1) Fix the w;, i > k, at some w,. Solve the
deterministic problem:
N—-1

minimize gN(CCN) —+ E i (a:i,uz-,@i)
i=k
where x; is known, and
ui € Ui, xig1 = f; (xi,ui,mi)-

(2) Use the first control in the optimal control
sequence found.

e Equivalently, we apply fx(xx) that minimizes
Jk (iEk, Uk,@k) + Jhi1 (fk(wk, uk,@k))

where Ji41 is the optimal cost of the correspond-
ing deterministic problem.

84



EQUIVALENT OFF-LINE IMPLEMENTATION

o Let {,ug(xo), . ,,ufl\,_l(a:N_l)} be an optimal con-
troller obtained from the DP algorithm for the de-
terministic problem

N—-1

minimize gy (zn) + Y gk (wh, ik (2r), i)
k=0

subject to zpy1 = fi (iﬁk,uk(wk),@k), pr(TK) € Uy

e The CEC applies at time k the control input
pi ().

e In an imperfect info version, x; is replaced by
an estimate Ty ([y).

lwk l Vi

U k= pf (X System X Measurement Zjc
Xie+ 1= TelXpea Uy, W) Zp = hydXc Uy - 1,Vy)
-
Up -1
A Y
— Delay -
xi(l) . 5l
Kk %
= Actuator — - Estimator | —e— % |

Mk

85



PARTIALLY STOCHASTIC CEC

e Instead of fixing all future disturbances to their
typical values, fix only some, and treat the rest as
stochastic.

e Important special case: Treat an imperfect state
information problem as one of perfect state infor-
mation, using an estimate Ty (Ix) of xx as if it were
exact.

e Multiaccess communication example: Consider

controlling the slotted Aloha system (Example 5.1.1
in the text) by optimally choosing the probabil-

ity of transmission of waiting packets. This is a

hard problem of imperfect state info, whose per-

fect state info version is easy.

e Natural partially stochastic CEC:
ik (Ix) = min |1 1
M\l ) — ’ fk (Ik) y

where Ty ([x) is an estimate of the current packet
backlog based on the entire past channel history
of successes, idles, and collisions (which is I).

86



GENERAL COST-TO-GO APPROXIMATION

e One-step lookahead (1SL) policy: At each k
and state xy, use the control 7, (zr) that

min E{gk(azk, Uk, Wk) + jk—|—1 (fk(ivk, Uk, wk)) },
up €U (z},)

where
— jN = gnN.
— Jiy1: approximation to true cost-to-go Jyi1

e Two-step lookahead policy: At each k and
xk, use the control [ix(zx) attaining the minimum
above, where the function Jj1 is obtained using a
1SL approximation (solve a 2-step DP problem).

e If J,,1 is readily available and the minimiza-
tion above is not too hard, the 1SL policy is im-
plementable on-line.

e Sometimes one also replaces Uk (zx) above with
a subset of “most promising controls” Uy (xx).

e As the length of lookahead increases, the re-
quired computation quickly explodes.

87



PERFORMANCE BOUNDS FOR 1SL

o Let Ji(xx) be the cost-to-go from (xz, k) of the
1SL policy, based on functions Jy.

e Assume that for all (zx, k), we have

A

Je(zr) < Jr(zn), (™)

where Jy = gy and for all k&,

A

Jr(xr) = min  FE4gr(xk, uk, wg
(zx) L { gk ( )

+ Jha1 (fk(wk,uk,wk;))},

[so Jr(xk) is computed along with 7, (z1)]. Then

7k(xk) S jk(a:k), fOl“ all (xk,k)

e Important application: When Jy, is the cost-to-
go of some heuristic policy (then the 1SL policy is
called the rollout policy).

e The bound can be extended to the case where
there is a d; in the RHS of (*). Then

Je(zr) < Je(zk) + 0k + -+ On_1

88



COMPUTATIONAL ASPECTS

e Sometimes nonlinear programming can be used
to calculate the 1SL or the multistep version [par-
ticularly when Ug(x) is not a discrete set]. Con-
nection with stochastic programming (2-stage DP)
methods (see text).

e The choice of the approximating functions .Jj
is critical, and is calculated in a variety of ways.

e Some approaches:

(a)

(b)

Problem Approximation: Approximate the
optimal cost-to-go with some cost derived
from a related but simpler problem

Parametric Cost-to-Go Approximation: Ap-
proximate the optimal cost-to-go with a func-
tion of a suitable parametric form, whose pa-
rameters are tuned by some heuristic or sys-
tematic scheme (Neuro-Dynamic Program-
ming)

Rollout Approach: Approximate the opti-
mal cost-to-go with the cost of some subop-
timal policy, which is calculated either ana-
lytically or by simulation

89



PROBLEM APPROXIMATION

e Many (problem-dependent) possibilities

— Replace uncertain quantities by nominal val-
ues, or simplify the calculation of expected
values by limited simulation

— Simplify difficult constraints or dynamics

e Enforced decomposition example: Route m ve-
hicles that move over a graph. Each node has a
“value.” First vehicle that passes through the node
collects its value. Want to max the total collected
value, subject to initial and final time constraints
(plus time windows and other constraints).

e Usually the 1-vehicle version of the problem is
much simpler. This motivates an approximation
obtained by solving single vehicle problems.

e 1SL scheme: At time k and state zx (position
of vehicles and “collected value nodes”), consider
all possible kth moves by the vehicles, and at the
resulting states we approximate the optimal value-
to-go with the value collected by optimizing the
vehicle routes one-at-a-time

90



PARAMETRIC COST-TO-GO APPROXIMATION

e Use a cost-to-go approximation from a para-
metric class J(z,r) where z is the current state
and r = (r1,...,7m) is a vector of “tunable” scalars
(weights).

e By adjusting the weights, one can change the
“shape” of the approximation J so that it is rea-
sonably close to the true optimal cost-to-go func-
tion.

e Two key issues:

— The choice of parametric class J(z,r) (the
approximation architecture).

— Method for tuning the weights (“training”
the architecture).

e Successful application strongly depends on how
these issues are handled, and on insight about the
problem.

e Sometimes a simulation-based algorithm is used,
particularly when there is no mathematical model
of the system.

e We will look in detail at these issues after a few
lectures.

91



APPROXIMATION ARCHITECTURES

e Divided in linear and nonlinear [i.e., linear or
nonlinear dependence of J(z,r) on r|

e Linear architectures are easier to train, but non-
linear ones (e.g., neural networks) are richer

e Linear feature-based architecture: ¢ = (¢1,..., ¢m)
J(@,r) =¢(@)r = ¢;(z)r,
j=1

Linear Cost

State | Feature Extraction | Feature Vector ¢(x) Linear Approximator ¢(x)'r
—_— > >

Mapping Mapping

e Ideally, the features will encode much of the
nonlinearity that is inherent in the cost-to-go ap-
proximated, and the approximation may be quite
accurate without a complicated architecture

e Anything sensible can be used as features. Some-
times the state space is partitioned, and “local”
features are introduced for each subset of the par-
tition (they are 0 outside the subset)

92



AN EXAMPLE - COMPUTER CHESS

e (hess programs use a feature-based position
evaluator that assigns a score to each move/position

_________________________________________

1 1
1 1
1 1
: Features: ;
! Material balance, '
R | . Mobility :

1 ! 1
| Safety, etc . .
: Feature _| Weighting ,_Score

EnE Extraction of Features

A8 vloiel ¢ 15 x|

Position Evaluator

e Many context-dependent special features.

e Most often the weighting of features is linear
but multistep lookahead is involved.

e Most often the training is done “manually,” by
trial and error.

93



ANOTHER EXAMPLE - AGGREGATION

e Main elements (in a finite-state context):

— Introduce “aggregate” states Si,...,Sm, viewed
as the states of an “aggregate” system

— Define transition probabilities and costs of
the aggregate system, by relating original
system states with aggregate states (using so
called “aggregation and disaggregation prob-
abilities”)

— Solve (exactly or approximately) the “ag-
gregate” problem by any kind of method (in-
cluding simulation-based) ... more on this
later.

— Use the optimal cost of the aggregate prob-
lem to approximate the optimal cost of each
original problem state as a linear combina-
tion of the optimal aggregate state costs

e This is a linear feature-based architecture (the
optimal aggregate state costs are the features)

e Hard aggregation example: Aggregate states
S; are a partition of original system states (each
original state belongs to one and only one S;).

94



AN EXAMPLE: REPRESENTATIVE SUBSETS

e The aggregate states S; are disjoint “represen-
tative” subsets of original system states

Original State Space

@
|

Aggregate States/Subsets

e Common case: Fach S, is a group of states with
“similar characteristics”

e Compute a “cost” r; for each aggregate state
S; (using some method)

e Approximate the optimal cost of each original
system state z with » 7| ¢q;7;

e For each z, the ¢,;, j = 1,...,m, are the “ag-
gregation probabilities” ... roughly the degrees of
membership of state x in the aggregate states .S

e FEach ¢,.; is prespecified and can be viewed as
the jth feature of state x

95



6.231 DYNAMIC PROGRAMMING
LECTURE 9

LECTURE OUTLINE

Rollout algorithms

Policy improvement property
Discrete deterministic problems
Approximations of rollout algorithms
Model Predictive Control (MPC)
Discretization of continuous time
Discretization of continuous space

Other suboptimal approaches

96



ROLLOUT ALGORITHMS

e One-step lookahead policy: At each k and state
x, use the control i, (xx) that

min E{gk(azk, Uk, Wk) + jk—|—1 (fk(ivk, Uk, wk)) }7
up €U (z},)

where
— jN = (gnN.
—J k+1: approximation to true cost-to-go Ji41

e Rollout algorithm: When J} is the cost-to-go of
some heuristic policy (called the base policy)

e Policy improvement property (to be shown):
The rollout algorithm achieves no worse (and usu-
ally much better) cost than the base heuristic start-
ing from the same state.

e Main difficulty: Calculating J(zx) may be com-
putationally intensive if the cost-to-go of the base
policy cannot be analytically calculated.

— May involve Monte Carlo simulation if the
problem is stochastic.

— Things improve in the deterministic case.

97



EXAMPLE: THE QUIZ PROBLEM

e A person is given N questions; answering cor-
rectly question i has probability p;, reward wv;.
Quiz terminates at the first incorrect answer.

e Problem: Choose the ordering of questions so
as to maximize the total expected reward.

e Assuming no other constraints, it is optimal to
use the index policy: Answer questions in decreas-
ing order of p;v; /(1 — p;).

e With minor changes in the problem, the index
policy need not be optimal. Examples:

— A limit (< N) on the maximum number of
questions that can be answered.

— Time windows, sequence-dependent rewards,
precedence constraints.

e Rollout with the index policy as base policy:
Convenient because at a given state (subset of
questions already answered), the index policy and
its expected reward can be easily calculated.

e Very effective for solving the quiz problem and
important generalizations in scheduling (see Bert-
sekas and Castanon, J. of Heuristics, Vol. 5, 1999).

98



COST IMPROVEMENT PROPERTY

o Let
Jr(zr): Cost-to-go of the rollout policy

Hy(xx): Cost-to-go of the base policy

) We Claim that jk(a?k;) S Hk(:ck) fOI‘ all Tk, k

e Proof by induction: We have Jy(zny) = Hy(zn)
for all zn. Assume that

Jir1(Tre1) < Heo1(Tee1), ¥V Tgaa.

Let 7, (xx) and ui(zr) be the controls applied by
rollout and heuristic at x,. Then, for all zx

Ji(x) = E{gk (xk,ﬁk(l‘k),wk) + Tkt (fk (xk’ﬂ’f(xk)’wk))}
< E{ gk (2, B (@r), wr ) + Heg1 (i (0, g (2n), wie) ) }
< E{gr (@, i (@r), we) + Herr (Fu (2, e (2n), wi) ) §
= Hp(zy)

— Induction hypothesis ==> 1st inequality
— Min selection of 7, (xx) ==> 2nd inequality
— Definition of Hy, ur ==> last equality

99



DISCRETE DETERMINISTIC PROBLEMS

e Any discrete optimization problem can be repre-
sented sequentially by breaking down the decision
process into stages.

e A tree/shortest path representation. The leaves
of the tree correspond to the feasible solutions.

e LExample: Traveling salesman problem. Find a
minimum cost tour through N cities.

A Origin Node s

AB AC AD

ABC ABD ACB ACD ADB ADC

ABCD ABDC ACBD ACDB ADBC ADCB

Traveling salesman problem with four cities A, B, C, D
e Complete partial solutions, one stage at a time

e May apply rollout with any heuristic that can
complete a partial solution

e No costly stochastic simulation needed

100



EXAMPLE: THE BREAKTHROUGH PROBLEM

root

e Given a binary tree with N stages.
e Each arc is free or is blocked (crossed out)

e Problem: Find a free path from the root to the
leaves (such as the one shown with thick lines).

e Base heuristic (greedy): Follow the right branch
if free; else follow the left branch if free.

e This is a rare rollout instance that admits a
detailed analysis.

e For large N and given prob. of free branch:
the rollout algorithm requires O(N) times more
computation, but has O(N) times larger prob. of
finding a free path than the greedy algorithm.

101



DET. EXAMPLE: ONE-DIMENSIONAL WALK

e A person takes either a unit step to the left or
a unit step to the right. Minimize the cost g(i) of
the point 7 where he will end up after N steps.

(0,0)

e Base heuristic: Always go to the right. Rollout
finds the rightmost local minimum.

e Alternative base heuristic: Compare always go
to the right and always go the left. Choose the
best of the two. Rollout finds a global minimum.

102



A ROLLOUT ISSUE FOR DISCRETE PROBLEMS

e The base heuristic need not constitute a policy
in the DP sense.

e Reason: Depending on its starting point, the
base heuristic may not apply the same control at
the same state.

e As a result the cost improvement property may
be lost (except if the base heuristic has a property
called sequential consistency; see the text for a
formal definition).

e The cost improvement property is restored in
two ways:

— The base heuristic has a property called se-
quential improvement which guarantees cost
reduction at each step (see the text for a for-
mal definition).

— A variant of the rollout algorithm, called for-
tified rollout, is used, which enforces cost
improvement. Roughly speaking the “best”
solution found so far is maintained, and it
is followed whenever at any time the stan-
dard version of the algorithm tries to follow
a “worse” solution (see the text).

103



ROLLING HORIZON WITH ROLLOUT

e We can use a rolling horizon approximation in
calculating the cost-to-go of the base heuristic.

e Because the heuristic is suboptimal, the ratio-
nale for a long rolling horizon becomes weaker.

e [ixample: N-stage stopping problem where the
stopping cost is 0, the continuation cost is either
—e or 1, where 0 < ¢ << 1, and the first state
with continuation cost equal to 1 is state m. Then
the optimal policy is to stop at state m, and the
optimal cost is —me.

RS

Stopped State )

e Consider the heuristic that continues at every
state, and the rollout policy that is based on this
heuristic, with a rolling horizon of ¢ < m steps.

e It will continue up to the first m — £ + 1 stages,
thus compiling a cost of —(m —£+1)e. The rollout
performance improves as | becomes shorter!

e Limited vision may work to our advantage!

104



MODEL PREDICTIVE CONTROL (MPC)

e Special case of rollout for linear deterministic
systems (similar extensions to nonlinear /stochastic)

— System: zpi1 = Axy + Buy
— Quadratic cost per stage: x.Qxx + uj Rug
— Constraints: z, € X, ux € U(zy)
e Assumption: For any zo € X there is a feasible

state-control sequence that brings the system to 0
in m steps, 1.e., ,, =0

e MPC at state x, solves an m-step optimal con-
trol problem with constraint xy.,, = 0, i.e., finds

a sequence ug,...,Ur+m—1 that minimizes
m—1
/ /
E <$k+eQ$k+e + Uk;—|—£Ruk—|—£)
¢=0

subject to xxirm =0

e Then applies the first control u, (and repeats
at the next state xy41)

e MPC is rollout with heuristic derived from the
corresponding m — 1-step optimal control problem

e Key Property of MPC: Since the heuristic is sta-
ble, the rollout is also stable (suggested by policy
improvement property; see the text).

105



DISCRETIZATION

e If the time, and/or state space, and/or control
space are continuous, they must be discretized.

e (Consistency issue, i.e., as the discretization be-
comes finer, the cost-to-go functions of the dis-
cretized problem should converge to those of the
original problem.

e Pitfall with discretizing continuous time: The
control constraint set may change a lot as we pass
to the discrete-time approximation.

e [Example: Consider the system #(t) = u(t), with
control constraint u(t) € {—1,1}. The reachable
states after time ¢ are z(t + 6) = x(t) + u, with
u € [—4,9].

e Compare it with the reachable states after we
discretize the system naively: z(t+4§) = x(t)+du(t),
with u(t) € {—1,1}.

e “Convexification effect” of continuous time: a
discrete control constraint set in continuous-time
differential systems, is equivalent to a continuous
control constraint set when the system is looked
at discrete times.

106



SPACE DISCRETIZATION

e Given a discrete-time system with state space
S, consider a finite subset S; for example S could
be a finite grid within a continuous state space S.

o Difficulty: f(z,u,w) ¢ S for z € S.

e We define an approximation to the original
problem, with state space S, as follows:

e Express each x € S as a convex combination of
states in S, 1.e.,

x—quz x)x; Where ¢;(z) > 0, Zgbz =

e Define a “reduced” dynamic system with state
space S, whereby from each z; € S we move to
z = f(xi,u,w) according to the system equation
of the original problem, and then move to z; € S
with probabilities ¢; (7).

e Define similarly the corresponding cost per stage
of the transitions of the reduced system.

e Note application to finite-state POMDP (dis-
cretization of the simplex of the belief states).

107



SPACE DISCRETIZATION/AGGREGATION

o Let Jp(z;) be the optimal cost-to-go of the “re-
duced” problem from each state x; € S and time
k onward.

e Approximate the optimal cost-to-go of any z € S
for the original problem by

Je(z) =) ¢i(a)Tn(w:),

CB,[:ES
and use one-step-lookahead based on Jy.

e The coefficients ¢;(x) can be viewed as features
in an aggregation scheme.

e Important question: Consistency, i.e., as the
number of states in S increases, Jx(z) should con-
verge to the optimal cost-to-go of the original prob.

e Interesting observation: While the original prob-
lem may be deterministic, the reduced problem is
always stochastic.

o Generalization: The set S may be any finite set
(not a subset of S) as long as the coefficients ¢;(x)
admit a meaningful interpretation that quantifies
the degree of association of z with z; (a form of
aggregation).

108



OTHER SUBOPTIMAL APPROACHES

¢ Minimize the DP equation error (Fitted Value
Iteration): Approximate Jy(zx) with Jg(z, %), where
rr 1S a parameter vector, chosen to minimize some
form of error in the DP equations

— Can be done sequentially going backwards
in time (approximate J, using an approxi-
mation of Jxi1, starting with Jy = gn).

e Direct approximation of control policies: For a
subset of states z*, i1 =1,...,m, find

() =arg min B{g(a’,ue, we)
ukEUk(:CZ)

+ Jha1 (fk:(xiyuk:,wk:),rk—i—l)}

Then find fix(zk, sk), where s, is a vector of pa-
rameters obtained by solving the problem

min y |l (2") — (", 5)]
1=1

e Approximation in policy space: Do not bother
with cost-to-go approximations. Parametrize the
policies as [ix(xk, sx), and minimize the cost func-
tion of the problem over the parameters s, (ran-
dom search is a possibility).

109



6.231 DYNAMIC PROGRAMMING
LECTURE 10

LECTURE OUTLINE

Infinite horizon problems

Stochastic shortest path (SSP) problems
Bellman’s equation

Dynamic programming — value iteration

Discounted problems as special case of SSP

110



TYPES OF INFINITE HORIZON PROBLEMS

e Same as the basic problem, but:
— The number of stages is infinite.
— Stationary system and cost (except for dis-
counting).

e Total cost problems: Minimize

N—1
Jw(xO) — ]\;Enoo wE]'{: {Zakg<xk,uk(a:k),wk)}
k=0,1,... k=0

(if the lim exists - otherwise lim sup).

— Stochastic shortest path (SSP) problems (a =
1, and a termination state)

— Discounted problems (a < 1, bounded g)
— Undiscounted, and discounted problems with
unbounded g

e Average cost problems

N—-1
R S

k=0,1,...

e Infinite horizon characteristics: Challenging anal-
ysis, elegance of solutions and algorithms (station-
ary optimal policies are likely)

111



PREVIEW OF INFINITE HORIZON RESULTS

e Key issue: The relation between the infinite and
finite horizon optimal cost-to-go functions.

e For example, let « = 1 and Jy(x) denote the
optimal cost of the N-stage problem, generated
after N DP iterations, starting from some Jy

Jen(@) = min F{g(euw,w) + Ji(f(z,uw))}, Ve

e Typical results for total cost problems:
— Convergence of value iteration to J*:

J () = min Jr(x) = lim Jy(z), Vx

T N — oo

— Bellman’s equation holds for all z:

J (x) = g%]l?)E {g(az,u, w) + J° (f(:v,u, w))}
— Optimality condition: If p(x) minimizes in
Bellman’s Eq., {u, u, ...} is optimal.

e Bellman’s Eq. holds for all deterministic prob-
lems and “almost all” stochastic problems.

e Other results: True for SSP and discounted;
exceptions for other problems.

112



“EASY” AND “DIFFICULT” PROBLEMS

e Easy problems (Chapter 7, Vol. I of text)
— All of them are finite-state, finite-control
— Bellman’s equation has unique solution
— Optimal policies obtained from Bellman Eq.
— Value and policy iteration algorithms apply

e Somewhat complicated problems

— Infinite state, discounted, bounded ¢ (con-
tractive structure)

— Finite-state SSP with “nearly” contractive
structure

— Bellman’s equation has unique solution, value
and policy iteration work
e Difficult problems (w/ additional structure)
— Infinite state, g > 0 or g <0 (for all z,u, w)
— Infinite state deterministic problems
— SSP without contractive structure

e Hugely large and/or model-free problems
— Big state space and/or simulation model
— Approximate DP methods

e Measure theoretic formulations (not in this course)

113



STOCHASTIC SHORTEST PATH PROBLEMS

e Assume finite-state system: States 1,...,n and
special cost-free termination state ¢

— Transition probabilities p;;(u)
— Control constraints u € U(i) (finite set)
— Cost of policy © = {uo, p1,...} is

I (1) —]VllinmE{Zg Tk, ok (Tk) | To =i}

— Optimal policy if J-(i) = J*(4) for all s.

— Special notation: For stationary policies m =
{w, p, ...}, we use J,(i) in place of J (7).

e Assumption (termination inevitable): There ex-
ists integer m such that for all policies =:

e Note: We have p = max, pr < 1, since p, de-
pends only on the first m components of .

e Shortest path examples: Acyclic (assumption is
satisfied); nonacyclic (assumption is not satisfied)

114



FINITENESS OF POLICY COST FUNCTIONS

e View
p=max p, <1

as an upper bound on the non-termination prob.
during 1st m steps, regardless of policy used

e For any n and any initial state i

P{xom #t|xo =i, 1} = P{xom #t|xm #t, xo =1, 7}
X P{xm #t|xo=i,7}<p°

and similarly

P{ka#ﬂxo:i,w}gpk, i=1,...,n

e So F{Cost between times km and (k+1)m —1 }

<mp"” max |g(i,u)|

1=1,...,m
and ueU (1)
(@] <Y mp" Jmax [g(i,u)| = Tmp max [g(i,u)]

k=0 uwel (7) weU (i)

115



MAIN RESULT

e Given any initial conditions Jy(1),..., Jo(n), the
sequence J (i) generated by value iteration,

uwelU(7)

Jr+1(4) = min {g(iau)Jrzpz‘j(u)Jk(j)} , Vi

converges to the optimal cost J*(¢) for each 1.

e Bellman’s equation has J* (i) as unique solution:

J7(5) = min {g(i,U) +sz'j(U)J*(j)} , Vi
J*(t) = 0

e A stationary policy p is optimal if and only
if for every state i, u(:z) attains the minimum in
Bellman’s equation.

e Key proof idea: The “tail” of the cost series,

o

> E{g(wn pnlx)) }

k=mK

vanishes as K increases to oo.

116



OUTLINE OF PROOF THAT Jy — J*

e Assume for simplicity that Jo(z) = 0 for all s.
For any K > 1, write the cost of any policy = as

mK—1 o0
I (w0) = Z E{g(zn, pr(zr)) } + Z E{g(zn, pr(zr)) }
k=0 k=mK
mK-—1 o0
< Z E{g(xk, pr(zr)) } + Z pFmmax|g(i, u)]
k=0 k=K o

Take the minimum of both sides over m to obtain

K
J(x0) < Jmi (x0) + p—mmax|g(7j,u)|.

— pP 1,U

Similarly, we have

K
Imi (o) — %pmmaﬂg(i,uﬂ < J"(x0).
It follows that limx oo Jmk (x0) = J*(z0).

o Jnk(xo) and J,kxik(xo) converge to the same
limit for & < m (since k extra steps far into the
future don’t matter), so Jn(xo) — J*(z0).

e Similarly, Jy # 0 does not matter.

117



EXAMPLE

e Minimizing the E{Time to Termination}: Let

g(i,u) =1, Vi=1,...,n, uéeU(®)

e Under our assumptions, the costs J* (i) uniquely
solve Bellman’s equation, which has the form

e In the special case where there is only one con-
trol at each state, J*(i) is the mean first passage
time from 7 to ¢. These times, denoted m;, are the
unique solution of the classical equations

mn
m; =1+ E Pijm;, 1=1,...,n,
J=1

which are seen to be a form of Bellman’s equation

118



6.231 DYNAMIC PROGRAMMING
LECTURE 11
LECTURE OUTLINE

e Review of stochastic shortest path problems

e Computational methods for SSP
— Value iteration
— Policy iteration
— Linear programming

e (Computational methods for discounted prob-
lems

119



STOCHASTIC SHORTEST PATH PROBLEMS

e Assume finite-state system: States 1,...,n and
special cost-free termination state ¢

— Transition probabilities p;;(u)
— Control constraints u € U(4) (finite set)
— Cost of policy © = {uo, p1,...} is

I (1) —]VllinmE{Zg Ty o (T | To =i}

— Optimal policy if J.(i) = J* (i) for all 3.

— Special notation: For stationary policies m =
{w, p, ...}, we use J,(i) in place of J (7).

e Assumption (Termination inevitable): There ex-
ists integer m such that for every policy and initial
state, there is positive probability that the termi-
nation state will be reached after no more that m
stages; for all =, we have

120



MAIN RESULT

e (Given any initial conditions Jy(1),..., Jo(n), the
sequence J (i) generated by value iteration

Jkﬂ(i)_urengr(li)[ 1, U —I—pr } Y 1

converges to the optimal cost J*(¢) for each 1.

e Bellman’s equation has J* (i) as unique solution:
T — i Z
=1, | { 0+ Do } v

e For a stationary policy u, J.(i), i = 1,...,n,
are the unique solution of the linear system of n
equations

Ju(i) = g (i, () + > iy (0(8)) Ju(G), Yi=1,...,m

e A stationary policy p is optimal if and only
if for every state i, u(i) attains the minimum in
Bellman’s equation.

121



BELLMAN’S EQ. FOR A SINGLE POLICY

e Consider a stationary policy pu

e J,(i),i=1,...,n, are the unique solution of the
linear system of n equations

Ju() = g (i, w(@) + Y pis (00) Ju(i), Yi=1,....,n

e The equation provides a way to compute J, (i),
i =1,...,n, but the computation is substantial for
large n [O(n®)]

e For large n, value iteration may be preferable.
(Typical case of a large linear system of equations,
where an iterative method may be better than a
direct solution method.)

e For VERY large n, exact methods cannot be
applied, and approximations are needed. (We will
discuss these later.)

122



POLICY ITERATION

o It generates a sequence p', u?, ... of stationary
policies, starting with any stationary policy u°.

e At the typical iteration, given p”, we perform
a policy evaluation step, that computes the J x (7)

as the solution of the (linear) system of equations

J()—gz,u —I—pr J(G), 1=1,...,n,

in the n unknowns J(l),...,J(n). We then per-
form a policy improvement step,

u€eU (1)

Iuk+1(z) = arg min {g(z’,u) + Zpij (u)Jle€ (])} , Vi

e Terminate when J (i) = J k41(é) V 4. Then

Jk+1 =J* and p** is optimal, since

Jet1(2) = g(i ) + pr “HL)) T kit (J)
— mi i (w)J
wet (i) |” [ b u +ij phtl )}

123



JUSTIFICATION OF POLICY ITERATION

e We can show that J (i) > J k41 (7) for all i,k

e Fix k and consider the sequence generated by

JN+1( )—g 1 ,LL ‘|‘pr k+1 (])
where Jo(i) = J x(i). We have
Jo(i) = ) + pr (1)) Jo(4)

TN +Z pH@D) o(5) = i)

e Using the monotomelty property of DP,
Jo(i) =2 Ji(t) = -+ 2 In(i) 2 INa(E) = -+, Vi
Since Jn (i) = J k+1(i) as N — oo, we obtain pol-

icy Improvement, 1.e.

Ji (i) = Jo(i) > J ps1(i)  Vik

,u

e A policy cannot be repeated (there are finitely
many stationary policies), so the algorithm termi-
nates with an optimal policy

124



LINEAR PROGRAMMING

e We claim that J* is the “largest” J that satisfies
the constraint

J(i) < gli,u) + Y pis(w)J(3), (1)

foralli=1,...,n and u € U(3).

e Proof: If we use value iteration to generate a
sequence of vectors Jy, = (Jk(l), Cee Jk(n)) starting
with a Jp that satisfies the constraint, i.e.,

uweU (1)

Jo(i) < min |g(i,u) + Y pij(w)do(j) |, Vi

then, Jy (i) < Jg+1(2) for all k and ¢ (monotonicity
property of DP) and J, — J*, so that Jo(i) < J*(4)
for all 4.

e SoJ" = (J*(l), e J*(n)) is the solution of the
linear program of maximizing » " | J(¢) subject to
the constraint (1).

125



LINEAR PROGRAMMING (CONTINUED)

e Obtain J* by Max ) " . J(i) subject to

J(i) < gli,u)+Y  pi(w)J(), i=1,...,n, u€U()

i@ | J(2) = g(2,42) + por (u2) J (1) + pa(u2)J(2)

J(2) = 9(2,ull) + p21(u')J (1) + p2a(u')J (2)

0 J(1)

e Drawback: For large n the dimension of this pro-
gram is very large. Furthermore, the number of
constraints is equal to the number of state-control
pairs.

126



DISCOUNTED PROBLEMS

e Assume a discount factor o < 1.

e Conversion to an SSP problem.

pij(u)

pj;'(u)

e kth stage cost is the same for both problems

e Value iteration converges to J* for all initial Jp:

uwelU(7)

Jrt1() = min {g(iau)ﬂLazpij(u)Jk(j)} , Vi

e J* is the unique solution of Bellman’s equation:

J*(i) = min {g(i,u) +&Zpij(U)J*(j):| , Vi

uweU (1)

e Policy iteration terminates with an optimal pol-
icy, and linear programming works.

127



DISCOUNTED PROBLEM EXAMPLE

e A manufacturer at each time:

— Receives an order with prob. p and no order
with prob. 1 — p.

— May process all unfilled orders at cost K >
0, or process no order at all. The cost per
unfilled order at each time is ¢ > 0.

— Maximum number of orders that can remain
unfilled is n.

— Find a processing policy that minimizes the
a-discounted cost per stage.

— State: Number of unfilled orders at the start
of a period (: =0,1,...,n).

e Bellman’s Eq.:

J” (i) = min [K + a(l —p)J (0) + apJ™ (1),
ci+a(l—p)J @)+ apJ (i + 1)],

for the states¢=10,1,...,n— 1, and

J'(n)=K+a(l—p)J (0)+apJ (1)
for state n.

e Analysis: Argue that J*(¢) is mon. increasing in
i, to show that the optimal policy is a threshold
policy. 128



6.231 DYNAMIC PROGRAMMING
LECTURE 12

LECTURE OUTLINE

e Average cost per stage problems

e (Connection with stochastic shortest path prob-
lems

e Bellman’s equation
e Value iteration

e Policy iteration

129



AVERAGE COST PER STAGE PROBLEM

e Assume a stationary system with finite number
of states and controls.

e Minimize over policies m = {uo, 1, ...}

N-—-1
, 1
Jw(ﬂﬁo) — ]\;gnooﬁ £ {kz;g(xk,uk(:ck),wk)}

k=0,1,...

e Important characteristics (not shared by other
types of infinite horizon problems).

— For any fixed T, the cost incurred up to time
T does not matter (only the state that we are
at time T matters)

— If all states “communicate” the optimal cost
is independent of initial state [if we can go
from 7 to 7 in finite expected time, we must
have J*(i) < J*(j)]. So J*(i) = X\* for all 4.

— Because “communication” issues are so im-
portant, the methodology relies heavily on
Markov chain theory.

— The theory depends a lot on whether the
chains corresponding to policies have a single
or multiple recurrent classes. We will focus
on the simplest version, using SSP theory.

130



CONNECTION WITH SSP

e Assumption: State n is special, in that for all
initial states and all policies, n will be visited in-
finitely often (with probability 1).

e Then we expect that J"(i) = some \*

e Divide the sequence of generated states into
cycles marked by successive visits to n.

e Let’s focus on a single cycle: It can be viewed
as a state trajectory of an SSP problem with n as
the termination state.

Artificial Termination State

e Let the cost at i of the SSP be g(i,u) — \*
e We will argue (informally) that

Av. Cost Probl. = A Min Cost Cycle Probl. = SSP Probl.

131



CONNECTION WITH SSP (CONTINUED)

e (Consider a minimum cycle cost problem: Find
a stationary policy p that minimizes the expected
cost per transition within a cycle

Crnn(p)
Ny ()

where for a fixed p,
Crn(p) : E{cost from n up to the first return to n}
Npn(p) : E{time from n up to the first return to n}

e Intuitively, Cnn(pt)/Nnn(p) = average cost of
14, and optimal Cycle cost = A*, so

Chrin(p) = Nan(p)A* > 0,

with equality if p is optimal.

e Consider SSP with stage costs g(z,u) — A*. The
cost of u starting from n is Cpn () — Npn () A*,
so the optimal/min cycle y is also optimal for the

SSP.
e Also: Optimal SSP cost starting from n = 0.

132



BELLMAN’S EQUATION

e Let h*(7) the optimal cost of this SSP problem
when starting at the nontermination states ¢ =
1,...,n. Then h*(1),..., h*(n) solve uniquely the
corresponding Bellman’s equation

n—1
h*(i) = gll}f(l) gliu) = A+ > pij(uh*(5)| , Vi
u (] ]:1

e If u* is an optimal stationary policy for the SSP
problem, we have

h*(n) = Cnn(p*) — Npn(p*)A* =0

e Combining these equations, we have

Aebhe(i) = min gli,u) + Y pig(wh*(j)| , Vi
u 1 ']21

h*(n) =0
o If y*(i) attains the min for each ¢, u* is optimal.

e There is also Bellman Eq. for a single policy pu.

133



MORE ON THE CONNECTION WITH SSP

e Interpretation of h*(i) as a relative or differen-
tial cost: It is the minimum of

FE{cost to reach n from i for the first time}

— F{cost if the stage cost were A* and not g(i,u)}

e Algorithms: We don’t know A*, so we can’t
solve the average cost problem as an SSP problem.
But similar value and policy iteration algorithms
are possible, and will be given shortly.

e Example: A manufacturer at each time

— Receives an order with prob. p and no order
with prob. 1 — p.

— May process all unfilled orders at cost K >
0, or process no order at all. The cost per
unfilled order at each time is ¢ > 0.

— Maximum number of orders that can remain
unfilled is n.

— Find a processing policy that minimizes the
total expected cost per stage.

134



EXAMPLE (CONTINUED)

e State = number of unfilled orders. State 0 is
the special state for the SSP formulation.

e Bellman’s equation: For statest=10,1,...,n—1

A* + h*(i) = min |[K + (1 — p)h*(0) + ph*(1),
ci+ (1 — p)h*(i) + ph*(i + 1)],
and for state n
A 4 h*(n) = K + (1 — p)h*(0) + ph*(1)
Also h*(0) = 0.

e Optimal policy: Process ¢ unfilled orders if

K+(1—p)h*(0)+ph*(1) < ci+(1—p)h*(i)+ph*(i+1)

e Intuitively, h*(¢) is monotonically nondecreas-
ing with ¢ (interpret h*(7) as optimal costs-to-go
for the associate SSP problem). So a threshold
policy is optimal: process the orders if their num-
ber exceeds some threshold integer m*.

135



VALUE ITERATION

e Natural VI method: Generate optimal k-stage
costs by DP algorithm starting with any Jg:

Jetr1(i) = min, g(i,u) + Y pij(w) k()| , Vi
j=1

o Convergence: limy_, o Ji(7)/k = A* for all i.

e Proof outline: Let J; be so generated start-
ing from the opt. differential cost, i.e., the initial
condition J;j = h*. Then, by induction,

Jr(i) = kM* + h*(i), Vi, V k.

On the other hand,

, V1

since Ji(z) and J;(¢) are optimal costs for two
k-stage problems that differ only in the terminal
cost functions, which are Jy and h*.

136



RELATIVE VALUE ITERATION

e The VI method just described has two draw-
backs:

— Since typically some components of Jp di-
verge to oo or —oo, calculating limy_, oo Ji(7) /k
is numerically cumbersome.

— The method will not compute a correspond-
ing differential cost vector h*.

e We can bypass both difficulties by subtracting
a constant from all components of the vector Jg,
so that the difference, call it hy, remains bounded.

e Relative VI algorithm: Pick any state s, and
iterate according to

hit1 (i) = urenl}r(lz) gli,u) + Y pij(u)he(4)
j=1

- nin g(s,u) + > psi(whi(§) |, Vi

e Convergence: We can show hy — h* (under an
extra assumption; see Vol. II).

137



POLICY ITERATION

e At iteration k, we have a stationary p*.

e Policy evaluation: Compute A* and h*(7) of u*,
using the n + 1 equations h*(n) = 0 and

Nb o (i) = g (i, 15 () + D pi (E (D) PR (), Vi

e Policy improvement: (For the A*-SSP) Find

phEH (i) = arg min H g(iw) + D pig (hH(7)]
Uu 2 le

o If \etl = Ak and hk+1(7) = h%*(i) for all ¢, stop;
otherwise, repeat with p*s+1 replacing u*.

e Result: For each k, we either have A\ft1l < \k
or we have policy improvement for the A\¥-SSP:

N+l = \eo RRFL() < RE(D), i=1,...,n.

The algorithm terminates with an optimal policy.

138

V1



6.231 DYNAMIC PROGRAMMING
LECTURE 13

LECTURE OUTLINE

e C(Control of continuous-time Markov chains —
Semi-Markov problems

e Problem formulation — Equivalence to discrete-
time problems

e Discounted problems

e Average cost problems

139



CONTINUOUS-TIME MARKOV CHAINS

e Stationary system with finite number of states
and controls

e State transitions occur at discrete times

e Control applied at these discrete times and stays
constant between transitions

e Time between transitions is random

e Cost accumulates in continuous time (may also
be incurred at the time of transition)

e Example: Admission control in a system with
restricted capacity (e.g., a communication link)

Customer arrivals: a Poisson process

Customers entering the system, depart after
exponentially distributed time

Upon arrival we must decide whether to ad-
mit or to block a customer

There is a cost for blocking a customer

For each customer that is in the system, there
is a customer-dependent reward per unit time

Minimize time-discounted or average cost

140



PROBLEM FORMULATION

e x(t) and u(t): State and control at time ¢
e ti: Time of kth transition (tp = 0)

o v =ux(tr); x(t) =xp for tp <t <tpys.
o up =u(tr); u(t)=wuy forty <t <tpyi.

e No transition probabilities; instead transition
distributions (quantify the uncertainty about both
transition time and next state)

Qij(T,u) = P{tpy1—ts <7, Tpq1 = J | o6 =4, up = u}
e Two important formulas:

(1) Transition probabilities are specified by

pij(u) = P{xrs1 = J |z =4, up = u} = lim Q;;(7, u)

T— 00

(2) The Cumulative Distribution Function (CDF)
of T given 7, j,u is (assuming p;;(u) > 0)

Qij (T, u)

P{tpi1—te <7 | 2k =i, Tig1 = J, up = u} =
pij(u)

Thus, Q;;(7,u) can be viewed as a “scaled CDF”

141



EXPONENTIAL TRANSITION DISTRIBUTIONS

e Important example of transition distributions:

Qij (7, ) = pij(u) (1 — e~ (7)),

where p;;(u) are transition probabilities, and v; (u)
is called the transition rate at state .

e Interpretation: If the system is in state 2 and
control u is applied

— the next state will be j with probability p;;(u)

— the time between the transition to state i
and the transition to the next state 7 is ex-
ponentially distributed with parameter v;(u)
(independently of j):

P{transition time interval > 7 |i,u} = e~vi(W7

e The exponential distribution is memoryless.
This implies that for a given policy, the system
is a continuous-time Markov chain (the future de-
pends on the past through the current state).

e Without the memoryless property, the Markov
property holds only at the times of transition.

142



COST STRUCTURES

e There is cost g(7,u) per unit time, i.e.
g(?,u)dt = the cost incurred in time dt
e There may be an extra “instantaneous” cost

g(i,u) at the time of a transition (let’s ignore this
for the moment)

e Total discounted cost of m = {uo, 1, ...} start-
ing from state 7 (with discount factor 5 > 0)

tk+1
]\}EHOOE{Z/ xkaﬂk:(xk:))dt | To = z}

e Average cost per unit time

bkt
g {Z/ o(o “”’“))dt|”““0:@}

e We will see that both problems have equivalent
discrete-time versions.

143



DISCOUNTED CASE - COST CALCULATION

e For a policy m = {uo, 1, - ..}, write
Jx (i) = E{lst transition cost}+E{e "7 Jr, (j) | i, mo(i)}

where E{1st transition cost} = E { [, e=5tg(i, po(i))dt }
and Jr, () is the cost-to-go of m1 = {1, p2, ...}

e We calculate the two costs in the RHS. The
FE{1st transition cost}, if u is applied at state 4, is

G(i,u) — Ej{ET{lst transition cost \ ]}}

_ - (o h Te—Bt . dQij (7, u)
. pzj( )/O (/O 9(7 )dt> pz‘j(U)

=1

e Thus the E{1st transition cost} is

T

N ey s
G (i, uo(8)) = g (i, po(0) ) / 1 g dQs; (7, no()

(The summation term can be viewed as a “dis-
counted length of the transition interval t; —tp”.)

144



COST CALCULATION (CONTINUED)

e Also the expected (discounted) cost from the
next state 7 is

E{e=F7Jr, (5) | 4, po(i) §
= Ej{ E{e=P7 |4, po (i), j}ry (4) | 4, po(d) }

. ;pijwo@)) ([ et g

ng :uO
— Z My (MO(i)) Jm (])

where m;;(u) is given by

mij(u)Z/ e PTdQij (1, u) <</ sz‘j(Tﬂ):pz‘j(u))
0 0

and can be viewed as the “effective discount fac-
tor” [the analog of ap;;(u) in discrete-time case].

e So Jr(7) can be written as
Jr (i) = G(i, pol(i +me po()) I (5)

i.e., the (Contmuous—tlme discounted) cost of 1st
period, plus the (continuous-time discounted) cost-
to-go from the next state.

145



COST CALCULATION (CONTINUED)

e Also the expected (discounted) cost from the
next state 7 is

E{e5Jn, (j) | i, po(i)}
= B {BLe7 | iunld): Hm () | )}

. ;Pij(MO(i)) ([ et nnbo) g

ng :LLO
— Z M (MO(D) Jm (])

where m;;(u) is given by

oy (u) = / e_BTinj (T, u) (< / inj (7‘, u) = Pij (U)>
0 0

and can be viewed as the “effective discount fac-
tor” [the analog of ap;;(u) in discrete-time case].

e So J:(i) can be written as

Jo(i) = G(i. ol +me 10(8)) I, (5)

i.e., the (continuous- fime dlscounted) cost of 1st
period, plus the (continuous-time discounted) cost-
to-go from the next state.

146



EQUIVALENCE TO AN SSP

e Similar to the discrete-time case, introduce an
“equivalent” stochastic shortest path problem with
an artificial termination state ¢

e Under control u, from state ¢ the system moves
to state j with probability m;;(u) and to the ter-
mination state ¢t with probability 1 — 2?21 mi;(u)

e Bellman’s equation: For:=1,...,n,

Je(i) = min |G u)+ Y mig(u)*())
u 1 jZl

e Analogs of value iteration, policy iteration, and
linear programming.

e If in addition to the cost per unit time g, there
is an extra (instantaneous) one-stage cost g(i,u),
Bellman’s equation becomes

J*(i) = u?&%) Gli,u) 4+ Gi,u) + Y mag(u)J* ()

g=1

147



MANUFACTURER’S EXAMPLE REVISITED

e A manufacturer receives orders with interarrival
times uniformly distributed in [0, Tmax]-

e He may process all unfilled orders at cost K > 0,
or process none. The cost per unit time of an
unfilled order is c. Max number of unfilled orders
is n.

e The nonzero transition distributions are

Qil(T, Flu) = Qi(i—l—l)(Ta Not FIH) — min [1, 7 ]

Tmax

e The one-stage expected cost G is
G (i, Fill) = 0, G (i, Not Fill) = yci,

where

Ool—e pT Tmax 1 — =07
V= Z/ inj(Ta u) :/O BTmax ar

e There is an “instantaneous” cost

g(i,Fill) = K,  g(i,Not Fill) =0

148



MANUFACTURER’S EXAMPLE CONTINUED

e The “effective discount factors” m;;(u) in Bell-
man’s Equation are

m1 (Fill) = mz’(i—l—l)(NOt Fill) = a,

where

0% Tmax _—pf(T1 —BTmax
_ e 1—e
a=/ e ﬁTsz-j(T,u)zf dr =
0 0

Tmax 6 Tmax

e Bellman’s equation has the form

J*(i) = min| K +aJ*(1), yei+aJ*(i+1)], i=1,2,...

e As in the discrete-time case, we can conclude
that there exists an optimal threshold 7*:

fill the orders <==> their number 7 exceeds 7*

149



AVERAGE COST

e Minimize limy_; oo ﬁE{ OtNg(x(t),u(t))dt}
assuming there is a special state that is “recurrent
under all policies”

e Total expected cost of a transition
G(Za ’LL) — g(ia ’LL)?Z’(’LL),
where 7;(u): Expected transition time.

e We apply the SSP argument used for the discrete-
time case.

— Divide trajectory into cycles marked by suc-
cessive visits to n.

— The cost at (¢,u) is G(i,u) — A*T;(u), where
A* is the optimal expected cost per unit time.

— Each cycle is viewed as a state trajectory of

a corresponding SSP problem with the ter-
mination state being essentially n.

e So Bellman’s Eq. for the average cost problem:

pr(i) = min |G u) = ATiu) + Zpij (u)h*(7)

150



MANUFACTURER EXAMPLE/AVERAGE COST

e The expected transition times are

7i(Fill) = 7;(Not Fill) = =2

the expected transition cost is

C 1 Tmax

G(i,Fill) =0,  G(i,Not Fill) =

and there is also the “instantaneous” cost

g(i,Fill) = K,  g(i, Not Fill) = 0

e Bellman’s equation:

h*(i) = min | K — \* T”;‘X + b (1),

Tmax Tmax )
Tmax s he(i + 1 }
ci— 5 T (2 +1)

e Again it can be shown that a threshold policy
is optimal.

151



6.231 DYNAMIC PROGRAMMING
LECTURE 14

LECTURE OUTLINE

e We start a ten-lecture sequence on advanced
infinite horizon DP and approximation methods

e We allow infinite state space, so the stochastic
shortest path framework cannot be used any more

e Results are rigorous assuming a finite or count-
able disturbance space

— This includes deterministic problems with
arbitrary state space, and countable state
Markov chains

— Otherwise the mathematics of measure the-
ory make analysis difficult, although the fi-
nal results are essentially the same as for fi-
nite disturbance space

e We use Vol. II of the textbook, starting with
discounted problems (Ch. 1)

e The central mathematical structure is that the
DP mapping is a contraction mapping (instead of
existence of a termination state)

152



DISCOUNTED PROBLEMS/BOUNDED COST

e Stationary system with arbitrary state space

Lk+1 :f(a:k,uk,wk), k:O,l,...

e Cost of a policy m = {uo, 1, ...}

Jrx(z0) = lim b {Z &kg(ﬁk,uk(%)awk)}

N — o0 W[
k=0,1,... k=0

with a < 1, and for some M, we have

g(z, u,w)| <M,V (2,u,w)

e We have

‘JW(:UO)‘SM—l—aM—Fa?M—F---: A A

1l — «

e The “tail” of the cost Jr(xo) diminishes to 0
e The limit defining J(xo) exists

153



WE ADOPT “SHORTHAND” NOTATION

e Compact pointwise notation for functions:

— If for two functions J and J’ we have J(x) =
J'(x) for all z, we write J = J'

— If for two functions J and J’ we have J(z) <
J'(x) for all z, we write J < J’

— For a sequence {Ji} with Ji(x) — J(x) for
all x, we write Jp — J; also J* = min,; J,

e Shorthand notation for DP mappings (operate
on functions of state to produce other functions)

(TJ)(x) = uren(}?x)g {g(w,u,w) - on(f(x,u,w))} , Vo

T'J is the optimal cost function for the one-stage
problem with stage cost g and terminal cost a.J.

e For any stationary policy u

(1,7)(@) = B {g(, n(w), w) + o] (@ (), )}, Vo

e For finite-state problems:

1yJ =g, +aP,J, T'J=minT,J
i

154



“SHORTHAND” COMPOSITION NOTATION

e Composition notation: T2.J is defined by (72J)(z) =
(T(TJ))(x) for all x (similar for T*.J)

e For any policy m = {uo, p1, - . .} and function J:

— T,,,J is the cost function of 7 for the one-
stage problem with terminal cost function
aJ

— TyoTyu,J (i-e., T,, applied to T}, J) is the
cost function of 7w for the two-stage problem
with terminal cost a2J

— TyoTyy ---Thupyn_J is the cost function of =

for the N-stage problem with terminal cost
alNJ

e For any function J:

— T'J is the optimal cost tunction of the one-
stage problem with terminal cost function

aJ

— T2J (i.e., T applied to T'J) is the optimal
cost function of the two-stage problem with
terminal cost a2J

— TN J is the optimal cost function of the /N-
stage problem with terminal cost afV.J

155



“SHORTHAND” THEORY - A SUMMARY

e Cost function expressions [with Jo(x) = 0]

Jr(x) = lim (T Ty, -+ Ty Jo) (@), Ju(z) = lim (T, Jo)(x)
k— o0 k— o0

e DBellman’s equation: J* =TJ*, J, =1,J,

e Optimality condition:

p: optimal <==> T, J*=TJ*

e Value iteration: For any (bounded) J and all

J*(z) = lim (T*J)(x)

k— 00

e Policy iteration: Given uk:

— Policy evaluation: Find J x by solving
S =T 1k
— Policy improvement: Find p*f+1 such that

Tﬂk+1 Juk = TJMk

156



SOME KEY PROPERTIES

e NMonotonicity property: For any functions J and
J’ such that J(x) < J/(x) for all x, and any p

(TJ)(x) < (TJ")(x), V x,

(T.0)(@) < (T, J)(@), V.
Also

JLTJ = TkJTk+1] vV k

e Constant Shift property: For any J, any scalar
r, and any u

(T(J +re))(z) = (TJT)(z) + ar, V x,

(Tu(J +re))(z) = (TuJ)(z) + ar, Vo,

where e is the unit function [e(z) = 1] (holds for
most DP models).

e A third important property that holds for some
(but not all) DP models is that T" and T}, are con-
traction mappings (more on this later).

157



CONVERGENCE OF VALUE ITERATION

o If J() — 0,
J*(z) = lim (TN Jy)(x), for all x
N—o00

Proof: For any initial state xp, and policy m =
{,UO, M1, - - '}7

Jr(xo) = E < Zakg(xk,uk(xk),wk)}

k=0

(N1
= B Z @kg(xkaﬂk(xk)awk)}

\ k=0
+ L { > Oékg(xkauk(xk),wk)}
k=N
from which
N T N T
Ta(@0) = 5—— < (Tug -+ Trup_y Jo) (20) < T (w0)+

l -« l—a’

where M > |g(x,u,w)|. Take the min over 7 of
both sides. Q.E.D.

158



BELLMAN’S EQUATION

e The optimal cost function J* satisfies Bellman’s
Eq., i.e. J*=1TJ*.

Proof: For all x and N,
alN M alN M

T = (I o)(x) = (@) +

J* (x) —

where Jo(x) =0 and M > |g(x, u, w)].

e Apply T to this relation and use Monotonicity
and Constant Shift,

aN+I M

1l — «

(TJ*)(z) — < (TH+1Jo)(x)

aN+1IM

1l — «

< (T'J*)(z) +

e Take limit as N — oo and use the fact

lim (TN+1.Jo)(z) = J*(x)

N — o0

to obtain J* =TJ*. Q.E.D.

159



THE CONTRACTION PROPERTY

e (ontraction property: For any bounded func-
tions J and J’, and any pu,

mgx’(TJ)(a:) —(TJ")(z)| < &mgx’J(a:) — J/'(x)

max|(T,J)(x)— (TpJ")(z)| < amax|J(z)—J' (z)|.
Proof: Denote ¢ = maxges|J(x) — J'(x)|. Then
J(x)—c< J(x) < J(x)+c, vV x

Apply T to both sides, and use the Monotonicity
and Constant Shift properties:

(TJ)(z)—ac < (TJ)(x) < (TJ)(x)+ac, V&
Hence
(TT)(z) — (TJ")(z)| < ac, V x.

Similar for 7,,. Q.E.D.

160



IMPLICATIONS OF CONTRACTION PROPERTY

e We can strengthen our earlier result:

e DBellman’s equation J = T'J has a unique solu-
tion, namely J*, and for any bounded J, we have

lim (TkJ)(x) = J*(x), Vx

k— o0

Proot: Use
mgx‘(T’fJ)(a:) — J*(z)| = mgx‘(TkJ)(a:) — (TkJ*)(z)]
< ak man’J(:c) — J*(z)]

e Special Case: For each stationary p, J, is the
unique solution of J =1,,J and

lim (TFJ)(x) = J,u(x), V x,

k— o0

for any bounded J.

e Convergence rate: For all &,

mgx‘(T’fJ)(a:) — J*(z)] < ok man’J(:c) — J*(z)]

161



NEC. AND SUFFICIENT OPT. CONDITION

e A stationary policy p is optimal if and only if
w(x) attains the minimum in Bellman’s equation
for each z; i.e.,

TJ* =T, J*.

Proof: It T'J* =T,,J*, then using Bellman’s equa-
tion (J* = TJ*), we have

J* =T, J*,

so by uniqueness of the fixed point of 7},, we obtain
J* = J,; l.e., i 1s optimal.

e Conversely, if the stationary policy u is optimal,
we have J* = J,, so

J* =T, J*.

Combining this with Bellman’s equation (J* =
TJ*), we obtain T'J* =1T,J*. Q.E.D.

162



COMPUTATIONAL METHODS - AN OVERVIEW

e Typically must work with a finite-state system.
Possibly an approximation of the original system.
e Value iteration and variants

— Gauss-Seidel and asynchronous versions

e Policy iteration and variants

— Combination with (possibly asynchronous)
value iteration

— “Optimistic” policy iteration

e Linear programming

n
maximize Z J(7)

i=1

n
subject to J(i) < g(i,u) + o Y pi;(w)J(5), ¥ (i,u)
j=1

e Versions with subspace approximation: Use in
place of J(i) a low-dim. basis function representa-

tion, with state features ¢, (¢2), m=1,...,s
J(i,7) =Y rmém(i)
m=1

and modify the basic methods appropriately.

163



USING Q-FACTORS I

e Let the states be 1 = 1,...,n. We can write
Bellman’s equation as

J*(i) = * =1,....n,
(2) urenl}r(l)Q (tu) n

where
= > pii(u) (900, u.5) + aJ* (7))

for all (i, u)
o (Q*(i,u) is called the optimal Q-factor of (i, u)

e (-factors have optimal cost interpretation in
an “augmented” problem whose states are ¢ and
(4,u), u € U(i) - the optimal cost vector is (J*, Q*)

e The Bellman Eq. is J* =T J*, Q* = FQ* where

(FQ*)( me ( i,u,7) +a min Q*(j,v)

veU(j)

e It has a unique solution.

164

)



USING Q-FACTORS 11

e We can equivalently write the VI method as
Jrk+1(2) = min Qp41 (%, u), i=1,...,n,
ueU (3)

where Q11 is generated for all ¢ and u € U(i) by

Qunlivn) = Y pis(w) (960 ud) +a min Qo))

vel(j)

or Jk_|_1 = TJk, Qk—i—l = FQk

e FKEqual amount of computation ... just more
storage.

e Having optimal Q-factors is convenient when
implementing an optimal policy on-line by

p*(4) Zugl(}r(li)Q (i, u)
e Once Q*(i,u) are known, the model |[¢g and
pi;j(u)] is not needed. Model-free operation.

e Stochastic/sampling methods can be used to
calculate (approximations of) Q*(i,u) [not J*(7)]
with a simulator of the system.

165



6.231 DYNAMIC PROGRAMMING
LECTURE 15

LECTURE OUTLINE

e Review of basic theory of discounted problems
e Monotonicity and contraction properties
e (Contraction mappings in DP

e Discounted problems: Countable state space
with unbounded costs

e Generalized discounted DP

e An introduction to abstract DP

166



DISCOUNTED PROBLEMS/BOUNDED COST

e Stationary system with arbitrary state space

Lk+1 :f(xk,uk,wk), k:O,l,...
e Cost of a policy m = {uo, p1,.-.}

Jrx(z0) = lim i) {Z Oékg(ivk,/tk(l‘k)awk)}

N — o0 Wi
k=0,1,... k=0

with a < 1, and for some M, we have |g(z, u, w)| <
M for all (z,u,w)

e Shorthand notation for DP mappings (operate
on functions of state to produce other functions)

(TJ)(xr) = min E{g(w,u,w)—1—aJ(f(x,u,w))},‘v’x

uEU(CE) w

T'J is the optimal cost function for the one-stage
problem with stage cost g and terminal cost a.J.

e For any stationary policy

(T,7)(@) = B {g (. n(w), w) + o] (@ (), )}, Vo

167



“SHORTHAND” THEORY - A SUMMARY

e Cost function expressions [with Jy(x) = 0]

Jr(x) = Um (Tug Ty, -+ Ty Jo) (@), Ju(z) = lim (T} Jo)(z)
k— o0 k— o0

e Bellman’s equation: J* =T1TJ*, J, =1,J,

e Optimality condition:

p: optimal <==> T, ,J*=TJ*

e Value iteration: For any (bounded) J and all

J*(x) = lim (T*J)(z)

k— 00

e Policy iteration: Given u*,

— Policy evaluation: Find J x by solving

e],uk — TMkJMkz

— Policy improvement: Find pf+1 such that

Tpsrd o =T i

168



MAJOR PROPERTIES

e NMonotonicity property: For any functions J and
J’ on the state space X such that J(x) < J/(x)
for all x € X, and any p

(TJ)(z) < (TJ')(x), VwelX,

(T.J)(z) < (TuJ)(z), VazclX.

e (ontraction property: For any bounded func-
tions J and J’, and any pu,

mgx’(TJ)(a:) —(TJ")(z)| < &mgx’J(a:) — J/'(x)

max|(T,J)(z)— (TpJ")(z)| < amax|J(z)—J'(z)|.
e Shorthand writing of the contraction property
|TJ-=TJ|| < ol J=T'|, |TpJ=TuJ'|| < afJ=J,

where for any bounded function J, we denote by
|.J|| the sup-norm

| 7] = max].J (z)].

169



CONTRACTION MAPPINGS

e Given a real vector space Y with a norm || - ||
(see text for definitions).

e A function F' : Y — Y issaid to be a contraction

mapping if for some p € (0,1), we have

|[Fy — Fz|| <plly—z|, foralyzeY

p is called the modulus of contraction of F'.

e Linear case, Y = Rh": Fy = Ay + b is a con-
traction (for some norm | - ||) if and only if all
eigenvalues of A are strictly within the unit circle.

e For m > 1, we say that F' is an m-stage con-
traction if F'™ is a contraction.

e Important example: Let X be a set (e.g., state
space in DP), v : X — R be a positive-valued
function. Let B(X) be the set of all functions
J : X — R such that J(s)/v(s) is bounded over s.

e The weighted sup-norm on B(X):
J
1] = max L

sex wv(s)

e Important special case: The discounted prob-
lem mappings T" and T}, [for v(s) =1, p = a.

170



A DP-LIKE CONTRACTION MAPPING

o Let X ={1,2,...}, and let F': B(X) — B(X)
be a linear mapping of the form

(FJ)(1 —I—Zazy V1

jeX

where b(7) and a(i, j) are some scalars. Then F is
a contraction with modulus p if

2_jex lali, j)[v(j)
v()

[Think of the special case where a(i,j) are the
transition probs. of a policy].

e Let F': B(X)— B(X) be the mapping

< p, Vi

(FJ)(¢) = min(F,J)(7), Vi

pneM

where M is parameter set, and for each p € M, F,
is a contraction from B(X) to B(X) with modulus
p. Then F'is a contraction with modulus p.

171



CONTRACTION MAPPING FIXED-POINT TH.

e (Contraction Mapping Fixed-Point Theorem: If
F : B(X)+— B(X) is a contraction with modulus
p € (0,1), then there exists a unique J* € B(X)
such that

J* = FJ*.

Furthermore, if J is any function in B(X), then
{FkJ} converges to J* and we have

e Similar result if F' is an m-stage contraction
mapping.

e This is a special case of a general result for
contraction mappings F' : Y — Y over normed
vector spaces Y that are complete: every sequence
{yr} that is Cauchy (satisfies ||ym — yn| — 0 as
m,n — 00) converges.

e The space B(X) is complete [see the text (Sec-
tion 1.5) for a proof].

172



GENERAL FORMS OF DISCOUNTED DP

e Monotonicity assumption: If J, J’ € R(X) and
J < J’, then

H(x,u,J) < H(z,u,J), Vee X, ueU(x)

e (ontraction assumption:

— For every J € B(X), the functions 7},J and
T'J belong to B(X).

— For some o € (0,1) and all J,J’ € B(X), H
satisfies

|H (2, u, J)—H(x,u,J")| < amax |J(y)—J'(y),
yeX

for all z € X and u € U(x).

e We can show all the standard analytical and
computational results of discounted DP based on
these two assumptions (with identical proofs!)

e With just the monotonicity assumption (as in
shortest path problem) we can still show various
forms of the basic results under appropriate as-
sumptions (like in the SSP problem)

173



EXAMPLES

e Discounted problems

H(x,u,J) = E{g(x,u,w) + on(f(a:, u, w))}
e Discounted Semi-Markov Problems

H(z,u,J) = G(z,u) +ng;y

where mg, are “discounted” transition probabili-
ties, defined by the transition distributions

e Deterministic Shortest Path Problems

H(ZU,U,J) — {axu+J(U) ifu;ét,

At ifu=t

where t is the destination

e Minimax Problems

H(CE, b J) - we%%:;( ) [g(a:, u, w)—|—on(f(ZC, U, w))]

174



RESULTS USING CONTRACTION

e The mappings 7}, and 1" are sup-norm contrac-
tion mappings with modulus « over B(X), and
have unique fixed points in B(X), denoted J,, and
J*, respectively (cf. Bellman’s equation). Proof:
From contraction assumption and fixed point Th.

e For any J € B(X) and p € M,

lim TFJ = J,, lim TkJ = J*

k— 00 k— 00

(cf. convergence of value iteration). Proof: From
contraction property of 7T}, and T

e We have T, J* = T'J* if and only if J, = J*
(cf. optimality condition). Proof: T, J* = TJ*,
then 7, J* = J*, implying J* = J,. Conversely,
if J, =J*, then T, J* =T,J, = J,=J*=TJ*.
e Useful bound for J,: For all J € B(X), p € M
T = J|

1l — «

1T =TI <

Proof: Take limit as & — oo in the relation

i k
|7 T | <Y NThT-TE || < | Tud =) S et
(=1 (=1

175



RESULTS USING MON. AND CONTRACTION I

e Existence of a nearly optimal policy: For every
€ > 0, there exists yue € M such that

J(x) < J, () < J*(z) + ev(x), VeelX

Proof: For all y € M, we have J* =T J* <T,J*.
By monotonicity, J* < TittJ* < TkJ* for all k.
Taking limit as kK — oo, we obtain J* < J,,.

Also, choose ue € M such that for all x € X,

| Tpe J*=T*|| = ||(Te J*) () = (TT*) (@) || < e(1-a)

From the earlier error bound, we have
Ty J* — J*|]

\
J, — J*|| <
| = ) <

: VueM

Combining the preceding two relations,

() = T (@)] _ (1~ a)

v(x) T 1l-a

= €, VeeX
e Optimality of J* over stationary policies:

J*(a;):/fréij\r}lJu(a;), VeelX

Proof: Take € | 0 in the preceding result.

176



RESULTS USING MON. AND CONTRACTION II

e Nonstationary policies: Consider the set II of
all sequences m = {uo, p1, ...} with up € M for
all k, and define for any J € B(X)

Jr(x) =limsup(Typ Ty, -+ T, J)(x), Ve X,

k— 00

(the choice of J does not matter because of the
contraction property).

e Optimality of J* over nonstationary policies:

J (a:)zglglﬁljﬁ(aﬁ), VeelX

Proof: Use our earlier existence result to show
that for any € > 0, there is pe such that ||J,, —
J*|| < €(1 —a). We have

o .
J*(2) = min J, (@) > min Jx (2)

Also
TFJ < Tuo T Tuk—l*]

Take limit as & — oo to obtain J < J; for all
m € 11.

177



6.231 DYNAMIC PROGRAMMING
LECTURE 16
LECTURE OUTLINE

e Review of computational theory of discounted
problems

e Value iteration (VI), policy iteration (PI)
e Optimistic PI

e C(Computational methods for generalized dis-
counted DP

e Asynchronous algorithms

178



DISCOUNTED PROBLEMS

e Stationary system with arbitrary state space

Lk+1 :f(a:k,uk,wk), k:O,l,...

e Bounded g. Cost of a policy m = {uo, p1, .-}

Jx(zo) = lim  E {Z @kg(ﬂfk,ﬂk(fﬁk)awk)}

N — oo Wi
k=0,1,... k=0

e Shorthand notation for DP mappings (n-state
Markov chain case)

(TJ)(x) = uéﬂ(}&) E{g(z,u,w)+al(f(z,u,w))}, Vo

T'J is the optimal cost function for the one-stage
problem with stage cost g and terminal cost a.J.

e For any stationary policy

(T7) (@) = E{g(a, ul(x), w)+aJ (f (e, plz),w)) }, V@

Note: T}, is linear [in short T),J = P,(g, + aJ)].

179



“SHORTHAND” THEORY - A SUMMARY

e Cost function expressions (with Jo = 0)

Jr= lim TuTpuy - TuyJo, Ju= lim T} Jg

k— o0 k— oo
e DBellman’s equation: J* =TJ*, J, =1,J,
e Optimality condition:

p: optimal <==> T, J*=TJ*

e Contraction: ||TJ1 — TJ2|| < «af|J1 — J2
e Value iteration: For any (bounded) J

J* = lim TkJ

k— o0

e Policy iteration: Given u*,

— Policy evaluation: Find J x by solving
S =T ki
— Policy improvement: Find p*f+1 such that
Lprrd o =TJ 1k

180



INTERPRETATION OF VI AND PI

A 45 Degree Line
™~
TJ
Value Iterations /
Jr=TJ*
T2.J,

T Jo

Jo

TJo |

Policy [Improvement

JO L — J* =T.J* | J‘ul :TM1JM1
|/
. \05 ® >
Jo Policy Evaluation J

181



VI AND PI METHODS FOR Q-LEARNING

e We can write Bellman’s equation as

J*(i) = min Q*(i, =1,....n,
(2) ugn(}r(li)Q (tu) n

where (J* is the vector of optimal )-factors

Q*(4,u) = ZPz‘j(U) (9(i,u, J) + aJ*(4))

e VI and PI for Q-factors are mathematically
equivalent to VI and PI for costs.

e They require equal amount of computation ...
they just need more storage.

e For example, we can write the VI method as

Jr+1(7) = min Qr41(7,u), i=1,...,n,
uel (7)

where Q.11 is generated for all ¢ and u € U(i) by

veU(j)

Qunlivn) = Y pis(w) (960 ud) +a min Qo))

182



APPROXIMATE PI

e Suppose that the policy evaluation is approxi-
mate, according to,

max | Ji(x) — J k(z)] <9, k=0,1,...

and policy improvement is approximate, according
to,

mgx|(Tﬂk+1Jk)(x)—(TJk)($)| < €, Ek=0,1,...

where 0 and e are some positive scalars.

e Frror Bound: The sequence {u*} generated by
approximate policy iteration satisfies

: . € + 20
hlf:isolip rgggc(Juk () —J (:U)) < 1—a)p

e 'T'ypical practical behavior: The method makes
steady progress up to a point and then the iterates
J . oscillate within a neighborhood of J*.

183



e This is PI, where policy evaluation is carried

OPTIMISTIC PI

out by a finite number of VI

e Shorthand definition: For some integers my

Tuk: J =T J,

— Ifmkz

— Ifmk:

— For intermediate values of my, it is generally

™m

1 it becomes VI

oo it becomes PI

more efficient than either VI or PI

TJy

Jo

\

Policy Improvement

|
|
|
|
Policy [Improvement
b
|
|
|
|
|
|

|
|
|
|
|
o&o‘

k=0,1,...

Ty0d
\ T 7 min,, T,,J

oK &

J1 = Tio Jo
Approx. Policy Evaluation

184



EXTENSIONS TO GENERALIZED DISC. DP

e All the preceding VI and PI methods extend to
generalized /abstract discounted DP.

e Summary: For a mapping H : X XU x R(X) —
R, consider

(TJ)(x) = min H(x,u,J), VzelX.
ueU (x)

(TuJ)(x) = H(z, p(x), J), VarelX.
e We want to find J* such that

J*(x) = min H(xz,u,J*), VeelX
uelU(x)

and a p* such that T}« J* =T J*.
e Discounted, Discounted Semi-Markov, Minimax

H(x,u,J)= E{g(x,u,w) +aJ(f(a:,u, w))}

H(z,u,J)=G(z,u —I—mey

185



ASSUMPTIONS AND RESULTS

e Monotonicity assumption: If J, J’ € R(X) and
J < J’, then

H(x,u,J) < H(z,u,J), Vre X, ueU(x)

e (ontraction assumption:

— For every J € B(X), the functions T},J and
T'J belong to B(X).

— For some o € (0,1) and all J,J' € B(X), H
satisfies

|H (x,u, J)—H (z,u,J")| < amax |J(y)—J(y)
yeX ‘

for all z € X and u € U(x).

e Standard algorithmic results extend:

— Generalized VI converges to J*, the unique
fixed point of T’

— Generalized PI and optimistic PI generate
{p*} such that
lim ”Jluk;—J*HZO, lim ”Jk—J*”:O
k— o0 k— o0

e Analytical Approach: Start with a problem,
match it with an H, invoke the general results.

186



ASYNCHRONOUS ALGORITHMS

e Motivation for asynchronous algorithms
— Faster convergence
— Parallel and distributed computation
— Simulation-based implementations
e (General framework: Partition X into disjoint

nonempty subsets Xi,...,X,,, and use separate
processor ¢ updating J(x) for x € X,.

e Let J be partitioned as J = (J1, ..., Jm), where
Jy 1s the restriction of J on the set Xy.

e Synchronous algorithm: Processor £ updates J
for the states x € X, at all times ¢,

J N 2) =TI, ..., ) (2), v€Xp, £=1,....,m

e Asynchronous algorithm: Processor ¢ updates
J for the states r € X,y only at a subset of times

RE?

T () = T ™ g Y () it e Ry,
¢ J(x) if t & Ry

where ¢t — 74, (t) are communication “delays”

187



ONE-STATE-AT-A-TIME ITERATIONS

e Important special case: Assume n “states”, a
separate processor for each state, and no delays

e Generate a sequence of states {z0, z!,...}, gen-
erated in some way, possibly by simulation (each
state is generated infinitely often)

e Asynchronous VI: Change any one component
of Jt at time t, the one that corresponds to xt:

1 ) T(JEHD), ..., JH(n))(£) if € = at,
JHE) = {Jt((ﬁ) ) if ¢ = xt,
/

e The special case where
{20 21 ...} ={1,...,n,1,....n,1,...}

is the Gauss-Seidel method

e More generally, the components used at time ¢
are delayed by t — 7¢;(?)

e Flexible in terms of timing and “location” of
the iterations

e We can show that J! — J* under assumptions
typically satisfied in DP

188



ASYNCHRONOUS CONV. THEOREM 1

e Assume that for all £,5 = 1,...,m, the set of
times R, is infinite and lim;— o 72 () = 00

e Proposition: Let T" have a unique fixed point J*,
and assume that there is a sequence of nonempty
subsets {S(k)} C R(X) with S(k+ 1) C S(k) for
all £, and with the following properties:

(1) Synchronous Convergence Condition: Ev-
ery sequence {J*} with Jk € S(k) for each
k, converges pointwise to J*. Moreover, we
have

TJe S(k+1), VJeS(k),k=01,....

(2) Box Condition: For all k, S(k) is a Cartesian
product of the form

S(k) = 51(k) x -+ x Sp(k),

where Sy(k) is a set of real-valued functions
on Xy, {=1,...,m.

Then for every J € S(0), the sequence {J!} gen-
erated by the asynchronous algorithm converges
pointwise to J*.

189



ASYNCHRONOUS CONV. THEOREM I1

e Interpretation of assumptions:

J = (Ji, J2)

52(0) Sk+1) eJ* TJ.A/: :

S1(0)

A synchronous iteration from any J in S(k) moves
into S(k + 1) (component-by-component)

e (Convergence mechanism:

J1 Iterations

AN
\ J = (Ji1, J2)
N E—

Sk+1) ey YV

Jo Iteration

Key: “Independent” component-wise improvement.
An asynchronous component iteration from any J
in S(k) moves into the corresponding component
portion of S(k + 1) permanently!

190



PRINCIPAL DP APPLICATIONS

e The assumptions of the asynchronous conver-
gence theorem are satisfied in two principal cases:

— When T is a (weighted) sup-norm contrac-
tion.

— When 7' is monotone and the Bellman equa-
tion J = T'J has a unique solution.
e The theorem can be applied also to convergence
of asynchronous optimistic PI for:

— Discounted problems (Section 2.6.2 of the
text).

— SSP problems (Section 3.5 of the text).

e There are variants of the theorem that can be
applied in the presence of special structure.

e Asynchronous convergence ideas also underlie
stochastic VI algorithms like Q-learning.

191



6.231 DYNAMIC PROGRAMMING
LECTURE 17
LECTURE OUTLINE

Undiscounted problems

Stochastic shortest path problems (SSP)
Proper and improper policies

Analysis and computational methods for SSP

Pathologies of SSP

SSP under weak conditions

192



UNDISCOUNTED PROBLEMS

e System: xpy1 = f(xk, ug, W)

e Cost of a policy m = {uo, pt1, ...}

Jr(x0) =limsup FE {Z g(xk,uk(xk),wk)}

N— Yk
oC k=0,1,... k=0

Note that Jr(xp) and J*(x¢) can be 400 or —oo
e Shorthand notation for DP mappings

(TJ)(x) = min E{g(a:,u,w)+J(f(x,u,w))}, vV x

uweU(x) w

(1,7)(@) = B {g(w,n@),w) + J (. plw),w)) }, Va

e 7' and T}, need not be contractions in general,
but their monotonicity is helpful (see Ch. 4, Vol.
IT of text for an analysis).

e SSP problems provide a “soft boundary” be-
tween the easy finite-state discounted problems
and the hard undiscounted problems.

— They share features of both.
— Some nice theory is recovered thanks to the
termination state, and special conditions.

193



SSP THEORY SUMMARY 1

e As before, we have a cost-free term. state ¢, a
finite number of states 1,...,n, and finite number
of controls.

e Mappings T and T), (modified to account for
termination state t). For allt=1,...,n:

(T J) (@) = g(i, (i) + qu;j (1(3))J (5),

(TJ)(%) :u?&% g(i>U)+ZPij(U)J(J') :

orT,J =g, + P,J and TJ = min,|g,, + P,J].

e Definition: A stationary policy u is called proper,
if under u, from every state ¢, there is a positive
probability path that leads to t.

e Important fact: (To be shown) If u is proper,
T,, is contraction w. r. t. some weighted sup-norm

max (T, (1)~ (T T ()] < e |7 (0)~7'(3)

e 7' is similarly a contraction if all © are proper
(the case discussed in the text, Ch. 7, Vol. I).

194



SSP THEORY SUMMARY 11

e The theory can be pushed one step further.
Instead of all policies being proper, assume that:

(a) There exists at least one proper policy
(b) For each improper u, J,(¢) = oo for some i
e [Example: Deterministic shortest path problem
with a single destination t.
— States <=> nodes; Controls <=> arcs

— Termination state <=> the destination

— Assumption (a) <=> every node is con-
nected to the destination

— Assumption (b) <=> all cycle costs > 0
e Note that T is not necessarily a contraction.

e The theory in summary is as follows:
— J* is the unique solution of Bellman’s Eq.
— p* is optimal if and only it T}« J* =T J*
— VI converges: TkJ — J* for all J € R

— PI terminates with an optimal policy, if started
with a proper policy

195



SSP ANALYSIS I

e FLor a proper policy u, J, is the unique fixed
point of T},, and T} J — J,, for all J (holds by the
theory of Vol. I, Section 7.2)

o Key Fact: A p satistying J > T),J for some
J € ’™ must be proper - true because
k—1

J>Th]=PEJ+ > Prg,
m=0
since J, = > _, Pi"g, and some component of

the term on the right blows up as £ — oo if u is
improper (by our assumptions).

e (onsequence: T' can have at most one fixed
point within R~.

Proof: If J and J’ are two fixed points, select u
and p’ such that J =T17J =1,J and J' =TJ =
T,,J’. By preceding assertion, p and p/ must be
proper, and J = J, and J' = J,/. Also
J=TkJ<TKJ = Jp=J
7
Similarly, J' < J, so J = J'.

196



SSP ANALYSIS II

e We first show that 71" has a fixed point, and also
that PI converges to it.

e Use PI. Generate a sequence of proper policies
{uk} starting from a proper policy u0.

e u!is proper and J,0 > J,1 since

JMO = TMOJMO > TJMO = Tuljuo > T,fljuo > Jul

e Thus {J,x} is nonincreasing, some policy fi is
repeated and J; = T'J5. So Jj is fixed point of T'.

e Next show that TFJ — J; for all J, i.e., VI
converges to the same limit as PI. (Sketch: True
it J = Jg, argue using the properness of i1 to show
that the terminal cost difference J — J; does not
matter.)

e To show J; = J*, for any m = {po, p1, ...}
Tyg - 'Tuk;—ljo > Tk Jo,

where Jg = 0. Take limsup as k£ — oo, to obtain
Jr > Jg, so o is optimal and J; = J*.

197



SSP ANALYSIS III

e Contraction Property: If all policies are proper
(cf. Section 7.1, Vol. 1), T,, and T are contractions
with respect to a weighted sup norm.

Proof: Consider a new SSP problem where the
transition probabilities are the same as in the orig-
inal, but the transition costs are all equal to —1.

Let J be the corresponding optimal cost vector.
For all p,

n

J(@) = =1+ min > pi(w) () < 14+ pii (#(2) I(5)

For v; = —j(i), we have v; > 1, and for all u,

1
Y <1

1=1,....n  V;

This implies T}, and 71" are contractions of modu-
lus p for norm ||J|| = max;=1,... » |J(2)|/vi (by the
results of earlier lectures). 198



SSP ALGORITHMS

e All the basic algorithms have counterparts un-
der our assumptions; see the text (Ch. 3, Vol. II)

e “Easy” case: All policies proper, in which case
the mappings 1" and 7, are contractions

e Even with improper (infinite cost) policies all
basic algorithms have satisfactory counterparts

— VI and PI

— Optimistic PI

— Asynchronous VI

— Asynchronous PI

— Q-learning analogs
e ** THE BOUNDARY OF NICE THEORY **
e Serious complications arise under any one of the
following:

— There is no proper policy

— There is improper policy with finite cost V ¢

— The state space is infinite and /or the control
space is infinite [infinite but compact U (%)
can be dealt with]

199



PATHOLOGIES I: DETERM. SHORTEST PATHS
tbcu, Cost 0

t b Destination

e Two policies, one proper (apply u), one im-
proper (apply u’)

e Bellman’s equation is
J(1) = min|J(1), ]

Set of solutions is (—oo, b].

e Case b > 0, J* = 0: VI does not converge to
J* except if started from J*. PI may get stuck
starting from the inferior proper policy

e Case b < 0, J* = b: VI converges to J* if
started above J*, but not if started below J*. PI
can oscillate (if started with u/ it generates u, and
if started with u it can generate u’)

200



PATHOLOGIES II: BLACKMAILER’S DILEMMA

e Two states, state 1 and the termination state t.

e At state 1, choose u € (0,1] (the blackmail
amount demanded) at a cost —u, and move to ¢
with prob. u?, or stay in 1 with prob. 1 — u?2.

e Every stationary policy is proper, but the con-
trol set in not finite (also not compact).

e For any stationary p with p(1) = u, we have
Ju(1) = —u+ (1 —u?)Ju(1)

from which J,(1) = _%

e Thus J*(1) = —oo, and there is no optimal
stationary policy.

e A nonstationary policy is optimal: demand
k(1) =~/(k+ 1) at time k, with v € (0,1/2).
— Blackmailer requests diminishing amounts over
time, which add to oo.

— The probability of the victim’s refusal dimin-
ishes at a much faster rate, so the probabil-
ity that the victim stays forever compliant is
strictly positive.

201



SSP UNDER WEAK CONDITIONS I

e Assume there exists a proper policy, and J* is
real-valued. Let

J(z):wg%é%er(fu(z), i=1,...,n

Note that we may have J % J* [i.e., J(3) # J*(i)
for some 1.

e It can be shown that .J is the unique solution
of Bellman’s equation within the set {J | J > J}

e Also VI converges to J starting from any J > J

e The analysis is based on the d-perturbed prob-
lem: adding a small 0 > 0 to g. Then:

— All improper policies have infinite cost for
some states in the o-perturbed problem

— All proper policies have an additional O(¢)
cost for all states

— The optimal cost J§ of the 0-perturbed prob-
lem converges to J as § | 0

e 'There is also a PI method that generates a
sequence {u*} with J x — J. Uses sequence &y |
0, and policy evaluation based on the og-perturbed
problems with d; | 0.

202



SSP UNDER WEAK CONDITIONS II

e J* need not be a solution of Bellman’s equation!
Also J,, for an improper policy pu.

Cost 0

Cost —2 Cost 1 Cost —1

Destination

Cost 0

e For p=1/2, we have

Bellman Eq. at state 1, J,,(1) = 2 (J.(2)+J.(5)),
is violated.

e References: Bertsekas, D. P., and Yu, H., 2015.
“Stochastic Shortest Path Problems Under Weak
Conditions,” Report LIDS-2909; Math. of OR, to
appear. Also the on-line updated Ch. 4 of the
text.

203



6.231 DYNAMIC PROGRAMMING
LECTURE 18
LECTURE OUTLINE

e Undiscounted total cost problems

e Positive and negative cost problems
e Deterministic optimal cost problems
e Adaptive (linear quadratic) DP

e Affine monotonic and risk sensitive problems

Reference:

Updated Chapter 4 of Vol. II of the text:
Noncontractive Total Cost Problems
On-line at:

http://web.mit.edu/dimitrib /www /dpchapter.html

Check for most recent version

204


http://web.mit.edu/dimitrib/www/dpchapter.html

CONTRACTIVE/SEMICONTRACTIVE PROBLEMS

e Infinite horizon total cost DP theory divides in

— “Easy” problems where the results one ex-
pects hold (uniqueness of solution of Bell-
man Eq., convergence of PI and VI, etc)

— “Difficult” problems where one of more of
these results do not hold

e “Easy” problems are characterized by the pres-
ence of strong contraction properties in the asso-
ciated algorithmic maps 71" and T},

e A typical example of an “easy” problem is dis-
counted problems with bounded cost per stage
(Chs. 1 and 2 of Voll. IT) and some with unbounded
cost per stage (Section 1.5 of Voll. II)

e Another is semicontractive problems, where T},
is a contraction for some p but is not for other
1, and assumptions are imposed that exclude the
“ill-behaved” p from optimality

e A typical example is SSP where the improper
policies are assumed to have infinite cost for some
initial states (Chapter 3 of Vol. II)

e In this lecture we go into “difficult” problems

205



UNDISCOUNTED TOTAL COST PROBLEMS

e Beyond problems with strong contraction prop-
erties. One or more of the following hold:

— No termination state assumed
— Infinite state and control spaces

— FEither no discounting, or discounting and
unbounded cost per stage

— Risk-sensitivity /exotic cost functions (e.g.,
SSP problems with exponentiated cost)
e Important classes of problems

— SSP under weak conditions (e.g., the previ-
ous lecture)

— Positive cost problems (control/regulation,
robotics, inventory control)

— Negative cost problems (maximization of pos-
itive rewards - investment, gambling, finance)

— Deterministic positive cost problems - Adap-
tive DP

— A variety of infinite-state problems in queue-
ing, optimal stopping, etc

— Affine monotonic and risk-sensitive problems
(a generalization of SSP)

206



POS.

AND NEG. COST - FORMULATION

e System xxi+1 = f(o, ur,wy) and cost

N-1
Jr (o) = A}gﬂoo L {Z ng(mkaﬂk(mk)awk)}

k=0,1,... k=0

Discount factor o € (0, 1], but g may be unbounded

o Case P: g(x,u,w) >0 for all (z,u,w)

e Case N: g(z,u,w) <0 for all (z,u,w)

e Summary of analytical results:

Many of the strong results for discounted
and SSP problems fail

Analysis more complex; need to allow for J;

and J* to take values +oo (under P) or —oo
(under N)

However, J~ is a solution of Bellman’s Eq.
(typically nonunique)

Opt. conditions: p is optimal if and only if
T,J" =TJ" (P)orifT,J,=TJ, (N)

207



SUMMARY OF ALGORITHMIC RESULTS

e Neither VI nor PI are guaranteed to work

e Behavior of VI

— P TkJ — J* for all J with 0 < J < J*, if
U(x) is finite (or compact plus more condi-
tions - see the text)

— N: TkJ — J" for all J with J* < J <0
e Behavior of PI

— P: J & is monotonically nonincreasing but
may get stuck at a nonoptimal policy

— N: J,x may oscillate (but an optimistic form
of PI converges to J* - see the text)

e These anomalies may be mitigated to a greater
or lesser extent by exploiting special structure, e.g.

— Presence of a termination state

— Proper/improper policy structure in SSP

e [Finite-state problems under P can be trans-
formed to equivalent SSP problems by merging
(with a simple algorithm) all states x with J*(z) =
0 into a termination state. They can then be
solved using the powerful SSP methodology (see
updated Ch. 4, Section 4.1.4)

208



EXAMPLE FROM THE PREVIOUS LECTURE

e This is essentially a shortest path example with
termination state ¢

u’, Cost 0

J(t)4
Bellman Eq.
Solutions /
J =1(0,0)
.00 )
Case P Case N
VT fails starting from VI fails starting from
J(1)=0,J(t)=0 J(1) < J*(1), J(t) =0
PI gtops at u PI oscilllates between p and p/

e Bellman Equation:

J(1) = min[J(1),b+ J(¢)], J(t) = J(t)

209



DETERM. OPT. CONTROL - FORMULATION

o System: w1 = f(xk,ur), arbitrary state and
control spaces X and U

e Cost positivity: 0 < g(x,u), Vo € X, ue U(x)

e No discounting:

o “Goal set of states” Xy
— All x € X are cost-free and absorbing

e A shortest path-type problem, but with possibly
infinite number of states

e A common formulation of control/regulation
and planning/robotics problems

e Example: Linear system, quadratic cost (possi-
bly with state and control constraints), Xo = {0}
or Xo 1s a small set around 0

e Strong analytical and computational results

210



DETERM. OPT. CONTROL - ANALYSIS

e Bellman’s Eq. holds (for not only this problem,

but also all deterministic total cost problems)

J (x) = rr%]l?) {9(z,u)+ T (f(z,u))}, VzeX
ucU(x

e Definition: A policy 7w terminates starting from

r if the state sequence {xy} generated starting

from xo = x and using 7 reaches Xy in finite time,
i.e., satisfies x; € X for some index k

e Assumptions: The cost structure is such that
— J(z) > 0, Va ¢ Xo (termination incentive)

— For every x with J"(z) < oo and every € > 0,
there exists a policy 7 that terminates start-
ing from x and satisfies J;(x) < J" (z) + €.

e Uniqueness of solution of Bellman’s Eq.: J™ is
the unique solution within the set

J={J|0<J(x)<oo,VzeX, Jx)=0,Vze Xo}

e (Counterexamples: Earlier SP problem. Also
linear quadratic problems where the Riccati equa-
tion has two solutions (observability not satisfied).

211



DET. OPT. CONTROL - VI/PI CONVERGENCE

e The sequence {T*J} generated by VI starting
from a J € J with J > J* converges to J~

e If in addition U(x) is finite (or compact plus
more conditions - see the text), the sequence {T%J}
generated by VI starting from any function J € J
converges to J"

e A sequence {J,} generated by PI satisfies
J(r) L J (x) for all v € X

e PI counterexample: The earlier SP example

e Optimistic Pl algorithm: Generates pairs {Ji, u*}
as follows: Given Ji, we generate u* according to

k(@) = arg min {g(z,w)+i(f@.w)}, @€ X
and obtain Jgi1 with my > 1 VIs using p*:

mk—l

Jk—I—l(xO) — Jk(xmk)—i_ Z g(xtaﬂk(xt))a ro € X
t=0

If Jo € J and Jo > TJy, we have Jy, | J".
e Rollout with terminating heuristic (e.g., MPC).

212



LINEAR-QUADRATIC ADAPTIVE CONTROL

o System: xp11 = Axrp+Bug, xp € R, up € k™
o Cost: Y~ (2} Qx + uj Rug), @ >0, R>0

e Optimal policy is linear: u*(x) = Lx

e The Q-factor of each linear policy u is quadratic:

Qe =(a K (L) (0

U
e We will consider A and B unknown

e We use as basis functions all the quadratic func-
tions involving state and control components

xrxd, utud, x'ul, Vi,7
These form the “rows” ¢(z,u)’ of a matrix ®

e The Q-factor @), of a linear policy p can be
exactly represented within the subspace spanned
by the basis functions:

Qu(z,u) = ¢(x,u)'r,
where r,, consists of the components of K, in (*)

e Key point: Compute r,, by simulation of u (Q-
factor evaluation by simulation, in a PI scheme)

213



PI FOR LINEAR-QUADRATIC PROBLEM

e Policy evaluation: r, is found (exactly) by least
squares minimization

2

mgn Z ‘gb(azk, up)'r — (x?ﬁQﬂvk + uy, Rug, + ¢($k+1a H(karl))/T)
(g, up)

where (xx,ug, Tp11) are “enough” samples gener-
ated by the system or a simulator of the system.

e Policy improvement:
fi(x) € argmin ((z, u)'ry)
e Knowledge of A and B is not required

e If the policy evaluation is done exactly, this
becomes exact PI, and convergence to an optimal
policy can be shown

e The basic idea of this example has been gener-
alized and forms the starting point of the field of
adaptive DP

e This field deals with adaptive control of continuous-
space (possibly nonlinear) dynamic systems, in
both discrete and continuous time

214



FINITE-STATE AFFINE MONOTONIC PROBLEMS

e (Generalization of positive cost finite-state stochas-
tic total cost problems where:

— In place of a transition prob. matrix P, we
have a general matrix 4, > 0

— In place of 0 terminal cost tunction, we have
a more general terminal cost function J > 0

e Mappings

Tpd = by + Aud, (TJ)(3) = lfl'ellj\rjl(TuJ)(Z)

e Cost function of m = {uo, p1,...}

Jre(t) =limsup (Lpy - Tun_,J)E), i=1,...,n

N — o0

e Special case: An SSP with an exponential risk-
sensitive cost, where for all ¢ and u € U (%)

Aij(u) = pij(u)esthmi), b(i,u) = pie(u)esti-w?)
e Interpretation:

T(i) = E{e(length of path of 7 starting from z)}

215



AFFINE MONOTONIC PROBLEMS: ANALYSIS

e The analysis follows the lines of analysis of SSP

e Key notion (generalizes the notion of a proper
policy in SSP): A policy p is stable if Af — 0; else
it is called unstable

e We have
N—-1

TNJT = ANJ+Y Afby, YJERY, N=1,2,...,
k=0

e For a stable policy u, we have for all J € Rq»

o0

Ju =limsup T J = limsup » ~Afb, = (I-A,)~1b,

N —o00 N —o00 k=0
e Consider the following assumptions:
(1) There exists at least one stable policy

(2) For every unstable policy pu, at least one com-
ponent of > ., Akb, is equal to oo

e Under (1) and (2) the strong SSP analytical
and algorithmic theory generalizes

e Under just (1) the weak SSP theory generalizes.

216



6.231 DYNAMIC PROGRAMMING

LECTURE 19

LECTURE OUTLINE

e We begin a lecture series on approximate DP.

e Reading: Chapters 6 and 7, Vol. 2 of the text.

Today we discuss some general issues about
approximation and simulation

We classify /overview the main approaches:

Approximation in policy space (policy para-
metrization, gradient methods, random search)
Approximation in value space (approximate

PI, approximate VI, Q-Learning, Bellman
error approach, approximate LP)

Rollout /Simulation-based single policy iter-
ation (will not discuss this further)

Approximation in value space using problem
approximation (simplification - forms of ag-
gregation - limited lookahead) - will not dis-
cuss much

217



GENERAL ORIENTATION TO ADP

e ADP (late 80s - present) is a breakthrough
methodology that allows the application of DP to
problems with many or infinite number of states.
e Other names for ADP are:

— “reinforcement learning” (RL)

— “neuro-dynamic programming” (NDP)

e We will mainly adopt an n-state discounted
model (the easiest case - but think of HUGE n).

e Extensions to other DP models (continuous
space, continuous-time, not discounted) are possi-
ble (but more quirky). We will set aside for later.
e There are many approaches:
— Problem approximation and 1-step lookahead
— Simulation-based approaches (we will focus
on these)
e Simulation-based methods are of three types:
— Rollout (we will not discuss further)
— Approximation in policy space

— Approximation in value space

218



WHY DO WE USE SIMULATION?

e One reason: Computational complexity advan-
tage in computing expected values and sums/inner
products involving a very large number of terms

— Speeds up linear algebra: Any sum > ., a;
can be written as an expected value

zn:az' = zn:&@ :Ef{%}v
i=1 RS i

where ¢ is any prob. distribution over {1,...,n}

— It is approximated by generating many sam-
ples {i1,...,ix} from {1,...,n}, according
to &£, and Monte Carlo averaging:

N fal il
;Eﬁ{s}“kgs

— Choice of & makes a difference. Importance
sampling methodology.

e Simulation is also convenient when an analytical
model of the system is unavailable, but a simula-
tion/computer model is possible.

219



APPROXIMATION IN POLICY SPACE

e A brief discussion; we will return to it later.
e Use parametrization u(i;r) of policies with a
vector r = (r1,...,7s). Examples:
— Polynomial, e.g., u(i;r) =ry +1r2 -0+ r3 - 12
— Multi-warehouse inventory system: pu(i;r) is
threshold policy with thresholds r = (ry1,...,7s)
e Optimize the cost over r. For example:

— Each value of r defines a stationary policy,
with cost starting at state ¢ denoted by J(7; 7).

— Let (p1,...,pn) be some probability distri-
bution over the states, and minimize over r

> pid(isr)
1=1

— Use a random search, gradient, or other method

e A special case: The parameterization of the
policies is indirect, through a cost approximation
architecture J, i.e.,

n

ulisr) € arg min > pij(u) (90w 5) + (i)
j=1

220



APPROXIMATION IN VALUE SPACE

e Approximate J* or J, from a parametric class
J(i;7r) where 7 is the current state and r = (r1,...,7m)
is a vector of “tunable” scalars weights

e Use J in place of J* or .J,, in various algorithms
and computations (VI, PI, LP)

e Role of r: By adjusting r we can change the
“shape” of J so that it is “close” to J* or J,

e Two key issues:

— The choice of parametric class J(i;7) (the
approximation architecture)

— Method for tuning the weights (“training”
the architecture)

e Success depends strongly on how these issues
are handled ... also on insight about the problem

e A simulator may be used, particularly when
there is no mathematical model of the system

e We will focus on simulation, but this is not the
only possibility

e We may also use parametric approximation for
Q-factors

221



APPROXIMATION ARCHITECTURES

e Divided in linear and nonlinear [i.e., linear or
nonlinear dependence of J(i;7) on r]

e Linear architectures are easier to train, but non-
linear ones (e.g., neural networks) are richer

e (Computer chess example:

— Think of board position as state and move
as control

— Uses a feature-based position evaluator that
assigns a score (or approximate ()-factor) to
each position/move

_________________________________________

D=p| D8
=[]
15| oy
|
1= s
52

[ome 1>
W |
Jo- b=+
1E |)=>)
it

. I
: Features: ;
: Material balance, !
A | =
__ ¢ | Feature .| Weighting I it
i Extraction of Features
Ax]

s

Position Evaluator

e Relatively few special features and weights, and
multistep lookahead

222



LINEAR APPROXIMATION ARCHITECTURES

e Often, the features encode much of the nonlin-
earity inherent in the cost function approximated

e Then the approximation may be quite accurate
without a complicated architecture. (Extreme ex-
ample: The ideal feature is the true cost function)

e With well-chosen features, we can use a linear
architecture:

~

J(i:r) = ¢(i)'r, Vi or J(r)=®r= Z P ,r;
j=1

®: the matrix whose rows are ¢(i)’, ¢ = 1,...,n,
®; is the jth column of @

‘ Linear Cost
State i | Feature Extraction | Feature Vector ¢(i) Linear Approximator ¢(z)'r

Mapping ks Mapping >

e This is approximation on the subspace

S={dr|r e Rs}

spanned by the columns of ® (basis functions)

e Many examples of feature types: Polynomial
approximation, radial basis functions, domain spe-
cific, etc

223



ILLUSTRATIONS: POLYNOMIAL TYPE

e Polynomial Approximation, e.g., a quadratic
approximating function. Let the state be ¢ =
(41,...,%q) (i-e., have ¢ “dimensions”) and define

Linear approximation architecture:

Z r)=ro+ E Tkik + g g Tkmlklm,

k=1 m=k

where r has components rg, 7, and rg,.

e Interpolation: A subset I of special/representative

states is selected, and the parameter vector r has
one component r; per state ¢ € I. The approxi-
mating function is

j(i;r):ri, 1 e 1,

» 4

J(i;:r) = interpolation using the values at i € I, i ¢ I

For example, piecewise constant, piecewise linear,
more general polynomial interpolations.

224



A DOMAIN SPECIFIC EXAMPLE

e Tetris game (used as testbed in competitions)

Possible
actions

Chosen N
action

Possible “
next states E&R%

© source unknown. All rights reserved. This content is excluded from our Creative
Commons license. For more information, see http://ocw.mit.edu/fairuse.

e J*(i): optimal score starting from position ¢
e Number of states > 2200 (for 10 x 20 board)

e Success with just 22 features, readily recognized
by tetris players as capturing important aspects of
the board position (heights of columns, etc)

225


http://ocw.mit.edu/fairuse

APPROX. PI - OPTION TO APPROX. J, OR @,

e Use simulation to approximate the cost .J, of
the current policy u

e Generate “improved” policy &z by minimizing in
(approx.) Bellman equation

Guess Initial Policy

Evaluate Approximate Cost

) Approximate Policy
Ju(r) = ®r Using Simulation Pualiiatien

|

«— Generate “Improved” Policy & Policy Improvement

e Altenatively approximate the ()-factors of u

e A survey reference: D. P. Bertsekas, “Approx-
imate Policy Iteration: A Survey and Some New
Methods,” J. of Control Theory and Appl., Vol.
9, 2011, pp. 310-335.

226



DIRECTLY APPROXIMATING J* OR Q*

e Approximation of the optimal cost function J*
directly (without PI)

— ()-Learning: Use a simulation algorithm to
approximate the Q-factors

Q+(i,u) = g(i,u) + a Y pi(w)J*(j);
j=1
and the optimal costs
T(5) — 1o (i,
(4) oin, Q* (i, u)
— Bellman Error approach: Find r to

minEi{(j(i;fr) —(TJ

r

where F;{-} is taken with respect to some
distribution over the states

— Approximate Linear Programming (we will
not discuss here)

e ()-learning can also be used with approxima-
tions

e (J)-learning and Bellman error approach can also
be used for policy evaluation

227



DIRECT POLICY EVALUATION

e (Can be combined with regular and optimistic
policy iteration

e Find r that minimizes ||J, — j(,r)Hg, ie.,

2

Z&;(JM(Z') — j(z,fr)) : &1 some pos. weights
i=1

e Nonlinear architectures may be used

e The linear architecture case: Amounts to pro-
jection of J,, onto the approximation subspace

J,

— T1.7,

0
Subspace S = {®r | r € Rs}

Direct Method: Projection of
cost vector J,

e Solution by linear least squares methods

228



POLICY EVALUATION BY SIMULATION

e Projection by Monte Carlo Simulation: Com-
pute the projection II.J, of J,, on subspace S =
{®r | r € Rs}, with respect to a weighted Eu-
clidean norm || - ||¢

e Equivalently, find ®r*, where

re¥s
e Setting to 0 the gradient at r*,

- (Z fiqb(i)qb(i)’) Z&aﬁ(i)h(i)

e Generate samples { (i1, Ju(i1)), . -, (ir, Ju(ix)) }
using distribution &

. : - y ) 2
r+ = arg min | Sr—Juf = arg min > & (Ju(6)—(i)'r)
=1

e Approximate by Monte Carlo the two “expected
values” with low-dimensional calculations

k -1k
Pl = <Z ¢(it)¢(it)’> > i) Julic)

e Equivalent least squares alternative calculation:
k

Fr = arg min (¢(ie)r — Ju(ir)”
t=1

229



INDIRECT POLICY EVALUATION

e An example: Solve the projected equation ®r =
II7,,(®r) where II is projection w/ respect to a
suitable weighted Euclidean norm (Galerkin ap-
prox.

. Or = I17),(Pr)
0 0
Subspace S = {®r | r € Rs} Subspace S = {®r | r € Rs}
Direct Method: Projection of Indirect Method: Solving a projected
cost vector J, form of Bellman’s equation

e Solution methods that use simulation (to man-
age the calculation of II)

— TD(\): Stochastic iterative algorithm for solv-
ing ®&r =117, (Pr)

— LSTD(\): Solves a simulation-based approx-
imation w/ a standard solver

— LSPE()M): A simulation-based form of pro-
jected value iteration; essentially

briq1 = 11T, (Pry) + simulation noise

230



BELLMAN EQUATION ERROR METHODS

e Another example of indirect approximate policy
evaluation:

minH@r—Tu(@r)Hg (%)

where || - ||¢ is Euclidean norm, weighted with re-
spect to some distribution &

e It is closely related to the projected equation ap-
proach (with a special choice of projection norm)

e Several ways to implement projected equation
and Bellman error methods by simulation. They
involve:

— Generating many random samples of states
1, using the distribution &

— Generating many samples of transitions (ix, jx)
using the policy u
— Form a simulation-based approximation of
the optimality condition for projection prob-
lem or problem (*) (use sample averages in
place of inner products)
— Solve the Monte-Carlo approximation of the
optimality condition
e Issues for indirect methods: How to generate
the samples? How to calculate r* efficiently?

231



ANOTHER INDIRECT METHOD: AGGREGATION

e An example: Group similar states together into
“aggregate states” xi,...,Ts; assign a common
cost r; to each group x;. A linear architecture
called hard aggregation.

1000\
R 3 1 0 0 0
01 0 0

1 2 1 00 0
oF e ol =110 0 0
| 01 0 0

.7373.8 334.9 O 0 1 0
00 1 0

\o 0 0 1/

e Solve an “aggregate” DP problem to obtain
r=(ry,...,rs).

e More general /mathematical view: Solve
br = &DT,(Pr)

where the rows of D and ® are prob. distributions
(e.g., D and ® “aggregate” rows and columns of
the linear system J = T),J)

e Compare with projected equation ®r = IIT),(Pr).
Note: ®D is a projection in some interesting cases

232



AGGREGATION AS PROBLEM APPROXIMATION

Original

System States

Dij (U), g(i7uaj)

Disaggregation Aggregation
Probabilities Probabilities
dxz' * * ¢jy

e Aggregation can be viewed as a systematic ap-
proach for problem approx. Main elements:

— Solve (exactly or approximately) the “ag-
gregate” problem by any kind of VI or PI
method (including simulation-based methods)

— Use the optimal cost of the aggregate prob-
lem to approximate the optimal cost of the
original problem

e Because an exact PI algorithm is used to solve
the approximate/aggregate problem the method
behaves more regularly than the projected equa-
tion approach

233



THEORETICAL BASIS OF APPROXIMATE PI

e If policies are approximately evaluated using an
approximation architecture such that

max]j(i,rk)—(]uk(i)‘ <o, k=0,1,...

e If policy improvement is also approximate,

max |(T,s1J) (4, 76)—(TI) (6, me)| <6,  k=0,1,...

e Error bound: The sequence {u*} generated by
approximate policy iteration satisfies

e + 2a0

lim sup max (J & (i) — J*(7)) < 1—a)?

k— 00 v H

e 'T'ypical practical behavior: The method makes
steady progress up to a point and then the iterates
J x oscillate within a neighborhood of J*.
e Oscillations are quite unpredictable.

— Bad examples of oscillations are known.

— In practice oscillations between policies is
probably not the major concern.

— In aggregation case, there are no oscillations

234



THE ISSUE OF EXPLORATION

e To evaluate a policy u, we need to generate cost
samples using that policy - this biases the simula-
tion by underrepresenting states that are unlikely
to occur under u

e (Cost-to-go estimates of underrepresented states
may be highly inaccurate

e This seriously impacts the improved policy 1

e This is known as inadequate exploration - a
particularly acute difficulty when the randomness
embodied in the transition probabilities is “rela-
tively small” (e.g., a deterministic system)

e Some remedies:

— Frequently restart the simulation and ensure
that the initial states employed form a rich
and representative subset

— Occasionally generate transitions that use a
randomly selected control rather than the
one dictated by the policy u

— Other methods: Use two Markov chains (one
is the chain of the policy and is used to gen-
erate the transition sequence, the other is
used to generate the state sequence).

235



APPROXIMATING Q-FACTORS

e Given J(i;7), policy improvement requires a
model [knowledge of p;;(u) for all u € U(7)]

e Model-free alternative: Approximate (J-factors
(4, u; ) szj g(i,u,j) + adu(j))

and use for policy improvement the minimization

0(i) € arg min Q(i,u; )
uel (7)
e 1 is an adjustable parameter vector and Q(z, u;T)
1s a parametric architecture, such as

S

@(i,u;r) = Z 'm®m (i, u)

m=1
e We can adapt any of the cost approximation
approaches, e.g., projected equations, aggregation

e Use the Markov chain with states (i,u), so
pij(p(i)) is the transition prob. to (7, u(2)), 0 to
other (7, u’)

e Major concern: Acutely diminished exploration

236



STOCHASTIC ALGORITHMS: GENERALITIES

e (onsider solution of a linear equation x = b +
Ax by using m simulation samples b + wy and
A+Wi, k=1,...,m, where w, W}, are random,
e.g., “simulation noise”

e Think of + = b+ Ax as approximate policy
evaluation (projected or aggregation equations)

e Stoch. approx. (SA) approach: Fork=1,...,m

Try1 = (1 —yg)xk + ”Yk((b + wi) + (A + Wk)xk)

e Monte Carlo estimation (MCE) approach: Form
Monte Carlo estimates of b and A

:%Zb—l—wk :%ZA—I—Wk

Then solve x = b,,, + A,,x by matrix inversion

or iteratively
e TD()) and Q-learning are SA methods
e LSTD(A) and LSPE(\) are MCE methods

237



6.231 DYNAMIC PROGRAMMING
LECTURE 20
LECTURE OUTLINE

e Discounted problems - Approximation on sub-
space {®r | r € R}

e Approximate (fitted) VI

e Approximate PI

e The projected equation

e (Contraction properties - Error bounds
e Matrix form of the projected equation

e Simulation-based implementation

o LLSTD and LSPE methods

238



REVIEW: APPROXIMATION IN VALUE SPACE

e Finite-spaces discounted problems: Defined by
mappings 1), and T (T'J = min,, T}, J).

e Fxact methods:
- VI Jk_|_1 — TJk
— PI: Ju’“ = Tukju’“’ Tu"““Ju’“ = TJM;C
— LP: minyc’J subject to J < T'J

e Approximate versions: Plug-in subspace ap-
proximation with ®r in place of J

— VI: (I)Tk_|_1 ~ T(I)T'k

— PI: (I)Tk ~ T,uk (I)’I“k, T,uk+1 CI)Tk — TCI)Tk

— LP: min, ¢/®r subject to &r < T'Pr
e Approx. onto subspace S = {®r | r € Rs}
is often done by projection with respect to some
(weighted) Euclidean norm.
e Another possibility is aggregation. Here:

— The rows of ® are probability distributions

— &r =~ J, or &r = J*, with r the solution of
an “aggregate Bellman equation” r = DT),(®r)
or r = DT(®r), where the rows of D are
probability distributions

239



APPROXIMATE (FITTED) VI

e Approximates sequentially Ji(i) = (T*Jo)(4),
k=1,2,..., with Ji(i;r)

e The starting function Jy is given (e.g., Jo = 0)

e Approximate (Fitted) Value Iteration: A se-
qugntial “fit” to produce Jx11 fr~om gy 1€, Jpp1 &
TJy, or (for a single policy p) Jx4+1 ~ T}, Jx

TJo Tj1 -
| T J>
i :'/
d Jo &s
J1 3

Subspace § = {®r | r € R¢}

Fitted Value Iteration

e After alarge enough number N of steps, Jn (i;7n)
is used as approximation to J*(7)

e Possibly use (approximate) projection II with
respect to some projection norm,

jk_|_1 ~ HTjk

240



WEIGHTED EUCLIDEAN PROJECTIONS

e (Consider a weighted Euclidean norm

Wl =y > G(I0)’,

where & = (&1,...,&,) is a positive distribution
(& > 0 for all 7).

e Let II denote the projection operation onto
S={dr|r e Rs}
with respect to this norm, i.e., for any J € R,
IIJ = ®or*

where
r* = arg min |[|®r — J||?
g min || ®r — J|
e Recall that weighted Euclidean projection can
be implemented by simulation and least squares,
i.e., sampling J(¢) according to & and solving
k

min >  (¢(ir)'r = J(ii))

241



FITTED VI - NAIVE IMPLEMENTATION

e Select/sample a “small” subset [ of represen-
tative states

e For each i € I, given jk, compute

e “Fit” the function jk;_|_1(7:;'rk;_|_1) to the “small”
set of values (T'Jg)(¢), @ € I (for example use
some form of approximate projection)

e “Model-free” implementation by simulation
e LError Bound: If the fit is uniformly accurate

within 0 > 0, i.e.,

max [ Jy41(4) — TJy(i)] <6,

then

- J
lim sup max (Ji(i,rk) — J*(i)) <
k—oo =1,..., n 1 — «

e But there is a potential serious problem!

242



AN EXAMPLE OF FAILURE

e (Consider two-state discounted MDP with states
1 and 2, and a single policy.

— Deterministic transitions: 1 — 2 and 2 — 2
— Transition costs = 0, so J*(1) = J*(2) = 0.

e Consider (exact) fitted VI scheme that approx-
imates cost functions within S = {(r,2r) | r € R}

with a weighted least squares fit; here ® = (1,2)’

e Given Jp = (7k, 21% ), we find jk+1 = (Tka1, 2Tk+1),
where Ji11 = (1)), with weights £ = (&1, &2):

P = argmin |& (r—(TJ,)(1)) "+ (2r—(TJ4)(2))]
e With straightforward calculation

ri+1 = afry,  where 8 =2(§1+282)/(§1+482) > 1

e Soifa>1/8 (e.g., &1 = &2 = 1), the sequence
{rr} diverges and so does {J}.

e Difficulty is that T' is a contraction, but II:7T
(= least squares fit composed with T') is not.

243



NORM MISMATCH PROBLEM

e For fitted VI to converge, we need 117" to be a
contraction; 7" being a contraction is not enough

Jo=T(Th)
Ja = HE(TJQ)

Ji =T (T Jo)
Subspace S = {®r | r € Rs}

Fitted Value Iteration with Projection

e We need a ¢ such that 1T is a contraction w. r.
to the weighted Euclidean norm || - ||¢

e Then II;T is a contraction w. r. to | - ||g

e We will come back to this issue, and show how
to choose £ so that II;7), is a contraction for a
given [

244



APPROXIMATE PI

Guess Initial Policy

l

Evaluate Approximate Cost

. Approximate Policy
Ju(r) = ®r Using Simulation Evaluation

|

«— Generate “Improved” Policy 1 Policy Improvement

e Livaluation of typical pu: Linear cost function
approximation J,(r) = ®r, where ® is full rank
n X s matrix with columns the basis functions, and
ith row denoted ¢(2)’.

e Policy “improvement” to generate [

e Frror Bound (same as approximate VI): If
max | (i,7%) — J ()] <6,  k=0,1,...

the sequence {uF} satisfies

2000
I J k(i) — J*(3)) <
im sup max (]« (i) (1)) < 1 o)

245



APPROXIMATE POLICY EVALUATION

e Consider approximate evaluation of .J,, the cost
of the current policy u by using simulation.

— Direct policy evaluation - generate cost sam-
ples by simulation, and optimization by least
squares

— Indirect policy evaluation - solving the pro-
jected equation ®r = IIT,(Pr) where II is
projection w/ respect to a suitable weighted
Fuclidean norm

ILJ, Or = I17),(Pr)
0 0
Subspace S = {®r | r € Rs} Subspace S = {®r | r € Rs}
Direct Method: Projection of Indirect Method: Solving a projected
cost vector J, form of Bellman’s equation

e Recall that projection can be implemented by
simulation and least squares

246



PI WITH INDIRECT POLICY EVALUATION

Guess Initial Policy

'

Evaluate Approximate Cost

~ Approximate Policy
Ju(r) = ®r Using Simulation Evaluation

l

«— Generate “Improved” Policy Policy Improvement

e Given the current policy u:

— We solve the projected Bellman’s equation

¢r =117, (Pr)

— We approximate the solution J,, of Bellman’s
equation

J=T,J

with the projected equation solution .J, ()

247



KEY QUESTIONS AND RESULTS

e Does the projected equation have a solution?

e Under what conditions is the mapping II7), a
contraction, so II7), has unique fixed point?

e Assumption: The Markov chain corresponding
to 1 has a single recurrent class and no transient
states, with steady-state prob. vector &, so that

Note that &; is the long—term frequency of state j.

e Proposition: (Norm Matching Property) As-
sume that the projection II is with respect to ||-||¢,
where £ = (&1,...,&,) is the steady-state proba-
bility vector. Then:

(a) T, is contraction of modulus « with re-
spect to || - ||¢.

(b) The unique fixed point ®r* of IIT),, satisfies

| = @r¥|le <

1
m H‘]M R HJM"g

248



PRELIMINARIES: PROJECTION PROPERTIES

e Important property of the projection II on S
with weighted Euclidean norm || - ||¢. For all J €
R, &r € S, the Pythagorean Theorem holds:

|J = @r[lg =] — ILJ|[g + [[ILJ — ®r|]2
b J

dr n 11J

Subspace S = {®r | r € Rs}

e The Pythagorean Theorem implies that the pro-
jection 1s nonexpansive, 1.e.,

ITLT — T1J ||e < || — J]|e, for all J, J € Rn.
To see this, note that

|7 =7)|; < |0 =), + || -mT - T)|,
= ||J = JII?

249



PROOF OF CONTRACTION PROPERTY

e [emma: If P is the transition matrix of u,
IPzlle < llzlle, 2z €®m,

where £ is the steady-state prob. vector.
Proof: For all z € 1"

n mn mn mn
1P2l12 =36 [ S pigz | <3 6 pije?
i=1 j=1 =1 j=1
—ZZ&Z%gZ _Z€JZ — HZHg

7=1 1=1

The inequality follows from the convexity of the
quadratic function, and the next to last equality
follows from the defining property Z?:l Eipij = &

e Using the lemma, the nonexpansiveness of II,
and the definition 7),J = g + aPJ, we have

T, J-TT, J|le < | TpJ=Tullle = al|P(J=J)lle < af|J=J]le

for all .J,J € R*. Hence 11T, is a contraction of
modulus o

250



PROOF OF ERROR BOUND

e Let ®r* be the fixed point of II7T". We have

HJ,LL — (I)T*H&' < H‘]M - HJ/LHS'

1
V1 — a2
Proof: We have

[ = @2 = || T, — T2 + ||TLT, — @+

Ils =

2
3

Jp — IWJ|I2 + [|[OTJ, — IIT(@r) |
Ty — T, 4 a2 1, — @72,

VAN

where

— The first equality uses the Pythagorean The-
orem

— The second equality holds because J,, is the
fixed point of 1" and ®r* is the fixed point
of IIT

— The inequality uses the contraction property
of IIT".

Q.E.D.

251



MATRIX FORM OF PROJECTED EQUATION

Tu(t];);r-) =g+ aP®r

&r = 1Ty, (Pr)

Subspace S = {®r | r € R}

e The solution ®r* satisfies the orthogonality con-
dition: The error

Or* — (g + aPdr+)

is “orthogonal” to the subspace spanned by the
columns of ®.

e 'This is written as

O'E(Pr* — (9 + aPPr*)) =0,

where Z is the diagonal matrix with the steady-
state probabilities &1, ..., &, along the diagonal.

e Equivalently, C'r* = d, where

C=9'=Z(] —aP)?, d= ®'=¢g

but computing C' and d is HARD (high-dimensional
inner products). 252



SOLUTION OF PROJECTED EQUATION

e Solve Cr* = d by matrix inversion: r* = C—1d
e Alternative: Projected Value Iteration (PVI)
Ori 1 =T (Pry) =1(g + aPPry)

Converges to r* because II7T' is a contraction.

Value lterate
T(Prk) =g + aPdri

[
Projection
onS

I
®ri+1

®Pri
0
S: Subspace spanned by basis functions

e PVI can be written as:

rre1 = arg min ||®r — (g + ozPCIDTk)Hz

rees

By setting to 0 the gradient with respect to r,
O'ZE(Pripq1 — (9 + aPPry)) =0,

which yields
Tk+1 — T — ((I)’E@)—l((]rk — d)

253



SIMULATION-BASED IMPLEMENTATIONS

e Key idea: Calculate simulation-based approxi-
mations based on k samples

Ck%C, dk%d

e Approximate matrix inversion r* = C'—1d by
N |
r = Cf “dg

This is the LSTD (Least Squares Temporal Dif-
ferences) method.

e PVImethod ryi1 =1 — (P'=P)~1(Cry —d) is
approximated by

re+1 = 1y — Grp(Crry — di)

where
Gk: ~ ((I)/E(I)) —1

This is the LSPE (Least Squares Policy Evalua-
tion) method.

o Key fact: C%, di, and G can be computed
with low-dimensional linear algebra (of order s;
the number of basis functions).

254



SIMULATION MECHANICS

e We generate an infinitely long trajectory (ig, i1, .. .)
of the Markov chain, so states ¢ and transitions
(¢, 7) appear with long-term frequencies &; and p;;.

o After generating each transition (i:,4¢41), We
compute the row ¢(i¢)’ of ® and the cost compo-

nent g(i¢, t¢+1).

e We form

k
1 : L N —
dr = k—+1 E P(1t)g(it, it+1) ~ E §ipij9(i)g (3, J) = d'Eg=d
t=0 i,J

k
1 / / —
Cr =17 Z; (i) (¢(ie) —ad(irs1)) ~ ®'E(I-aP)® = C
t=
Also in the case of LSPE

k
1
= — ' ) ~ D=
Gk P ;:O d(it)p(ie) =~ P'=P

e Convergence based on law of large numbers.

o (%, di, and G can be formed incrementally.
Also can be written using the formalism of tem-
poral differences (this is just a matter of style)

255



OPTIMISTIC VERSIONS

e Instead of calculating nearly exact approxima-
tions C}. =~ C' and dp ~ d, we do a less accurate
approximation, based on few simulation samples

e Evaluate (coarsely) current policy u, then do a
policy improvement

e This often leads to faster computation (as op-
timistic methods often do)

e Very complex behavior (see the subsequent dis-
cussion on oscillations)

e The matrix inversion/LSTD method has serious
problems due to large simulation noise (because of
limited sampling) - particularly if the C' matrix is
ill-conditioned

e LSPE tends to cope better because of its itera-
tive nature (this is true of other iterative methods
as well)

e A stepsize v € (0,1] in LSPE may be useful to
damp the effect of simulation noise

ret+1 = e — YGr(Crry — di)

256



6.231 DYNAMIC PROGRAMMING
LECTURE 21

LECTURE OUTLINE

e Review of approximate policy iteration

e Projected equation methods for policy evalua-
tion

e Issues related to simulation-based implementa-
tion

e Multistep projected equation methods
e DBias-variance tradeoff
e Exploration-enhanced implementations

e (scillations

257



REVIEW: PROJECTED BELLMAN EQUATION

e For a fixed policy u to be evaluated, consider
the corresponding mapping 1

or more compactly, T'J = g + aPJ

e Approximate Bellman’s equation J = T'J by
¢r = IIT(Pr) or the matrix form/orthogonality
condition C'r* = d, where

C=®=(—aP)®, d=d=yg.

: Projection
onS

dr = I1T(Pr)

0
S: Subspace spanned by basis functions

Indirect method: Solving a projected
form of Bellman’s equation

258



PROJECTED EQUATION METHODS

o Matrix inversion: r* = C—1d

e [terative Projected Value Iteration (PVI) method:

(I)’I“]H_l = HT((I)’I“k) = H(g -+ OéP(I)’I“k)

Converges to r* if II'T" is a contraction. True if 11 is
projection w.r.t. steady-state distribution norm.

e Simulation-Based Implementations: Generate
k+1 simulated transitions sequence {ig, 1, . .., ix }
and approximations C ~ C' and di ~ d:

k
Cr= > 6060 (80 —asien)) ~ ¥'E(I-aP)

k
A = ——= Y 6(ir)g(it,ir+1) ~ /=g

o LSTD: 7 = C, 'dy
o LSPE: k41 =Tk — Gk(Cka — dk) where
Gp~ G = (PED)-!

Converges to r* if II'I' is contraction.

259



ISSUES FOR PROJECTED EQUATIONS

e Implementation of simulation-based solution of
projected equation ®r ~ J,,, where Cyr = dj and

Ck ~ (I)’E([ — OzP)(I), dk ~ (I)’Eg

e [Low-dimensional linear algebra needed for the
simulation-based approximations Cj and dj (of
order s; the number of basis functions).

e Very large number of samples needed to solve
reliably nearly singular projected equations.

e Special methods for nearly singular equations
by simulation exist; see Section 7.3 of the text.

e Optimistic (few sample) methods are more vul-
nerable to simulation error

e Norm mismatch/sampling distribution issue

e The problem of bias: Projected equation solu-
tion # II.J,,, the “closest” approximation of J,

e Everything said so far relates to policy evalua-
tion. How about the effect of approximations on
policy improvement?

o We will next address some of these issues

260



MULTISTEP METHODS

e Introduce a multistep version of Bellman’s equa-
tion J = TN J, where for A € [0, 1),
T = (1—\) Z NTEA+1
(=0
Geometrically weighted sum of powers of T

e 7' is a contraction with mod. af, w. r. to
weighted Euclidean norm || - ||¢, where & is the
steady-state probability vector of the Markov chain.

e Hence T is a contraction with modulus

A
= Z af TN = 1(_ &)\)

Note vy, — 0 as A — 1 - affects norm mismatch

e 7% and TN have the same fixed point J,, and

| = @r3lle <

| Ty =TT

1
\/1—04/\

where @73 is the fixed point of IIT'(M).
e ®ry depends on A.

261



BIAS-VARIANCE TRADEOFF

Solution of projected equation
Or = 11T (Pr)

Simulation error

Bias

Subspace S = {®@r | r € R}

e From ||J, — ®ryulle < —2—||Jp — IJ,]|¢
K A /1—04%\
error bound

e As AT 1, we have a | 0, so error bound (and
quality of approximation) improves:

lgrll Ory , = 11J,

e DBut the simulation noise in approximating

T = (1 —)\) Z N1
=0
increases

e Choice of A is usually based on trial and error

262



MULTISTEP PROJECTED EQ. METHODS

e The multistep projected Bellman equation is
Or = IITN) (dr)

e In matrix form: CMyr = dM) | where
CH =dE(I —aPM)®,  dN =d'=gW),
with

P = (1-)\) ZO&E)\EPE‘H, gN) = Z at\EPtg
£=0 £=0

e The LSTD(A) method is (Cl(c/\))_ld,(;\), where

C,Ef‘) and d,g‘) are simulation-based approximations

of CN) and d).
e The LSPE()) method is

Tk+1 = Tk — VG (C]iA)Tk — d;(j))

where G, is a simulation-based approx. to (®/=d) 1

e TD()): An important simpler/slower iteration
[similar to LSPE(\) with Gy = I - see the text].

263



MORE ON MULTISTEP METHODS

e The simulation process to obtain C,S‘) and d,(j‘)
is similar to the case A = 0 (single simulation tra-

jectory ig, i1, ..., more complex formulas)
! k k
A . ) ) /
C,i = ] Z¢(Zt) Z am=IAM = (i) = (im+1))
t=0 m=t

k k
()‘) — 1 ) m—t)\m—t )
dy, E 1 ; (it) mZ:tO‘ Yim

e In the context of approximate policy iteration,
we can use optimistic versions (few samples be-
tween policy updates).

e Many different versions (see the text).

e Note the )\-tradeoffs:

A A : :
— As A1 1, C,g ) and d,i ) contain more “sim-
ulation noise”, so more samples are needed
for a close approximation of 7y ,

— The error bound ||.J,—®7» || becomes smaller

— As A 1 1, IITN) becomes a contraction for
arbitrary projection norm

264



APPROXIMATE PI ISSUES - EXPLORATION

e 1st major issue: exploration. Common remedy
is the off-policy approach: Replace P of current
policy with

P = (I - B)P + BQ,

where B is a diagonal matrix with 5; € [0, 1] on
the diagonal, and () is another transition matrix.

e Then LSTD and LSPE formulas must be modi-
fied ... otherwise the policy associated with P (not
P) is evaluated (see the textbook, Section 6.4).

e Alternatives: Geometric and free-form sampling

e Both of these use multiple short simulated tra-
jectories, with random restart state, chosen to en-
hance exploration (see the text)

e (Geometric sampling uses trajectories with geo-
metrically distributed number of transitions with
parameter A € [0,1). It implements LSTD(A) and
LSPE()) with exploration.

e Free-form sampling uses trajectories with more
generally distributed number of transitions. It im-
plements method for approximation of the solu-
tion of a generalized multistep Bellman equation.

265



APPROXIMATE PI ISSUES - OSCILLATIONS

e Define for each policy u
R, ={r|T,(®r)="T(Pr)}

e These sets form the greedy partition of the pa-
rameter r-space

R, = {7“ | Ty, (Pr) = T((I)T)}

For a policy p, R, is the set of all r such that
policy improvement based on ®r produces u

e Oscillations of nonoptimistic approx.: r, is gen-
erated by an evaluation method so that ®r, ~ J,

R'uk—‘,—l

266



MORE ON OSCILLATIONS/CHATTERING

e For optimistic PI a different picture holds

e Oscillations are less violent, but the “limit”
point is meaningless!

e Fundamentally, oscillations are due to the lack
of monotonicity of the projection operator, i.e.,

J < J’" does not imply I1J < II1J’.

e If approximate PI uses policy evaluation

¢r = (WT,)(Pr)

with W a monotone operator, the generated poli-
cies converge (to an approximately optimal limit).

e The operator W used in the aggregation ap-
proach has this monotonicity property.

267



6.231 DYNAMIC PROGRAMMING

LECTURE 22

LECTURE OUTLINE

Aggregation as an approximation methodology

Aggregate problem
Examples of aggregation
Simulation-based aggregation

(Q-Learning

268



PROBLEM APPROXIMATION - AGGREGATION

e Another major idea in ADP is to approximate
the cost-to-go function of the problem with the
cost-to-go function of a simpler problem. The sim-
plification is often ad-hoc/problem dependent.

e Aggregation is a systematic approach for prob-
lem approximation. Main elements:

— Introduce a few “aggregate” states, viewed
as the states of an “aggregate” system

— Define transition probabilities and costs of
the aggregate system, by relating original
system states with aggregate states

— Solve (exactly or approximately) the “ag-
gregate” problem by any kind of value or pol-

icy iteration method (including simulation-
based methods)

— Use the optimal cost of the aggregate prob-
lem to approximate the optimal cost of the
original problem

e Hard aggregation example: Aggregate states
are subsets of original system states, treated as if
they all have the same cost.

269



AGGREGATION/DISAGGREGATION PROBS

e The aggregate system transition probabilities
are defined via two (somewhat arbitrary) choices

Original
System States

() >

Dij (u)a g(za ’LL,_])

Aggregation
Probabilities

Disaggregation
Probabilities

e For each original system state 5 and aggregate
state y, the aggregation probability ¢,

— The “degree of membership of j in the ag-
gregate state y.”

— In hard aggregation, ¢;, = 1 if state j be-
longs to aggregate state/subset .
e For each aggregate state x and original system
state 7, the disaggregation probability dg;
— The “degree of ¢ being representative of x.”

— In hard aggregation, one possibility is all
states ¢ that belongs to aggregate state/subset
x have equal dg;. 270



AGGREGATE PROBLEM

e The transition probability from aggregate state
xr to aggregate state y under control u

Day(u) = Z dei Y pij(u)djy, or P(u) = DP(u)®

where the rows of D and ® are the disaggr. and
aggr. probs.

e The aggregate expected transition cost is

n n

g, u) = dei Y pij(w)g(i,u,j), or§=DPg

i=1 j=1

e The optimal cost tunction of the aggregate prob-
lem, denoted R, is

A

R(z) =min |g(z,u) + « Zﬁxy(u)}?(y) : YV x

uelU

or R = min, g + &f’R] - Bellman’s equation for
the aggregate problem.

e The optimal cost J* of the original problem is
approximated using interpolation, J* =~ J = ®R:

J(G) =) ¢ Ry), VYV

271



EXAMPLE I: HARD AGGREGATION

e Group the original system states into subsets,
and view each subset as an aggregate state

e Aggregation probs: ¢j, = 1 if j belongs to
aggregate state y.

1 00 0
1 2 3 1 0 0 O
° ° ° 01 0 0
1 2 1 00 0
ok e of =110 0 0
| 01 0 0
.7 963.8 564.9 O 0 1 O
00 1 0

00 0 1/

e Disaggregation probs: There are many possi-
bilities, e.g., all states ¢ within aggregate state x
have equal prob. d.;.

e If optimal cost vector J* is piecewise constant
over the aggregate states/subsets, hard aggrega-
tion is exact. Suggests grouping states with “roughly
equal” cost into aggregates.

e Soft aggregation (provides “soft boundaries”
between aggregate states).

272



EXAMPLE II: FEATURE-BASED AGGREGATION

e If we know good features, it makes sense to
group together states that have “similar features”

e LEissentially discretize the features and assign a
weight to each discretization point

@ Extraction T
P ° ° ™
[ ] [ ] [

States Features Aggregate States

e A general approach for passing from a feature-
based state representation to an aggregation-based
architecture

e Hard aggregation architecture based on features
is more powerful (nonlinear/piecewise constant in
the features, rather than linear)

e ... but may require many more aggregate states
to reach the same level of performance as the cor-
responding linear feature-based architecture

273



EXAMPLE III: REP. STATES/COARSE GRID

e Choose a collection of “representative” original
system states, and associate each one of them with
an aggregate state. Then “interpolate”

Original State Space
/

° . / Y2 °

\j<y3

I S

e
J3 \

Representative/Aggregate States

e Disaggregation probs. are d;; = 1 if ¢ is equal
to representative state .

e Aggregation probs. associate original system
states with convex combinations of rep. states

g~ Z¢jyy

yeA

e Well-suited for Euclidean space discretization

e Extends nicely to continuous state space, in-
cluding belief space of POMDP

274



EXAMPLE IV: REPRESENTATIVE FEATURES

e Choose a collection of “representative” subsets
of original system states, and associate each one
of them with an aggregate state

Original State Space
|

|
Swl ¢j:{:1 ] Sm2
Pjas
Dij
¢j:173 ‘

Q.9

(X

|

Aggregate States/Subsets

e (Common case: S, is a group of states with
“similar features”

e Hard aggregation is special case: Uy S, = {1,...,n}

e Aggregation with representative states is special
case: S, consists of just one state

e With rep. features, aggregation approach is a
special case of projected equation approach with
“seminorm” projection. So the T'D methods and
multistage Bellman Eq. methodology apply

275



APPROXIMATE PI BY AGGREGATION

Original
System States

O, - O,

Disaggregation Aggregation
Probabilities Probabilities
i * * Piy

9(z,u) = Z deri sz‘j(u)g(’i,u,j)
e Consider approximate PI for the original prob-
lem, with evaluation done using the aggregate prob-
lem (other possibilities exist - see the text)

e LEvaluation of policy u: J = ®R, where R =
DT, (®PR) (R is the vector of costs of aggregate
states corresponding to u). May use simulation.

e Similar form to the projected equation ®R =
II7T,(PR) (PD in place of II).

e Advantages: It has no problem with exploration
or with oscillations.

e Disadvantage: The rows of D and & must be
probability distributions. -



Q-LEARNING T

e (J-learning has two motivations:
— Dealing with multiple policies simultaneously

— Using a model-free approach [no need to know
pi;j(u), only be able to simulate them]

e The ()-factors are defined by

Q*(Zvu) — pr(u) <g(i7u7j) +aJ*(j))7 v (Zvu)

e Since J* = T'J*, we have J*(i) = min, ey ;) Q* (%, u)
so the () factors solve the equation

u' €U ()

Q*(i,w:im(u) (si.0.0)+ o min. Q) )

e (Q*(i,u) can be shown to be the unique solu-
tion of this equation. Reason: This is Bellman’s
equation for a system whose states are the original
states 1,...,n, together with all the pairs (i, u).

e Value iteration: For all (i, u)

Qli,u) = zn;pijm) (sti.0.9)+_min QG.w))

u' €U(j)

277



Q-LEARNING 11

e Use some randomization to generate sequence
of pairs (ix, ux) |all pairs (i, u) are chosen infinitely
often|. For each k, select ji according to p;, j(ux).

e ()-learning algorithm: updates Q (i, ux) by

Q ik, uk) := (1 — vk (ig, ur)) Q ik, uk)

+%(73k,uk) g(Zkauk Jk)JrOé min Q(]kau/)
u' €U (jg)

e Stepsize Vi (ix, ur) must converge to 0 at proper
rate (e.g., like 1/k).

e [Important mathematical point: In the QQ-factor
version of Bellman’s equation the order of expec-
tation and minimization is reversed relative to the
ordinary cost version of Bellman’s equation:

J — mlﬂ szj 7' U,])‘FO&J*(]))

e ()-learning can be shown to converge to true/exact
QQ-factors (sophisticated stoch. approximation proof).

e Major drawback: Large number of pairs (¢,u) -
no function approximation is used.

278



Q-FACTOR APPROXIMATIONS

e Basis function approximation for ()-factors:

~

Qi,u,r) = (i, u)r

e We can use approximate policy iteration and
LSPE/LSTD/TD for policy evaluation (exploration
issue is acute).

e Optimistic policy iteration methods are fre-
quently used on a heuristic basis.

e Example (very optimistic). At iteration k, given
ri and state/control (i, ug):

(1) Simulate next transition (ig,ix41) using the
transition probabilities p;, j(ug).

(2) Generate control ugq from

Ug+1 = arg  min - Q(iky1,u, k)
uweU (ig41)

(3) Update the parameter vector via

rr+1 = rx — (LSPE or TD-like correction)

e Unclear validity. Solid basis for aggregation
case, and for case of optimal stopping (see text).

279



6.231 DYNAMIC PROGRAMMING
LECTURE 23
LECTURE OUTLINE

Additional topics in ADP

Stochastic shortest path problems

Average cost problems

Generalizations

Basis function adaptation

Gradient-based approximation in policy space

An overview

280



REVIEW: PROJECTED BELLMAN EQUATION

e Policy Evaluation: Bellman’s equation J =1'J
is approximated the projected equation

Or = 11T (Pr)

which can be solved by a simulation-based meth-
ods, e.g., LSPE(\), LSTD()A), or TD(A). Aggre-
gation is another approach - simpler in some ways.

T(®r)

|

. Projection
! on S

]

dr = I1T(Dr)

0]

S: Subspace spanned by basis functions

Indirect method: Solving a projected
form of Bellman’s equation

e These ideas apply to other (linear) Bellman
equations, e.g., for SSP and average cost.

e I[mportant Issue: Construct simulation frame-
work where IIT [or IIT(M] is a contraction.

281



STOCHASTIC SHORTEST PATHS

e Introduce approximation subspace
S={dr|re Rs}

and for a given proper policy, Bellman’s equation
and its projected version

J=TJ =g+ PJ, Gr = 1T (Pr)
Also its \-version

Or = IITXN) (Pr), T = (1—\) Z ATt
t=0

e Question: What should be the norm of projec-
tion” How to implement it by simulation?

e Speculation based on discounted case: It should
be a weighted Fuclidean norm with weight vector
£ = (&,...,&), where & should be some type of
long-term occupancy probability of state ¢ (which
can be generated by simulation).

e But what does “long-term occupancy probabil-
ity of a state” mean in the SSP context?

e How do we generate infinite length trajectories
given that termination occurs with prob. 17

282



SIMULATION FOR SSP

e We envision simulation of trajectories up to
termination, followed by restart at state ¢ with
some fixed probabilities go(z) > 0.

e Then the “long-term occupancy probability of
a state” of ¢ is proportional to

(i) =) @), i=1,...,n,
t=0

where
gt (i) = P(ir = 1), i=1,....n, t=0,1,...

e We use the projection norm

Ml =y >4 ()’

[Note that 0 < ¢(i) < oo, but ¢ is not a prob.
distribution.]

e We can show that II7T(M) is a contraction with
respect to || - ||, (see the next slide).

e LSTD()), LSPE()M), and TD(\) are possible.

283



CONTRACTION PROPERTY FOR SSP

e We have ¢ =Y .~ gt so

oo oo
¢P=>) qP=) q=q —q
t=0 t=1

E:ﬂ@mwzﬂﬁ—@dﬁ, v j

e To verify that II7" is a contraction, we show
that there exists 8 < 1 such that || Pz||7 < 8]|z||3
for all z € Rn.

e For all z € R, we have

2
1P212=5"a() | Y pisz | <> a(d) pis2?
i=1 j=1 i=1 j=1
= Z 23 ZCI(i)pz‘j = Z(Q(i) — qO(j))ZJQ-
j=1  i=1 j=1

= [|2117 = llz[lZ, < Bll=I3

where

B =1—min qo(‘,j)

i q(j)

284



AVERAGE COST PROBLEMS

e C(onsider a single policy to be evaluated, with
single recurrent class, no transient states, and steady-
state probability vector & = (&1,...,&n).

e The average cost, denoted by 7, is

N—-1
1
1= dm G B senenn) =i v
k=0

e Bellman’s equation is J = F'J with
FJ=g—ne+ PJ

where e is the unit vector e = (1,...,1).

e The projected equation and its A-version are

Or = I1F (Pr), Or = ITFN) (Pr)

e A problem here is that F' is not a contraction
with respect to any norm (since e = Pe).

e IIF(N is a contraction w. r. to || - ||¢ assuming
that e does not belong to S and A > 0 (the case
A = 0 is exceptional, but can be handled); see the
text. LSTD(A), LSPE(A), and TD(\) are possible.

285



GENERALIZATION /UNIFICATION

e Consider approx. solution of z = T'(z), where
T(x) = Az + b, Aisnxn, beRn

by solving the projected equation y = IIT(y),
where II is projection on a subspace of basis func-
tions (with respect to some Fuclidean norm).

e We can generalize from DP to the case where
A is arbitrary, subject only to

I —IIA : invertible

Also can deal with case where I — I1A is (nearly)
singular (iterative methods, see the text).
e DBenefits of generalization:

— Unification /higher perspective for projected
equation (and aggregation) methods in ap-
proximate DP

— An extension to a broad new area of appli-
cations, based on an approx. DP perspective
e Challenge: Dealing with less structure
— Lack of contraction

— Absence of a Markov chain 266



GENERALIZED PROJECTED EQUATION

e Let Il be projection with respect to

n
1=1

where £ € R is a probability distribution with
positive components.

e If r* is the solution of the projected equation,
we have ®r* = I[I(APr* + b) or

n n

* — 3 ) Y \/ o .. Y\ ek _ h.
r argqyggg;& A(i)'r ;aw@)r bi

where ¢(i)’ denotes the ith row of the matrix ®.

e Optimality condition/equivalent form:

/
n

>_&o(0) | 0() = 3 aé() | =) &s(0)b

j=1

e The two expected values can be approximated
by simulation 267



SIMULATION MECHANISM

>

Row Sampling According to &

Column Sampling
According to P

e Row sampling: Generate sequence {ig,i1,...}
according to &, i.e., relative frequency of each row
1 18 57,
e Column sampling: Generate {(io, jo), (i1, 71), - - }
according to some transition probability matrix P
with

pij >0 if ;g # 0,

i.e., for each 7, the relative frequency of (i, j) is pi;
(connection to importance sampling)

e Row sampling may be done using a Markov
chain with transition matrix @) (unrelated to P)

e Row sampling may also be done without a
Markov chain - just sample rows according to some
known distribution & (e.g., a uniform)

288



ROW AND COLUMN SAMPLING

>

Row Sampling According to &
(May Use Markov Chain Q)

*| Column Sampling
I(lAccording to >
Markov Chain

P e |4

e Row sampling ~ State Sequence Generation in
DP. Affects:

— The projection norm.
— Whether IIA is a contraction.

e Column sampling ~ Transition Sequence Gen-
eration in DP.

— Can be totally unrelated to row sampling.
Affects the sampling/simulation error.

— “Matching” P with |A]| is beneficial (has an
effect like in importance sampling).

e Independent row and column sampling allows
exploration at will! Resolves the exploration prob-
lem that is critical in approximate policy iteration.

289



LSTD-LIKE METHOD

e Optimality condition/equivalent form of pro-
jected equation

_Zw(z') qb(z‘)—Zaz-jqﬁ(j) r*zzgiqﬁ(z)b

e The two expected values are approximated by
row and column sampling (batch 0 — ).

e We solve the linear equation

I§¢(ik) (¢(ik) ZW% ) Z¢ (k) biy

LIk

e We have ry — r*, regardless of IIA bemg a con-
traction (by law of large numbers; see next slide).

e [ssues of singularity or near-singularity of /—II.A
may be important; see the text.

e An LSPE-like method is also possible, but re-
quires that IIA is a contraction.

e Under the assumption » 7, [a;;| < 1 for all 4,
there are conditions that guarantee contraction of
IIA; see the text.

290



JUSTIFICATION W/ LAW OF LARGE NUMBERS

e We will match terms in the exact optimality
condition and the simulation-based version.

o Let ff be the relative frequency of 7 in row
sampling up to time ¢.

e We have

S Y dinelin) = Y Eeie) = Y &)
k=0 i=1 =1

HLl Z ¢(ir)biy, = Zéf¢(i)bi R Zfz‘¢(z)b
1=1 i=1

o Let p;; be the relative frequency of (i,j) in
column sampling up to time ¢.
1 t Qi -
oD Drmald GO0

_ S‘ gt pr aﬁ )/
~ 2& E ai;d(1)p(5)
i=1 =1

291



BASIS FUNCTION ADAPTATION I

e¢ An important issue in ADP is how to select
basis functions.

e A possible approach is to introduce basis func-
tions parametrized by a vector €, and optimize
over 6, i.e., solve a problem of the form

min F(J(9))
where J(6) approximates a cost vector J on the
subspace spanned by the basis functions.

e One example is

F(J(0) = 3" 176) - JO))
icl
where I is a subset of states, and J(z), ¢ € I, are
the costs of the policy at these states calculated

directly by simulation.

e Another example is

2

Y

F(J(9)) = ||7(0) = T(J (9))]

where J(6) is the solution of a projected equation.

292



BASIS FUNCTION ADAPTATION II

e Some optimization algorithm may be used to
minimize F(.J(6)) over 6.

e A challenge here is that the algorithm should
use low-dimensional calculations.

e One possibility is to use a form of random search
(the cross-entropy method); see the paper by Men-
ache, Mannor, and Shimkin (Annals of Oper. Res.,
Vol. 134, 2005)

e Another possibility is to use a gradient method.
For this it is necessary to estimate the partial
derivatives of J(6#) with respect to the components

of 6.

e It turns out that by differentiating the pro-
jected equation, these partial derivatives can be
calculated using low-dimensional operations. See
the references in the text.

293



APPROXIMATION IN POLICY SPACE 1

e C(Consider an average cost problem, where the
problem data are parametrized by a vector r, i.e.,
a cost vector g(r), transition probability matrix
P(r). Let n(r) be the (scalar) average cost per
stage, satistfying Bellman’s equation

n(r)e+ h(r) = g(r) + P(r)h(r)

where h(r) is the differential cost vector.
e Consider minimizing n(r) over r. Other than

random search, we can try to solve the problem
by a policy gradient method:

re+1 = Tk — Ve VN(rk)

e Approximate calculation of Vn(ry): If An, Ag,
AP are the changes in 7, g, P due to a small change
Ar from a given r, we have

An = ¢ (Ag+ APh),

where ¢ is the steady-state probability distribu-
tion /vector corresponding to P(r), and all the quan-
tities above are evaluated at r.

294



APPROXIMATION IN POLICY SPACE 11

e Proof of the gradient formula: We have, by “dif-
ferentiating” Bellman’s equation,

An(r)-e+Ah(r) = Ag(r)+AP(r)h(r)+P(r)Ah(r)
By left-multiplying with &/,
¢ An(r)-e+& Ah(r) = & (Ag(r)+AP(r)h(r)) +&'P(r) Ah(r)

Since £’An(r) - e = An(r) and & = &' P(r), this
equation simplifies to

An = ¢(Ag + APh)

e Since we don’t know &, we cannot implement a
gradient-like method for minimizing n(r). An al-
ternative is to use “sampled gradients”, i.e., gener-
ate a simulation trajectory (io,%1,...), and change
r once in a while, in the direction of a simulation-

based estimate of £/(Ag + APh).

e Important Fact: An can be viewed as an ex-
pected value!

e Much research on this subject, see the text.

295



6.231 DYNAMIC PROGRAMMING

OVERVIEW-EPILOGUE

e Finite horizon problems
— Deterministic vs Stochastic

— Perfect vs Imperfect State Info

e Infinite horizon problems
— Stochastic shortest path problems
— Discounted problems

— Average cost problems

296



FINITE HORIZON PROBLEMS - ANALYSIS

e Perfect state info

— A general formulation - Basic problem, DP
algorithm

— A few nice problems admit analytical solu-
tion
e Imperfect state info

— Reduction to perfect state info - Sufficient
statistics

— Very few nice problems admit analytical so-
lution

— Finite-state problems admit reformulation as
perfect state info problems whose states are
prob. distributions (the belief vectors)

297



FINITE HORIZON PROBS - EXACT COMP. SOL.

e Deterministic finite-state problems
— Equivalent to shortest path
— A wealth of fast algorithms
— Hard combinatorial problems are a special
case (but # of states grows exponentially)
e Stochastic perfect state info problems
— The DP algorithm is the only choice

— Curse of dimensionality is big bottleneck
e Imperfect state info problems
— Forget it!

— Only small examples admit an exact compu-
tational solution

298



FINITE HORIZON PROBS - APPROX. SOL.

e Many techniques (and combinations thereof) to
choose from
e Simplification approaches

— Certainty equivalence

— Problem simplification

— Rolling horizon

— Aggregation - Coarse grid discretization

e Limited lookahead combined with:
— Rollout
— MPC (an important special case)

— Feature-based cost function approximation

e Approximation in policy space
— Gradient methods

— Random search

299



INFINITE HORIZON PROBLEMS - ANALYSIS

e A more extensive theory

e Bellman’s equation

e Optimality conditions

e Contraction mappings

e A few nice problems admit analytical solution

e Idiosynchracies of problems with no underlying
contraction

e Idiosynchracies of average cost problems

e Llegant analysis

300



INF.

HORIZON PROBS - EXACT COMP. SOL.

Value iteration

— Variations (Gauss-Seidel, asynchronous, etc)

Policy iteration

— Variations (asynchronous, based on value it-
eration, optimistic, etc)

Linear programming
Elegant algorithmic analysis

Curse of dimensionality is major bottleneck

301



INFINITE HORIZON PROBS - ADP

e Approximation in value space (over a subspace
of basis functions)

e Approximate policy evaluation
— Direct methods (fitted VI)

— Indirect methods (projected equation meth-
ods, complex implementation issues)

— Aggregation methods (simpler implementa-
tion/many basis functions tradeoft)
e (Q-Learning (model-free, simulation-based)
— Exact Q-factor computation
— Approximate Q-factor computation (fitted VI)
— Aggregation-based Q-learning
— Projected equation methods for opt. stop-
pmg
e Approximate LP
e Rollout
e Approximation in policy space
— Gradient methods
— Random search

302



MIT OpenCourseWare
http://ocw.mit.edu

6.231 Dynamic Programming and Stochastic Control
Fall 2015

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.



http://ocw.mit.edu
http://ocw.mit.edu/terms



