6.231 DYNAMIC PROGRAMMING

LECTURE 23

LECTURE OUTLINE

- Additional topics in ADP
- Stochastic shortest path problems
- Average cost problems
- Generalizations
- Basis function adaptation
- Gradient-based approximation in policy space
- An overview

REVIEW: PROJECTED BELLMAN EQUATION

- Policy Evaluation: Bellman's equation $J=T J$ is approximated the projected equation

$$
\Phi r=\Pi T(\Phi r)
$$

which can be solved by a simulation-based methods, e.g., $\operatorname{LSPE}(\lambda), \operatorname{LSTD}(\lambda)$, or $\operatorname{TD}(\lambda)$. Aggregation is another approach - simpler in some ways.

Indirect method: Solving a projected form of Bellman's equation

- These ideas apply to other (linear) Bellman equations, e.g., for SSP and average cost.
- Important Issue: Construct simulation framework where ΠT [or $\Pi T^{(\lambda)}$] is a contraction.

STOCHASTIC SHORTEST PATHS

- Introduce approximation subspace

$$
S=\left\{\Phi r \mid r \in \Re^{s}\right\}
$$

and for a given proper policy, Bellman's equation and its projected version

$$
J=T J=g+P J, \quad \Phi r=\Pi T(\Phi r)
$$

Also its λ-version

$$
\Phi r=\Pi T^{(\lambda)}(\Phi r), \quad T^{(\lambda)}=(1-\lambda) \sum_{t=0}^{\infty} \lambda^{t} T^{t+1}
$$

- Question: What should be the norm of projection? How to implement it by simulation?
- Speculation based on discounted case: It should be a weighted Euclidean norm with weight vector $\xi=\left(\xi_{1}, \ldots, \xi_{n}\right)$, where ξ_{i} should be some type of long-term occupancy probability of state i (which can be generated by simulation).
- But what does "long-term occupancy probability of a state" mean in the SSP context?
- How do we generate infinite length trajectories given that termination occurs with prob. 1?

SIMULATION FOR SSP

- We envision simulation of trajectories up to termination, followed by restart at state i with some fixed probabilities $q_{0}(i)>0$.
- Then the "long-term occupancy probability of a state" of i is proportional to

$$
q(i)=\sum_{t=0}^{\infty} q_{t}(i), \quad i=1, \ldots, n,
$$

where

$$
q_{t}(i)=P\left(i_{t}=i\right), \quad i=1, \ldots, n, t=0,1, \ldots
$$

- We use the projection norm

$$
\|J\|_{q}=\sqrt{\sum_{i=1}^{n} q(i)(J(i))^{2}}
$$

[Note that $0<q(i)<\infty$, but q is not a prob. distribution.]

- We can show that $\Pi T^{(\lambda)}$ is a contraction with respect to $\|\cdot\|_{q}$ (see the next slide).
- $\operatorname{LSTD}(\lambda), \operatorname{LSPE}(\lambda)$, and $\operatorname{TD}(\lambda)$ are possible.

CONTRACTION PROPERTY FOR SSP

- We have $q=\sum_{t=0}^{\infty} q_{t}$ so

$$
q^{\prime} P=\sum_{t=0}^{\infty} q_{t}^{\prime} P=\sum_{t=1}^{\infty} q_{t}^{\prime}=q^{\prime}-q_{0}^{\prime}
$$

or

$$
\sum_{i=1}^{n} q(i) p_{i j}=q(j)-q_{0}(j), \quad \forall j
$$

- To verify that ΠT is a contraction, we show that there exists $\beta<1$ such that $\|P z\|_{q}^{2} \leq \beta\|z\|_{q}^{2}$ for all $z \in \Re^{n}$.
- For all $z \in \Re^{n}$, we have

$$
\begin{aligned}
\|P z\|_{q}^{2} & =\sum_{i=1}^{n} q(i)\left(\sum_{j=1}^{n} p_{i j} z_{j}\right)^{2} \leq \sum_{i=1}^{n} q(i) \sum_{j=1}^{n} p_{i j} z_{j}^{2} \\
& =\sum_{j=1}^{n} z_{j}^{2} \sum_{i=1}^{n} q(i) p_{i j}=\sum_{j=1}^{n}\left(q(j)-q_{0}(j)\right) z_{j}^{2} \\
& =\|z\|_{q}^{2}-\|z\|_{q_{0}}^{2} \leq \beta\|z\|_{q}^{2}
\end{aligned}
$$

where

$$
\beta=1-\min _{j} \frac{q_{0}(j)}{q(j)}
$$

AVERAGE COST PROBLEMS

- Consider a single policy to be evaluated, with single recurrent class, no transient states, and steadystate probability vector $\xi=\left(\xi_{1}, \ldots, \xi_{n}\right)$.
- The average cost, denoted by η, is

$$
\eta=\lim _{N \rightarrow \infty} \frac{1}{N} E\left\{\sum_{k=0}^{N-1} g\left(x_{k}, x_{k+1}\right) \mid x_{0}=i\right\}, \quad \forall i
$$

- Bellman's equation is $J=F J$ with

$$
F J=g-\eta e+P J
$$

where e is the unit vector $e=(1, \ldots, 1)$.

- The projected equation and its λ-version are

$$
\Phi r=\Pi F(\Phi r), \quad \Phi r=\Pi F^{(\lambda)}(\Phi r)
$$

- A problem here is that F is not a contraction with respect to any norm (since $e=P e$).
- $\Pi F^{(\lambda)}$ is a contraction w. r. to $\|\cdot\|_{\xi}$ assuming that e does not belong to S and $\lambda>0$ (the case $\lambda=0$ is exceptional, but can be handled); see the text. $\operatorname{LSTD}(\lambda), \operatorname{LSPE}(\lambda)$, and $\operatorname{TD}(\lambda)$ are possible.

GENERALIZATION/UNIFICATION

- Consider approx. solution of $x=T(x)$, where

$$
T(x)=A x+b, \quad A \text { is } n \times n, \quad b \in \Re^{n}
$$

by solving the projected equation $y=\Pi T(y)$, where Π is projection on a subspace of basis functions (with respect to some Euclidean norm).

- We can generalize from DP to the case where A is arbitrary, subject only to
$I-\Pi A$: invertible
Also can deal with case where $I-\Pi A$ is (nearly) singular (iterative methods, see the text).
- Benefits of generalization:
- Unification/higher perspective for projected equation (and aggregation) methods in approximate DP
- An extension to a broad new area of applications, based on an approx. DP perspective
- Challenge: Dealing with less structure
- Lack of contraction
- Absence of a Markov chain

GENERALIZED PROJECTED EQUATION

- Let Π be projection with respect to

$$
\|x\|_{\xi}=\sqrt{\sum_{i=1}^{n} \xi_{i} x_{i}^{2}}
$$

where $\xi \in \Re^{n}$ is a probability distribution with positive components.

- If r^{*} is the solution of the projected equation, we have $\Phi r^{*}=\Pi\left(A \Phi r^{*}+b\right)$ or
$r^{*}=\arg \min _{r \in \Re^{s}} \sum_{i=1}^{n} \xi_{i}\left(\phi(i)^{\prime} r-\sum_{j=1}^{n} a_{i j} \phi(j)^{\prime} r^{*}-b_{i}\right)^{2}$
where $\phi(i)^{\prime}$ denotes the i th row of the matrix Φ.
- Optimality condition/equivalent form:

$$
\sum_{i=1}^{n} \xi_{i} \phi(i)\left(\phi(i)-\sum_{j=1}^{n} a_{i j} \phi(j)\right)^{\prime} r^{*}=\sum_{i=1}^{n} \xi_{i} \phi(i) b_{i}
$$

- The two expected values can be approximated by simulation

SIMULATION MECHANISM

Row Sampling According to ξ

- Row sampling: Generate sequence $\left\{i_{0}, i_{1}, \ldots\right\}$ according to ξ, i.e., relative frequency of each row i is ξ_{i}
- Column sampling: Generate $\left\{\left(i_{0}, j_{0}\right),\left(i_{1}, j_{1}\right), \ldots\right\}$ according to some transition probability matrix P with

$$
p_{i j}>0 \quad \text { if } \quad a_{i j} \neq 0,
$$

i.e., for each i, the relative frequency of (i, j) is $p_{i j}$ (connection to importance sampling)

- Row sampling may be done using a Markov chain with transition matrix Q (unrelated to P)
- Row sampling may also be done without a Markov chain - just sample rows according to some known distribution ξ (e.g., a uniform)

ROW AND COLUMN SAMPLING

Row Sampling According to ξ (May Use Markov Chain Q)

- Row sampling ~ State Sequence Generation in DP. Affects:
- The projection norm.
- Whether ΠA is a contraction.
- Column sampling \sim Transition Sequence Generation in DP.
- Can be totally unrelated to row sampling. Affects the sampling/simulation error.
- "Matching" P with $|A|$ is beneficial (has an effect like in importance sampling).
- Independent row and column sampling allows exploration at will! Resolves the exploration problem that is critical in approximate policy iteration.

LSTD-LIKE METHOD

- Optimality condition/equivalent form of projected equation

$$
\sum_{i=1}^{n} \xi_{i} \phi(i)\left(\phi(i)-\sum_{j=1}^{n} a_{i j} \phi(j)\right)^{\prime} r^{*}=\sum_{i=1}^{n} \xi_{i} \phi(i) b_{i}
$$

- The two expected values are approximated by row and column sampling (batch $0 \rightarrow t$).
- We solve the linear equation

$$
\sum_{k=0}^{t} \phi\left(i_{k}\right)\left(\phi\left(i_{k}\right)-\frac{a_{i_{k} j_{k}}}{p_{i_{k} j_{k}}} \phi\left(j_{k}\right)\right)^{\prime} r_{t}=\sum_{k=0}^{t} \phi\left(i_{k}\right) b_{i_{k}}
$$

- We have $r_{t} \rightarrow r^{*}$, regardless of ΠA being a contraction (by law of large numbers; see next slide).
- Issues of singularity or near-singularity of $I-\Pi A$ may be important; see the text.
- An LSPE-like method is also possible, but requires that ΠA is a contraction.
- Under the assumption $\sum_{j=1}^{n}\left|a_{i j}\right| \leq 1$ for all i, there are conditions that guarantee contraction of ΠA; see the text.

JUSTIFICATION W/ LAW OF LARGE NUMBERS

- We will match terms in the exact optimality condition and the simulation-based version.
- Let $\hat{\xi}_{i}^{t}$ be the relative frequency of i in row sampling up to time t.
- We have

$$
\begin{aligned}
\frac{1}{t+1} \sum_{k=0}^{t} \phi\left(i_{k}\right) \phi\left(i_{k}\right)^{\prime} & =\sum_{i=1}^{n} \hat{\xi}_{i}^{t} \phi(i) \phi(i)^{\prime} \approx \sum_{i=1}^{n} \xi_{i} \phi(i) \phi(i)^{\prime} \\
\frac{1}{t+1} \sum_{k=0}^{t} \phi\left(i_{k}\right) b_{i_{k}} & =\sum_{i=1}^{n} \hat{\xi}_{i}^{t} \phi(i) b_{i} \approx \sum_{i=1}^{n} \xi_{i} \phi(i) b_{i}
\end{aligned}
$$

- Let $\hat{p}_{i j}^{t}$ be the relative frequency of (i, j) in column sampling up to time t.

$$
\begin{aligned}
& \frac{1}{t+1} \sum_{k=0}^{t} \frac{a_{i_{k} j_{k}}}{p_{i_{k} j_{k}}} \phi\left(i_{k}\right) \phi\left(j_{k}\right)^{\prime} \\
& \quad=\sum_{i=1}^{n} \hat{\xi}_{i}^{t} \sum_{j=1}^{n} \hat{p}_{i j}^{t} \frac{a_{i j}}{p_{i j}} \phi(i) \phi(j)^{\prime} \\
& \quad \approx \sum_{i=1}^{n} \xi_{i} \sum_{j=1}^{n} a_{i j} \phi(i) \phi(j)^{\prime}
\end{aligned}
$$

BASIS FUNCTION ADAPTATION I

- An important issue in ADP is how to select basis functions.
- A possible approach is to introduce basis functions parametrized by a vector θ, and optimize over θ, i.e., solve a problem of the form

$$
\min _{\theta \in \Theta} F(\tilde{J}(\theta))
$$

where $\tilde{J}(\theta)$ approximates a cost vector J on the subspace spanned by the basis functions.

- One example is

$$
F(\tilde{J}(\theta))=\sum_{i \in I}|J(i)-\tilde{J}(\theta)(i)|^{2}
$$

where I is a subset of states, and $J(i), i \in I$, are the costs of the policy at these states calculated directly by simulation.

- Another example is

$$
F(\tilde{J}(\theta))=\|\tilde{J}(\theta)-T(\tilde{J}(\theta))\|^{2}
$$

where $\tilde{J}(\theta)$ is the solution of a projected equation.

BASIS FUNCTION ADAPTATION II

- Some optimization algorithm may be used to minimize $F(\tilde{J}(\theta))$ over θ.
- A challenge here is that the algorithm should use low-dimensional calculations.
- One possibility is to use a form of random search (the cross-entropy method); see the paper by Menache, Mannor, and Shimkin (Annals of Oper. Res., Vol. 134, 2005)
- Another possibility is to use a gradient method. For this it is necessary to estimate the partial derivatives of $\tilde{J}(\theta)$ with respect to the components of θ.
- It turns out that by differentiating the projected equation, these partial derivatives can be calculated using low-dimensional operations. See the references in the text.

APPROXIMATION IN POLICY SPACE I

- Consider an average cost problem, where the problem data are parametrized by a vector r, i.e., a cost vector $g(r)$, transition probability matrix $P(r)$. Let $\eta(r)$ be the (scalar) average cost per stage, satisfying Bellman's equation

$$
\eta(r) e+h(r)=g(r)+P(r) h(r)
$$

where $h(r)$ is the differential cost vector.

- Consider minimizing $\eta(r)$ over r. Other than random search, we can try to solve the problem by a policy gradient method:

$$
r_{k+1}=r_{k}-\gamma_{k} \nabla \eta\left(r_{k}\right)
$$

- Approximate calculation of $\nabla \eta\left(r_{k}\right)$: If $\Delta \eta, \Delta g$, ΔP are the changes in η, g, P due to a small change Δr from a given r, we have

$$
\Delta \eta=\xi^{\prime}(\Delta g+\Delta P h)
$$

where ξ is the steady-state probability distribution/vector corresponding to $P(r)$, and all the quantities above are evaluated at r.

APPROXIMATION IN POLICY SPACE II

- Proof of the gradient formula: We have, by "differentiating" Bellman's equation,
$\Delta \eta(r) \cdot e+\Delta h(r)=\Delta g(r)+\Delta P(r) h(r)+P(r) \Delta h(r)$
By left-multiplying with ξ^{\prime},
$\xi^{\prime} \Delta \eta(r) \cdot e+\xi^{\prime} \Delta h(r)=\xi^{\prime}(\Delta g(r)+\Delta P(r) h(r))+\xi^{\prime} P(r) \Delta h(r)$
Since $\xi^{\prime} \Delta \eta(r) \cdot e=\Delta \eta(r)$ and $\xi^{\prime}=\xi^{\prime} P(r)$, this equation simplifies to

$$
\Delta \eta=\xi^{\prime}(\Delta g+\Delta P h)
$$

- Since we don't know ξ, we cannot implement a gradient-like method for minimizing $\eta(r)$. An alternative is to use "sampled gradients", i.e., generate a simulation trajectory $\left(i_{0}, i_{1}, \ldots\right)$, and change r once in a while, in the direction of a simulationbased estimate of $\xi^{\prime}(\Delta g+\Delta P h)$.
- Important Fact: $\Delta \eta$ can be viewed as an expected value!
- Much research on this subject, see the text.

6.231 DYNAMIC PROGRAMMING

OVERVIEW-EPILOGUE

- Finite horizon problems
- Deterministic vs Stochastic
- Perfect vs Imperfect State Info
- Infinite horizon problems
- Stochastic shortest path problems
- Discounted problems
- Average cost problems

FINITE HORIZON PROBLEMS - ANALYSIS

- Perfect state info
- A general formulation - Basic problem, DP algorithm
- A few nice problems admit analytical solution
- Imperfect state info
- Reduction to perfect state info - Sufficient statistics
- Very few nice problems admit analytical solution
- Finite-state problems admit reformulation as perfect state info problems whose states are prob. distributions (the belief vectors)

FINITE HORIZON PROBS - EXACT COMP. SOL.

- Deterministic finite-state problems
- Equivalent to shortest path
- A wealth of fast algorithms
- Hard combinatorial problems are a special case (but \# of states grows exponentially)
- Stochastic perfect state info problems
- The DP algorithm is the only choice
- Curse of dimensionality is big bottleneck
- Imperfect state info problems
- Forget it!
- Only small examples admit an exact computational solution

FINITE HORIZON PROBS - APPROX. SOL.

- Many techniques (and combinations thereof) to choose from
- Simplification approaches
- Certainty equivalence
- Problem simplification
- Rolling horizon
- Aggregation - Coarse grid discretization
- Limited lookahead combined with:
- Rollout
- MPC (an important special case)
- Feature-based cost function approximation
- Approximation in policy space
- Gradient methods
- Random search

INFINITE HORIZON PROBLEMS - ANALYSIS

- A more extensive theory
- Bellman's equation
- Optimality conditions
- Contraction mappings
- A few nice problems admit analytical solution
- Idiosynchracies of problems with no underlying contraction
- Idiosynchracies of average cost problems
- Elegant analysis

INF. HORIZON PROBS - EXACT COMP. SOL.

- Value iteration
- Variations (Gauss-Seidel, asynchronous, etc)
- Policy iteration
- Variations (asynchronous, based on value iteration, optimistic, etc)
- Linear programming
- Elegant algorithmic analysis
- Curse of dimensionality is major bottleneck

INFINITE HORIZON PROBS - ADP

- Approximation in value space (over a subspace of basis functions)
- Approximate policy evaluation
- Direct methods (fitted VI)
- Indirect methods (projected equation methods, complex implementation issues)
- Aggregation methods (simpler implementation/many basis functions tradeoff)
- Q-Learning (model-free, simulation-based)
- Exact Q-factor computation
- Approximate Q-factor computation (fitted VI)
- Aggregation-based Q-learning
- Projected equation methods for opt. stopping
- Approximate LP
- Rollout
- Approximation in policy space
- Gradient methods
- Random search

MIT OpenCourseWare
http://ocw.mit.edu

6.231 Dynamic Programming and Stochastic Control

Fall 2015

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

