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Chapter 12 

Modal Decomposition of 

State-Space Models 

12.1 Introduction 

The solutions obtained in previous chapters, whether in time domain or transform domain, 

can be further decomposed to give a geometric understanding of the solution. The modal 

decomposition expresses the state equation as a linear combination of the various modes of 

the system and shows precisely how the initial conditions as well as the inputs impact these 

modes. 

12.2 The Transfer Function Matrix 

It is evident from (10.20) that the transfer function matrix for the system, which relates the 

input transform to the output transform when the initial condition is zero, is given by 

H(z) � C(zI ; A);1B + D: (12.1) 

For a multi-input, multi-output (MIMO) system with m inputs and p outputs, this results in 

a p�m matrix of rational functions of z. In order to get an idea of the nature of these rational 

functions, we express the matrix inverse as the adjoint matrix divided by the determinant, as 

follows: 

1 

H(z) � 

det(zI ; A) 

C [adj(zI ; A)]  B + D: 

nThe determinant det(zI ; A) in the denominator is an nth-order monic (i.e. coe�cient of z 

is 1) polynomial in z, known as the characteristic polynomial of A and denoted by a(z). The 


 



entries of the adjoint matrix (the cofactors) are computed from minors of (zI ; A), which are 

polynomials of degree less than n. Hence the entries of the matrices 

(zI ; A);1 � 

det(zI 

1 

; A)
adj(zI ; A) 

and 

1 

H(z) ; D � 

det(zI ; A) 

Cadj(zI ; A)B 

are strictly proper, i.e. have numerator degree strictly less than their denominator degree. 

With the D term added in, H(z) b ecomes proper that is all entries have numerator degree 

less than or equal to the degree of the denominator. For jzj % 1, H(z) ! D. 

The polynomial a(z) forms the denominators of all the entries of (zI ; A);1 and H(z), 

except that in some, or even all, of the entries there may be cancellations of common factors 

that occur between a(z) and the respective numerators. We shall have a lot more to say later 

about these cancellations and their relation to the concepts of reachability (or controllability) 

and observability. To compute the inverse transform of (zI ; A);1 (which is the sequence 

Ak;1) and the inverse transform of H(z) (which is a matrix sequence whose components are 

the zero-state unit sample responses from each input to each output), we need to �nd the 

inverse transform of rationals whose denominator is a(z) (apart from any cancellations). The 

roots of a(z) | also termed the characteristic roots or natural frequencies of the system, thus 

play a critical role in determining the nature of the solution. A fuller picture will emerge as 

we proceed. 

Multivariable Poles and Zeros 

You are familiar with the de�nitions of poles, zeros, and their multiplicities for the scalar 

transfer functions associated with single-input, single-output (SISO) LTI systems. For the 

case of the p � m transfer function matrix H(z) that describes the zero-state input/output 

behavior of an m-input, p-output LTI system, the de�nitions of poles and zeros are more 

subtle. We include some preliminary discussion here, but will leave further elaboration for 

later in the course. 

It is clear what we would want our eventual de�nitions of MIMO poles and zeros to 

specialize to in the case where H(z) is nonzero only in its diagonal positions, because this 

corresponds to completely decoupled scalar transfer functions. For this diagonal case, we 

would evidently like to say that the poles of H(z) are the poles of the individual diagonal 

entries of H(z), and similarly for the zeros. For example, given � � 

z + 2 z 

H(z) � diagonal � 

(z + 0:5)2 (z + 2)(z + 0:5) 

we would say that H(z) has poles of multiplicity 2 and 1 at z � ;0:5, and a pole of multiplicity 

1 at z � ;2� and that it has zeros of multiplicity 1 at ;2, at z � 0, and at z � 1. Note that 


 



in the MIMO case we can have poles and zeros at the same frequency (e.g. those at ;2 in 

the above example), without any cancellation! Also note that a pole or zero is not necessarily 

characterized by a single multiplicity� we may instead have a set of multiplicity indices (e.g. 

as needed to describe the pole at ;0:5 in the above example). The diagonal case makes clear 

that we do not want to de�ne a pole or zero location of H(z) in the general case to be a 

frequency where all entries of H(z) respectively have poles or zeros. 

For a variety of reasons, the appropriate de�nition of a pole location is as follows: 

�	 Pole Location: H(z) has a pole at a frequency p0 

if some entry of H(z) has a pole at 

z � p0. 

The full de�nition (which we will present later in the course) also shows us how to determine 

the set of multiplicities associated with each pole frequency. Similarly, it turns out that the 

appropriate de�nition of a zero location is as follows: 

�	 Zero Location: H(z) has a zero at a frequency �0 

if the rank of H(z) drops at z � �0. 

Again, the full de�nition also permits us to determine the set of multiplicities associated with 

each zero frequency. The determination of whether or not the rank of H(z) drops at some 

value of z is complicated by the fact that H(z) may also have a pole at that value of z� 

however, all of this can be sorted out very nicely. 

12.3 Similarity Transformations 

Suppose we have characterized a given dynamic system via a particular state-space represen-
tation, say with state variables x1� x2� � � � � xn. The evolution of the system then corresponds 

to a trajectory of points in the state space, described by the succession of values taken by the 

state variables. In other words, the state variables may be seen as constituting the coordinates 

in terms of which we have chosen to describe the motion in the state space. 

We are free, of course, to choose alternative coordinate bases | i.e., alternative state 

variables | to describe the evolution of the system. This evolution is not changed by the 

choice of coordinates� only the description of the evolution changes its form. For instance, in 

the LTI circuit example in the previous chapter, we could have used iL 

;vC 

and iL 

+vC 

instead 

of iL 

and vC 

. The information in one set is identical with that in the other, and the existence 

of a state-space description with one set implies the existence of a state-space description with 

the other, as we now show more concretely and more generally. The �exibility to choose an 

appropriate coordinate system can be very valuable, and we will �nd ourselves invoking such 

coordinate changes very often. 

Given that we have a state vector x, suppose we de�ne a constant invertible linear 

mapping from x to r, as follows: 

r � T 

;1 x � x � T r:	 (12.2) 

Since T is invertible, this maps each trajectory x(k) to a unique trajectory r(k), and vice versa. 

We refer to such a transformation as a similarity transformation. The matrix T embodies 


 



the details of the transformation from x coordinates to r coordinates | it is easy to see from 

(12.2) that the columns of T are the representations of the standard unit vectors of r in the 

coordinate system of x, which is all that is needed to completely de�ne the new coordinate 

system. 

Substituting for x(k) in the standard (LTI version of the) state-space model (10.1), we 

have � � 

T r(k + 1) � A T r(k) + Bu(k) (12.3) � � 

y(k) � C T r(k) + Du(k): (12.4) 

or 

r(k + 1) � (T 

;1AT ) r(k) + (T 

;1B) u(k) (12.5) 

� Ab r(k) + Bb u(k) (12.6) 

y(k) � (CT ) r(k) + Du(k) (12.7) 

� Cb r(k) + Du(k) (12.8) 

We now have a new representation of the system dynamics� it is said to be similar to the 

original representation. It is critical to understand, however, that the dynamic properties of 

the model are not at all a�ected by this coordinate change in the state space. In particular, 

the mapping from u(k) to y(k), i.e. the input/output map, is unchanged by a similarity 

transformation. 

12.4 Solution in Modal Coordinates 

The proper choice of a similarity transformation may yield a new system model that will be 

more suitable for analytical purposes. One such transformation brings the system to what are 

known as modal coordinates. We shall describe this transformation now for the case where 

the matrix A in the state-space model can be diagonalized, in a sense to be de�ned below� we 

leave the general case for later. 

Modal coordinates are built around the eigenvectors of A. To get a sense for why the 

eigenvectors may be involved in obtaining a simple choice of coordinates for studying the 

dynamics of the system, let us examine the possibility of �nding a solution of the form 

x(k) � �kv � v 6� 0 (12.9) 

for the undriven LTI system 

x(k + 1) � Ax(k) (12.10) 

Substituting (12.9) in (12.10), we �nd the requisite condition to be that 

(�I ; A) v � 0 (12.11) 



i.e., that � be an eigenvalue of A, and v an associated eigenvector. Note from (12.11) that 

multiplying any eigenvector by a nonzero scalar again yields an eigenvector, so eigenvectors 

are only de�ned up to a nonzero scaling� any convenient scaling or normalization can be used. 

In other words, (12.9) is a solution of the undriven system i� � is one of the n roots �i 

of the 

characteristic polynomial 

a(z) � det(zI ; A) � z 

n + an;1z 

n;1 + � � � + a0 

(12.12) 

and v is a corresponding eigenvector vi. A solution of the form x(k) � �i
kvi 

is referred to as a 

mode of the system, in this case the ith mode. The corresponding �i 

is the ith modal frequency 

or natural frequency, and vi 

is the corresponding modal shape. Note that we can excite just 

the ith mode by ensuring that the initial condition is x(0) � �0 

i 

vi 

� vi. The ensuing motion 

is then con�ned to the direction of vi, with a scaling by �i 

at each step. 

It can be shown fairly easily that eigenvectors associated with distinct eigenvalues are 

(linearly) independent, i.e. none of them can be written as a weighted linear combination of 

the remaining ones. Thus, if the n eigenvalues of A are distinct, then the n corresponding 

eigenvectors vi 

are independent, and can actually form a basis for the state-space. Distinct 

eigenvalues are not necessary, however, to ensure that there exists a selection of n independent 

eigenvectors. In any case, we shall restrict ourselves for now to the case where | because of 

distinct eigenvalues or otherwise | the matrix A has n independent eigenvectors. Such an 

A is termed diagonalizable (for a reason that will b ecome evident shortly), or non-defective. 

There do exist matrices that are not diagonalizable, as we shall see when we examine the 

Jordan form in detail later in this course. 

Because (12.10) is linear, a weighted linear combination of modal solutions will satisfy 

it too, so 

nX 

x(k) � �ivi�
k
i 

(12.13) 

i�1 

will be a solution of (12.10) for arbitrary weights �i, with initial condition 

nX 

x(0) � �ivi 

(12.14) 

i�1 

Since the n eigenvectors vi 

are independent under our assumption of diagonalizable A, the 

right side of (12.14) can be made equal to any desired x(0) by proper choice of the coe�cients 

�i, and these coe�cients are unique. Hence specifying the initial condition of the undriven 

system (12.10) speci�es the �i 

via (12.14) and thus, via (12.13), speci�es the response of the 

undriven system. We refer to the expression in (12.13) as the modal decomposition of the 

undriven response. Note that the contribution to the modal decomposition from a conjugate 

pair of eigenvalues � and �� will be a real term of the form �v�k + ��v���k . 

From ( 12.14), it follows that � � V 

;1x(0), where � is a vector with components �i. Let 

W � V 

;1, and wi 

0 be the ith row of W , then 

nX 

x(k) � �ki 

viwi
0 x(0) (12.15) 

i�1 


 



It easy to see that wi 

is a left eigenvector corresponding to the eigenvalue �i. The above 

modal decomposition of the undriven system is the same as obtaining the diadic form of Ak . 

The contribution of x(0) to the ith mode is captured in the term wi
0x(0). 

Before proceeding to examine the full response of a linear time-invariant model in modal 

terms, it is worth noting that the preceding results already allow us to obtain a precise 

condition for asymptotic stability of the system, at least in the case of diagonalizable A (it 

turns out that the condition below is the right one even for the general case). Recalling the 

de�nition in Example 10.1, we see immediately from the modal decomposition that the LTI 

system (12.10) is asymptotically stable i� j�ij � 1 for all 1 � i � n, i.e. i� all the natural 

frequencies of the system are within the unit circle. Since it is certainly possible to have this 

condition hold even when kAk is arbitrarily greater than 1, we see that the su�cient condition 

given in Example 1 is indeed rather weak, at least for the time-invariant case. 

Let us turn now to the LTI version of the full system in (10.1). Rather than approach-
ing its modal solution in the same style as was done for the undriven case, we shall (for a 

di�erent point of view) approach it via a similarity transformation to modal coordinates, i.e., 

to coordinates de�ned by the eigenvectors fvig of the system. Consider using the similarity 

transformation 

x(k) � V r(k) (12.16) 

where the ith column of the n � n matrix V is the ith eigenvector, vi: �� 

V � v1 

v2 

� � � vn 

(12.17) 

We refer to V as the modal matrix. Under our assumption of diagonalizable A, the eigenvec-
tors are independent, so V is guaranteed to be invertible, and (12.16) therefore does indeed 

constitute a similarity transformation. We refer to this similarity transformation as a modal 

transformation, and the variables ri(k) de�ned through (12.16) are termed modal variables or 

modal coordinates. What makes this transformation interesting and useful is the fact that the 

state evolution matrix A now transforms to a diagonal matrix �: 32 

V 

;1AV � diagonal f�1� � � � � �ng � 

66664


�1 

0 � � � 0 

0 �2 

� � � 0 

. . . 

. . . . . 

77775


� � (12.18)
 


 . . 

. . 
 

0 0 � � � �n 

The easiest way to verify this is to establish the equivalent condition that AV � V �, which 

in turn is simply the equation (12.11), written for i � 1� � � � � n and stacked up in matrix form. 

The reason for calling A \diagonalizable" when it has a full set of independent eigenvectors 

is now apparent. 

Under this modal transformation, the undriven system is transformed into n decoupled, 

scalar equations: 

ri(k + 1) � �iri(k) (12.19) 


 



for i � 1� 2� : : : � n. Each of these is trivial to solve: we have ri(k) � �i
k ri(0). Combining this 

with (12.16) yields (12.13) again, but with the additional insight that 

�i 

� ri(0) (12.20) 

Applying the modal transformation (12.16) to the full system, it is easy to see that the 

transformed system takes the following form, which is once again decoupled into n parallel 

scalar subsystems: 

ri(k + 1) � �iri(k) + �iu(k) � i � 1� 2� : : : � n (12.21) 

y(k) � �1r1(k) + � � � + �nrn(k) + Du(k) (12.22) 

where the �i 

and �i 

are de�ned via 2
 3
 

�1 

V 

;1B �

66664


�2 

. . . 

77775


ih 

� CV � �1 

�2 

� � � �n 

(12.23) 


 
 

�n 

The scalar equations above can be solved explicitly by elementary methods (compare also 

with the expression in (22.2): 

}|}
0 {z

ZSR 

where \ZIR" denotes the zero-input response, and \ZSR" the zero-state response. From the 

ri(k) � 

k 1;X 

�ki 

ri(0) + �ki 

;`;1 |
 {z
ZIR 

�i 

u(`) (12.24) 

preceding expression, one can obtain an expression for y(k). Also, substituting (12.24) in 

(12.16), we can derive a corresponding modal representation for the original state vector x(k). 

We leave you to write out these details. 

Finally, the same concepts hold for CT systems. We leave the details as an exercise. 

Example 12.1 

Consider the following system: #"#"#"#" 

x_1 

0 1 x1 

1 

� + u (12.25)
x_2 

8 ;2 x2 

1 

We will consider the modal decomposition of this system for the zero input re-
sponse. The eigenvalues of A are -4 and 2 and the associated eigenvectors are 

[ 1 ;4 ]0 and [ 1 2 ]0: The modal matrix is constructed from the eigenvectors 

above: � ! 

1 1 

V � ;4 2 

(12.26) 



Its inverse is given by "
 #
 

W � V 

;1 �
1 2 ;1 

: 

6 4 1 

It follows that: #"#" 

W AV � � � 

�1 

0 

0 

�2 

� 

;4 

0 

0 

2 

: 

Now let's de�ne r in modal coordinate as 

x(t) � Tr ! r(t) � T 

;1 x(t):
 

Then in terms of r, the original system can be transformed into the following:
 #"#"#" 

r_1 � 

;4 0 r1 :	 (12.27)
r_2 

0 2 r2 

The response of the system for a given initial state and zero input can now be 

expressed as: 

"#x(t) � V r(t) � V e�(t;t0 

)Wx(t0)"
 #"# 

�	

1 1 e;4(t;t0 

) 0 

1 2 ;1 

x(t0): ;4 2 0 e2(t;t0 

) 6 4 1 

For instance, if the initial vector is chosen in the direction of the �rst eigenvector, 

i.e., x(t0) � v1 

� [ 1 ;4 ]0 then the response is given by: "
 #
 

x(t) � 

1 

e;4(t;t0 

): ;4 

Example 12.2 Inverted Pendulum 

Consider the linearized model of the inverted pendulum in Example 7.6 with the 

parameters given by: m � 1, M � 10, l � 1, and g � 9:8. The eigenvalues 

of the matrix A are 0, 0, 3:1424, and ;3:1424. In this case, the eigenvalue at 

0 is repeated, and hence the matrix A may not be diagonalizable. However, we 

can still construct the Jordan form of A by �nding the generalized eigenvectors 

corresponding to 0, and the eigenvectors corresponding to the other eigenvalues. 

The Jordan form of A, � � T 

;1AT and the corresponding transformation T are 

given by: 3232 

0 1 0 0 0:0909 0
 ;0:0145 0:0145


� �


6664


0 0 0 0
 

0 0	 3:1424 0
 

7775


� T �
 

6664


0 0:0909 ;0:0455 ;0:0455
 

0 0 0:1591 ;0:1591
 

7775

 
 
 
 

0 0 0 ;3:1424 0 0 0:5000 0:5000




We can still get quite a bit of insight from this decomposition. Consider the 

zero input response, and let x(0) � v1 

� [1 0 0 0 ]0 . This is an eigenvector 

corresponding to the zero eigenvalue, and corresponds to a �xed distance s, zero 

velocity, zero angular position, and zero angular velocity. In that case, the system 

remains in the same position and the response is equal to x(0) for all future time. 

Now, let x(0) � v2 

� [0 1 0 0 ]0, which corresponds to a non-zero velocity 

and zero position, angle and angular velocity. This is not an eigenvector but rather 

a generalized eigenvector, i.e., it satis�es Av2 

� v1. We can easily calculate the 

response to be x(t) � [t 1 0 0] implying that the cart will drift with constant 

velocity but will remain in the upright position. Notice that the response lies in 

the linear span of v1 

and v2. 

The case where x(0) � v3 

corresponds to the eigenvalue � � 3:1424. In this 

case, the cart is moving to the left while the pendulum is tilted to the right with 

clockwise angular velocity. Thus, the pendulum tilts more to the right, which 

corresponds to unstable behavior. The case where x(0) � v4 

corresponds to the 

eigenvalue � � ;3:1424. The cart again is moving to the left with clockwise 

angular velocity, but the pendulum is tilted to the left. With an appropriate 

combination of these variables (given by the eigenvector v4) the response of the 

system converges to the upright equilibrium position at the origin. 


 



Exercises 

Exercise 12.1 Use the expression in (12.1) to �nd the transfer functions of the DT versions of the 

controller canonical form and the observer canonical form de�ned in Chapter 8. Verify that the transfer 

functions are consistent with what you would compute from the input-output di�erence equation on 

which the canonical forms are based. 

Exercise 12.2 Let v and w0 be the right and left eigenvectors associated with some non-repeated 

eigenvalue � of a matrix A, with the normalization w0v � 1.	 Suppose A is perturbed in�nitesimally to 

A + dA, so that � is perturbed to � + d�, v to v + dv, and w0 to w0 + dw0 . Show that d� � w0(dA)v. 
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