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Chapter 30 

Minimality and Stability of 

Interconnected Systems 

30.1 Introduction: Relating I/O and State-Space Properties 

We have already seen in Chapter 25 that a minimal realization of a transfer matrix H(s) is uniquely 

de�ned by H(s), up to a similarity transformation. We therefore expect properties of a minimal 

realization to be tightly associated with properties of the transfer matrix. This expectation is re�ected 

in some of the results described in Chapter 27. 

Speci�cally, we claimed in Chapter 27 that the poles of H(s) are precisely given | in both location 

and multiplicity | by the eigenvalues and associated Jordan structure of the matrix A in a minimal 

realization (A� B� C� D) of H(s) � C(sI ; A);1B + D� this structure is in turn equivalent to the zero 

structure of the matrix (sI ; A), although we did not draw attention to this fact in Chapter 27. The 

general proof of the preceding result is beyond the scope of the tools that we have available, but it is 

not hard to prove in the special case of an H(s) that is amenable to the Gilbert realization procedure of 

Chapter 25, as we show below. Before turning to this demonstration, we note the following important 

implication of the result: 

�	 For a minimal system, BIBO stability is equivalent to asymptotic stability� the state-space model 

is asymptotically stable if and only if H(s) has no unstable (i.e. right half plane) poles. 

For the Gilbert realization to work, each entry of H(s) is required to have poles of multiplicity 

1 only. For such an H(s), using the notation of Chapter 25 and the de�nitions of poles and their 

multiplicities from Chapter 27, it is quite straightforward to argue that H(s) has ri 

poles located at 

�i, each of multiplicity 1. The A matrix of the corresponding Gilbert realization that we constructed 

(and hence the A matrix of any other minimal realization of this transfer function) evidently has ri 

Jordan blocks of size 1 associated with the eigenvalue at �i. Also, the matrix (sI ; A) for the Gilbert 

realization evidently has ri 

zeros of multiplicity 1 at �i. 

Similarly, as noted in Chapter 27, the zeros of H(s) are given | in both location and multiplicity 

| by the generalized eigenvalues and associated \Jordan-Kronecker" structure of the matrix pair (E � A) 

associated with the system matrix sE ;A of a minimal realization of H(s), or equivalently by the zero 



- -

structure of the system matrix. We shall not attempt to prove anything on zeros beyond what has 

already been shown in Chapter 27. 

30.2 Loss of Minimality in Interconnections 

In this section we shall examine the conditions under which minimality is lost when minimal subsystems 

are interconnected in various con�gurations, such as the series connection in Fig. 30.1 below. The 

standard convention in interpreting such �gures, where the individual subsystem blocks are labeled 

with their transfer functions, is to assume that each subsystem block contains a minimal realization, 

i.e. a reachable and observable realization, of the indicated transfer function. This is a reasonable 

convention, since the transfer function is inadequate to describe any unreachable and/or unobservable 

parts of the system� if such parts existed and were important to the problem, they would have to be 

described in some appropriate way. 

We will denote the minimal realization of Hi(s) by (Ai� Bi� Ci� Di), and denote its associated 

input, state and output vectors by ui� xi� yi 

respectively. When it simpli�es some of the algebra, we 

shall feel free to assume that Di 

� 0, as the presence of a direct feedthrough from input to output 

adds no essential di�culty and introduces no signi�cant features in the problems that we consider, 

but often makes the algebra cumbersome. Note that our assumption of minimality on the subsystems 

ensures that the eigenvalues of Ai 

are precisely the poles of Hi(s), both in location and in multiplicity. 

Series Connection 

Consider subsystems with transfer matrices H1(s) and H2(s) connected in series (or \cascaded") as 

shown in Fig. 30.1. The transfer function of the cascaded system is evidently H(s) � H2(s)H1(s) (the 

u � u1 

y1 

� u2 - y2 

� y
H1(s) H2(s) 

Figure 30.1: Two subsystems in series. 

factors must be written in that order unless the subsystems are SISO!). The natural state vector for 

the cascaded system comprises x1 

and x2, and the corresponding state-space description of the cascade 

is easily seen to be given (when Di 

� 0) by the matrices � � � � 

A1 

0 B1 

; � 

A � � B � � C � 0 C2 

� D � 0 : (30.1)
B2C1 

A2 

0 

The structure of A shows that its eigenvalues, which are the natural frequencies of the cascade, are 

the eigenvalues of A1 

and A2 

taken together, i.e. the natural frequencies of the individual subsystems 

taken together. 

The question of interest to us now is whether the cascaded system is minimal, i.e., is (A� B� C) a 

minimal realization of H(s) � It should be clear at this point that the cascade is minimal if and only 

if the number of poles of H(s) is the sum of the number of poles in H1(s) and H2(s) (multiplicities 



included). Otherwise the number of poles in H(s) | and hence the number of state variables in a 

minimal realization of H(s) | ends up being less than the number of state variables (and modes) in 

the cascaded system, signaling a loss of reachability and/or observability. 

In the case of SISO subsystems, this condition for minimality can evidently be restated as re-
quiring that no pole of H1(s), respectively H2(s), be canceled by a zero of H2(s), respectively H1(s). 

Furthermore, it is a straightforward exercise (which we leave you to carry out, using the controller or 

observer canonical forms for the subsystem realizations, the state-space description in (30.1) for the 

cascade, and the modal tests for reachability and observability) to show very explicitly that 

� the cascade is unreachable if and only if a pole of H2(s) is canceled by a zero of H1(s)� 

� the cascade is unobservable if and only if a pole of H1(s) is canceled by a zero of H2(s). 

(The demonstration of these results is worth working out in detail, and will make clear why we invested 

time in discussing canonical forms and modal tests.) These conditions make intuitive sense, in that 

the �rst kind of cancellation blocks access of the input to a system mode that is generated in the 

second subsystem, and the second kind of cancellation blocks access to the output for a system mode 

generated in the �rst subsystem. 

Essentially the same interpretations in terms of pole-zero cancellations hold in the MIMO case, 

subject to certain rank conditions on the matrices. We shall content ourselves with demonstrating how 

the loss of observability is related to a pole of H1(s) being cancelled by a zero of H2(s). For this, note 

from the modal test and the structure of the model in (30.1) that observability of the cascade is lost 

i�, for some �, 0 1 

�I ; A1 

0 

� � � � @ ;B2C1 

�I ; A2 

A 

v1 � 0 �
v1 6 0 �� (30.2) 

0 C2 

v2 

v2 

Now we must have v1 

6� 0, otherwise (30.2) shows (by the modal test) that the assumed observability 

of the second subsystem is contradicted. Hence v1 

is an eigenvector of the �rst subsystem. Also 

C1v1 

� 0, otherwise (again by the modal test!) the observability of the �rst subsystem is contradicted. 6
Now rewriting the bottom two rows of (30.2), we get � �� � 

�I ; A2 

;B2 

v2 � 0 : (30.3)
C2 

0 C1v1 

Thus the cascade is unobservable i� (30.3) holds for some eigenvalue and eigenvector pair (�� v1) of 

the �rst subsystem. From Chapter 27 we know that this equation is equivalent, in the case where 

H2(s) has full column rank, to the second subsystem having a transmission zero at �, with input zero 

direction C1v1 

and state zero direction v2(6� 0). [If H2(s) does not have full column rank, then the 

loss of observability may be due to a mode of the �rst subsystem \hiding" in the nullspace of H2(s), 

rather than due to its being blocked by a transmission zero. Some exploration with diagonal H1(s) 

and H2(s) will show you what sorts of things can happen.] 

Parallel Connection 

A parallel connection of two subsystems is shown in Fig. 30.2. The transfer function of this system is 

H(s) � H1(s)+H2(s). The natural state vector for the parallel system again comprises x1 

and x2, and 

the corresponding state-space description of the combination is easily seen to be given by the matrices � � � � 

A1 

0 B1 

; � 

A � � B � � C � 
C1 

C2 

� D � D1 

+ D2 

: (30.4)
0 A2 

B2 



--

--

u1 y1H1(s) 

u -	 f 

y-

u2 y2H2(s) 

Figure 30.2: Two subsystems in parallel. 

The structure of A shows that its eigenvalues, which are the natural frequencies of the parallel sys-
tem, are the eigenvalues of A1 

and A2 

taken together, i.e. the natural frequencies of the individual 

subsystems taken together (just as in the case of cascaded subsystems). 

It is easy in this case to state and prove the precise conditions under which reachability or 

observability is lost. We treat the case of observability below, and leave you to provide the dual 

statement and proof for reachability. 

� Claim: The parallel combination loses observability if and only if: 

(i)	 A1 

and A2 

have a common eigenvalue, and 

(ii)	 some choice of associated right eigenvectors v1 

and v2 

satis�es C1v1 

+C2v2 

� 0 (this second 

condition is always satis�ed in the single-output case if the �rst condition is satis�ed). 

Proof: By the modal test, the parallel system is unobservable i� there is an eigenvector � � 

v1 v � 6� 0 

v2 

associated with some eigenvalue � of A (so Av � �v, v 6 � 0. � 0) such that Cv � C1v1 

+ C2v2 

If both v1 

6 6 and A2,� 0 and v2 

� 0, then we can conclude that � is an eigenvalue of both A1 

and the claim would be proved. To show v1 

� 0, note that 6 v1 

� 0 would imply C2v2 

� 0 

which, together with the fact that A2v2 

� �v2, would contradict the assumed observability of 

the second subsystem. Similarly, we must have v2 

6� 0. 

� 0 and C2v2 

6� 0 are scalars means In the single-output case, the fact that the quantities C1v1 

6 
that we can always scale the eigenvectors so as to obtain C1v1 

+ C2v2 

� 0. Hence all that 

is needed to induce unobservability in the single-output case is for the subsystems to have a 

common eigenvalue. 

Feedback Connection 

A feedback connection of two systems is shown in Fig. 30.3 We leave you to show that this feedback 

con�guration is reachable from u if and only if the cascade con�guration in Fig. 30.1 is reachable. 

(Hint: Feeding back the output of the cascade con�guration does not a�ect whether it is reachable 

or not.) Similarly, argue that the feedback con�guration in Fig. 30.3 is observable if and only if the 

cascade con�guration in Fig 30.4 is observable. 



u y- l 

u-1 

y1 -+ H1(s) 

6 

y2 

u2
�H2(s) 

Figure 30.3: Two subsystems in a feedback con�guration. 

u � u2 - y2 

� u1 - y1 

� y -H2(s) H1(s) 

Figure 30.4: A cascade con�guration whose observability properties are equivalent to those of 

the feedback system in Fig. 20.3. 

A state-space description of the feedback con�guration (with Di 

� 0) is easily seen to be given 

by � � � � 

A1 

B1C2 

B1 

; � 

A � � B � � C � 0 C2 

: (30.5)
B2C1 

A2 

0 

The eigenvalues of A are not evident by inspection, unlike in the case of the cascade and parallel 

connections, because feedback can shift eigenvalues from their open-loop locations. The characteristic 

polynomial of A, namely a(s) � det(sI ; A), whose roots are the natural frequencies of the system, is 

easily shown (using various identities from Homework 1) to be � � 

a(s) � a1(s)a2(s) det I ; H1(s)H2(s) : (30.6) 

If there is a pole-zero cancellation between H1(s) and H2(s), then this pole is una�ected by the 

feedback, and remains a natural frequency of the closed-loop system. 

30.3 Stability of Interconnected Systems 

The composite state-space description of an interconnected system is obtained by combining state-
space realizations of the individual subsystems, using as state variables the union of the subsystem 

state variables. If a subsystem is speci�ed by its transfer function, then we are obliged to use a 

minimal realization of this transfer function in constructing the composite description. Examples of 

such composite descriptions have already been seen in (30.1), (30.4) and (30.5). The interconnected 



system is said to be well-posed precisely when its composite state-space description can be obtained 

(see Chapter 17). 

Once a state-space description (A� B� C� D) of the interconnected system has been obtained, it is 

in principle straightforward to determine its natural frequencies and assess its asymptotic stability by 

examining the eigenvalues of A. However, if each subsystem has been speci�ed via its transfer function, 

one might well ask if there is a way to determine the natural frequencies and evaluate stability using 

transfer function computations alone, without bothering to construct minimal realizations of each 

subsystem in order to obtain a composite realization of the interconnection. 

A �rst thought might be to look at the poles of the transfer function between some input and 

output in the interconnected system. However, we know (and have again con�rmed in the preceding 

section) that the poles of the transfer function between some input u and some output y will fail to 

show all the natural frequencies of the system if (and only if) some mode of the system is unreach-
able and/or unobservable with that input/output pair. Furthermore, the method we prescribe for 

determining natural frequencies through transfer function computations alone should be able to �nd 

natural frequencies even when no external inputs and outputs have been designated, because natural 

frequencies are well de�ned even when the system has no inputs or outputs. 

In view of the above problem with \hidden" modes, a second thought might be to not limit 

ourselves to prespeci�ed inputs and outputs of the interconnection. Instead, we could evaluate the 

transfer functions from input signals added in at all subsystem entries, to output signals taken at all 

subsystem outputs. This turns out to be the right idea, and we develop it in detail for the case of two 

subsystems interconnected in feedback. 

Suppose we are given the feedback con�guration in Fig. 30.5, and are asked to determine its 

natural frequencies. The �rst step is to add in inputs at each subsystem, as in Fig. 30.6. 

u1 

y1-
6 

H1(s) 

� �H2(s) 

y2 

u2 

Figure 30.5: A feedback interconnection, with no prespeci�ed external inputs or outputs. 

Then examine the (four) transfer functions from �1 

and �2 

to y1 

and y2, or equivalently the 

transfer matrix oH(s) that relates � � � � 

�1 

y1to 

�2 

y2 

(in Chapter 17, H (s) � T (H1� H2)(s)). Instead of looking at the response at y1 

and y2, we could 

alternatively compute the response at u1 

and u2, or at u1 

and y1, or at u2 

and y1, because the 

response at y1 

and y2 

can be determined from these other responses, knowing �1 

and �2. The choice 

is determined by convenience. 

Letting (Ai� Bi� Ci) denote minimal realizations of Hi(s) as before (and assuming for simplicity 

that the direct feedthrough term Di 

is zero), we now have the following theorem, which provides the 



- lu1 - y1 

+ H1(s)
 

�1
 6


�
� l�H2(s) + 

�2y2 

u2 

Figure 30.6: The same feedback interconnection, but with inputs added in at each subsystem. 

basis for what we were seeking, namely a transfer function based approach to determining the natural 

frequencies of the interconnection. 

Theorem 30.1 The composite state-space description � � � � � � 

A1 

B1C2 

B1 

0 C1 

0 

A � � Bd 

� � Cd 

� (30.7)
B2C1 

A2 

0 B2 

0 C2 

for the system in Fig. 30.6 is a minimal realization of the transfer function H (s) from the external 

subsystem inputs �1 

and �2 

to the subsystem outputs y1 

and y2, so its natural frequencies, i.e. the 

eigenvalues of A, are precisely the poles of H (s). 

Proof. By inspection, a minimal (or equivalently, reachable and observable) realization of � � 

H1(s) 0 

H(s) � � 

0 H2(s) 

which is the transfer matrix from u1, u2 

to y1, y2, is given by � � � � � � 

A1 

0 B1 

0 C1 

0 

Ad 

� � Bd 

� � Cd 

� : 

0 A2 

0 B2 

0 C2 

Now output feedback around this realization will not destroy its reachability or observability, so � � 

0 I 

Ad 

+ Bd 

Cd 

� Bd 

� Cd 

(30.8)
I 0 

is a minimal realization of the system obtained by implementing the output feedback speci�ed by the 

feedback gain matrix � � 

0 I 

: 

I 0 

It is easy to check that the resulting system is precisely the one in Fig. 30.6, and the realization in 

(30.8) is precisely the composite description in (30.7), since � � � � 

0 I A1 

B1C2Ad 

+ Bd 

Cd 

� � A : 

I 0 B2C1 

A2 



Now, for a minimal realization, the poles of the transfer function are equal to the natural frequencies 

of the system, so the poles of H (s) are precisely the eigenvalues of A. 

Note that this same A matrix is obtained in the composite state-space descriptions of the systems in 

Fig. 30.3, Fig. 30.5 and Fig. 30.6, because these systems only di�er in their speci�cations of inputs 

and outputs. For all these systems, we can determine the natural frequencies by determining the poles 

of H (s), and we can assess the asymptotic stability of these systems (i.e. the asymptotic stability of 

their composite realizations) by checking that the poles of H (s) are all in the left half plane, i.e. by 

checking BIBO stability from �1� �2 

to y1� y2. (We leave you to construct examples that show the need 

to check all four of the transfer function entries in H (s), because a natural frequency can hide from 

any three of them | the fourth one is needed to �ush such a natural frequency out.) 

The same argument we used for the special feedback con�guration above actually works for any 

well-posed interconnected system. We leave you to fashion a proof. Also, it should go without saying 

that everything we have done here in continuous-time holds for discrete-time systems too. You may 

�nd it pro�table to revisit some of the examples of Chapter 17 with the new perspectives gained from 

this chapter. 

1. Assume we have the con�guration in Figure 17.4, with P � 

s;1 and K � ; 

1 . The transfer s+1 s;1 

function relating r to y is � �;1
P s ; 1 1 

� 1 + 

1 ; PK s + 1 s + 1 � �� � 

s ; 1 s + 1 

� 

s + 1 s + 2 

s ; 1 

� : 

s + 2 

Since the only pole of this transfer function is at s � ;2, the input/output relation between r 

and y is stable. However, consider the transfer function from d to u, which is � ! 

K 1 1 

� 

1 ; PK s ; 1 1 + 

1 

s+1 

s + 1 

�	 : 

(s ; 1)(s + 2) 

This transfer function is unstable, which implies that the closed-loop system is externally un-
stable. 

2. We leave you to show that the interconnected system in Figure 17.4 is externally stable if and 

only if the matrix	 � �


(I ; PK);1P (I ; PK);1


;1 ;1	

(30.9)
(I ; KP ) ;(I ; PK) K 

has all its poles in the open left half plane. 
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