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Chapter 1

Linear Algebra Review

1.1 Introduction

Dynamic systems are systems that evolve with time. Our models for them will comprise
coupled sets of ordinary differential equations (ode’s). We will study how the internal variables
and outputs of such systems respond to their inputs and initial conditions, how their internal
behavior can be inferred from input/output (I/O) measurements, how the inputs can be
controlled to produce desired behavior, and so on. Most of our attention will be focused on
linear models (and within this class, on time invariant models, i.e. on LTI models), for reasons
that include the following:

e linear models describe small perturbations from nominal operation, and most control
design is aimed at regulating such perturbations;

e linear models are far more tractable than general nonlinear models, so systematic and
detailed control design approaches can be developed;

e engineered systems are often made up of modules that are designed to operate in essen-
tially linear fashion, with any nonlinearities introduced in carefully selected locations
and forms.

To describe the interactions of coupled variables in linear models, the tools of linear
algebra are essential. In the first part of this course (4 or 5 lectures), we shall come up to
speed with the “Ax = y” or linear equations part of linear algebra, by studying a variety of
least squares problems. This will also serve to introduce ideas related to dynamic systems —
e.g., recursive processing of I/O measurements from a finite-impulse-response (FIR) discrete-
time (DT) LTI system, to produce estimates of its impulse response coefficients.

Later parts of the course will treat in considerable detail the representation, struc-
ture, and behavior of multi-input, multi-output (MIMO) LTI systems. The “Av = \v”



e Show that the intersection of two subspaces of a vector space is itself a subspace.

e Show that the union of two subspaces is in general not a subspace. Also determine
under what condition the union of subspaces will be a subspace.

e Show that the (Minkowski or) direct sum of subspaces, which by definition comprises
vectors that can be written as the sum of vectors drawn from each of the subspaces, is
a subspace.

Get in the habit of working up small (in R? or R?, for instance) concrete examples for yourself,
as you tackle problems such as the above. This will help you develop a feel for what is being
stated — perhaps suggesting a strategy for a proof of a claim, or suggesting a counterexample
to disprove a claim.

Review what it means for a set of vectors to be (linearly) dependent or (linearly) in-
dependent. A space is n-dimensional if every set of more than n vectors is dependent, but
there is some set of n vectors that is independent; any such set of n independent vectors is
referred to as a basis for the space.

e Show that any vector in an n-dimensional space can be written as a unique linear
combination of the vectors in a basis set; we therefore say that any basis set spans the
space.

e Show that a basis for a subspace can always be augmented to form a basis for the entire
space.

If a space has a set of n independent vectors for every nonnegative n, then the space is
called infinite dimensional.

e Show that the set of functions f(t) = ¢"~!, n =1,2,3,--- forms a basis for an infinite
dimensional space. (One route to proving this uses a key property of Vandermonde
matrices, which you may have encountered somewhere.)

Norms

The “lengths” of vectors are measured by introducing the idea of a norm. A norm for a vector
space V over the field of real numbers R or complex numbers C is defined to be a function that
maps vectors x to nonnegative real numbers ||z||, and that satisfies the following properties:

1. Positivity: ||z]| > 0 for = # 0
2. Homogeneity: |laz|| = |a| ||z||, scalar a.

3. Triangle inequality: |z +y| < [l=|| + [lyll , Va,y € V.



Verify that the usual Euclidean norm on R” or C" (namely v’z with ’ denoting the
complex conjugate of the transpose) satisfies these conditions.

A complex matrix @ is termed Hermitian if Q' = Q; if Q is real, then this condition
simply states that @Q is symmetric. Verify that 2'Quz is always real, if Q is Hermitian.
A matrix is termed positive definite if 2'Qz is real and positive for x # 0. Verify that
Va'Qx constitutes a norm if () is Hermitian and positive definite.

Verify that in R" both ||z||; = X7 || and ||z||sc = max; |z;| constitute norms. These
are referred to as the 1-norm and oc-norm respectively, while the examples of norms
mentioned earlier are all instances of (weighted or unweighted) 2-norms. Describe the
sets of vectors that have unit norm in each of these cases.

The space of continuous fucntions on the interval [0, 1] clearly forms a vector space.
One possible norm defined on this space is the co-norm defined as:

1fllee = SUP]If(t)I-

te[0,1

This measures the peak value of the function in the interval [0, 1]. Another norm is the

2-norm defined as: .

1
Ifla= [ 17t

Verify that these measures satisfy the three properties of the norm.

Inner Product

The vector spaces that are most useful in practice are those on which one can define a notion
of inner product. An inner product is a function of two vectors, usually denoted by < x,y >
where x and y are vectors, with the following properties:

1.
2.

Symmetry: < z,y >=<y,x >

Linearity: < x,ay +bz >= a<x,y > + b <x,z > for all scalars a and b.

. Positivity: < x,x > positive for x # 0.

Verify that /< x,x > defines a norm.

Verify that z’Qy constitutes an inner product if Q is Hermitian and positive definite.
The case of Q = I corresponds to the usual Euclidean inner product.

Verify that
1
/ #(B)y(t)dt
0

defines an inner product on the space of continuous functions. In this case, the norm
generated from this inner product is the same as the 2-norm defined earlier.



e Cauchy-Schwartz Inequality Verify that for any = and y in an inner product space
| <zy> < 2/lyll
with equality if and only if x = ay for some scalar «. (Hint: Expand < z4+ay, z+ay >).

Two vectors x, y are said to be orthogonal if < x,y >= 0; two sets of vectors X and Y
are called orthogonal if every vector in one is orthogonal to every vector in the other. The

orthogonal complement of a set of vectors X is the set of vectors orthogonal to X, and is
denoted by X'+,

e Show that the orthogonal complement of any set is a subspace.

1.3 The Projection Theorem
Consider the following minimization problem:
min [ly —m]|
where the norm is defined through an inner product. The projection theorem (suggested by
the figure below), states that the optimal solution i is characterized as follows:
(y —m) L M.

To verify this theorem, assume the converse. Then there exists an my, ||mg|| = 1, such
that < y — i, mg >=§ # 0. We now argue that (m + dmg) € M achieves a smaller value to
the above minimization problem. In particular,

ly =1 —dmo|> = |ly — |’ <y —1n,dmg > — < dmo,y — 1 > +0]?|Imo|?
= Ily—mlli—|<5|§—|5|2+|5|2
=y =ml* —1d|

This conradicts the optimality of .

e Given a subspace §, show that any vector x can be uniquely written as © = zs + xg1,
where 75 € S and 5. € S*.



>

1.4 Matrices

Our usual notion of a matrix is that of a rectangular array of scalars. The definitions of matrix
addition, multiplication, etc., are aimed at compactly representing and analyzing systems of
equations of the form

ary + -+ s = Y1

am1ZT1 + -+ Gmnn = Ym
This system of equations can be written as Ax = y if we define

ayp -t Al € 1
A= S , X = : NETES
Am1 *** Omn Tn Ym

The rules of matrix addition, matrix multiplication, and scalar multiplication of a matrix
remain unchanged if the entries of the matrices we deal with are themselves (conformably
dimensioned) matrices rather than scalars. A matrix with matrix entries is referred to as a
block matrix or a partitioned matrix.

For example, the a;;, x;, and y; in respectively A, x, and y above can be matrices, and
the equation Ax = y will still hold, as long as the dimensions of the various submatrices are
conformable with the expressions > a;jz; =y; for i =1,---,m and j = 1,---,n. What this
requires is that the number of rows in a;; should equal the number of rows in y;, the number
of columns in a;; should equal the number of rows in x;, and the number of columns in the
x; and y; should be the same.

e Verify that



1 2 2 1 2 45 2
01 3 =101 89>+ 3 20
11 7 11 7

In addition to these simple rules for matrix addition, matrix multiplication, and scalar
multiplication of partitioned matrices, there is a simple — and simply verified — rule for
(complex conjugate) transposition of a partitioned matrix: if [A];; = a;;, then [A'];; = af;,
i.e., the (7, 7)-th block element of A’ is the transpose of the (j,7)-th block element of A.

For more involved matrix operations, one has to proceed with caution. For instance, the
determinant of the square block-matrix

A A
A= Aj A4>

is clearly not A1 A4 — AzAs unless all the blocks are actually scalar! We shall lead you to
the correct expression (in the case where A; is square and invertible) in a future Homework.
Matrices as Linear Transformations

T is a transformation or mapping from X to Y, two vector spaces, if it associates to each
x € X a unique element y € Y. This transformation is linear if it satisfies

T(ax + By) = aT(z) + BT (y).
e Verify that an n x m matrix A is a linear transformation from R™ to R".

Does every linear transformation have a matrix representation? Assume that both X and Y
are finite dimensional spaces with respective bases {x1, ... 2y} and {y1, ... yp}. Every x € X
can be uniquely expressed as: © = Y ;" a;x;. Equivalently, every x is represented uniquely in
terms of an element a € R™. Similarly every element y € Y is uniquely represented in terms
of an element b € R". Now: T'(x;) = > ;" b;jy; and hence

T(x) =Y a;T(x;) =Y vi(D_ ajbij)
=1 =1 =1

A matrix representation is then given by B = (b;;). It is evident that a matrix representation
is not unique and depends on the basis choice.



1.5

Linear Systems of Equations

Suppose that we have the following system of real or complex linear equations:

Amxnwnxl — ym><1

When does this system have a solution x for given A and y?

J a solution x <=y € R(A) <= R([A|y]) = R(A)

We now analyze some possible cases:

(1)
(2)

If n = m, then det(4) # 0 = 2 = A~ !y, and x is the unique solution.

If m > n, then there are more equations than unknowns, i.e. the system is “overcon-
strained”. If A and/or y reflect actual experimental data, then it is quite likely that the
n-component vector y does not lie in R(A), since this subspace is only n-dimensional
(if A has full column rank) or less, but lives in an m-dimensional space. The system
will then be inconsistent. This is the sort of situation encountered in estimation or
identification problems, where x is a parameter vector of low dimension compared to
the dimension of the measurements that are available. We then look for a choice of =
that comes closest to achieving consistency, according to some error criterion. We shall
say quite a bit more about this shortly.

If m < n, then there are fewer equations than unknowns, and the system is “undercon-
strained”. If the system has a particular solution x, (and when rank(A) = m, there is
guaranteed to be a solution for any y) then there exist an infinite number of solutions.
More specifically, = is a solution iff (if and only if)

r=x,+x,, Avy,=y, Ar,=0 1Le x, € N(A)

Since the nullspace AV(A) has dimension at least n — m, there are at least this many
degrees of freedom in the solution. This is the sort of situation that occurs in many
control problems, where the control objectives do not uniquely constrain or determine
the control. We then typically search among the available solutions for ones that are
optimal according to some criterion.



Exercises

Exercise 1.1 Partitioned Matrices

Suppose
A A,
0 Ay

with A; and A4 square.
(a) Write the determinant det A in terms of det A; and det A4. (Hint: Write A as the product

I 0 A A
0 A4 0 I

and use the fact that the determinant of the product of two square matrices is the product of
the individual determinants — the individual determinants are easy to evaluate in this case.)

(b) Assume for this part that A; and A4 are nonsingular (i.e., square and invertible). Now find A~!.
(Hint: Write AB = I and partition B and I commensurably with the partitioning of A.)

Exercise 1.2 Partitioned Matrices

Suppose
A Ay
Az Ay

where the 4; are matrices of conformable dimension.

A=

(a) What can A be premultiplied by to get the matrix

Ay Ay
A Ay

(b) Assume that A; is nonsingular. What can A be premultiplied by to get the matrix

A Ay
0 C

where C = A4 — A3A;1A2 ?

(c) Suppose A is a square matrix. Use the result in (b) — and the fact mentioned in the hint to
Problem 1(a) — to obtain an expression for det(A) in terms of determinants involving only the
submatrices Ay, Ao, A3, A4.

Exercise 1.3 Matrix Identities

Prove the following very useful matrix identities. In proving identities such as these, see if you
can obtain proofs that make as few assumptions as possible beyond those implied by the problem
statement. For example, in (1) and (2) below, neither A nor B need be square, and in (3) neither B
nor D need be square — so avoid assuming that any of these matrices is (square and) invertible!.



(a) det(I — AB) =det(I — BA), if Ais p X ¢ and B is ¢ x p. (Hint: Evaluate the determinants of

I A I —-A I —-A I A
B I o I 7 0 I B 1

to obtain the desired result). One common situation in which the above result is useful is when
p > q; why is this so?

(b) Show that (I — AB)~*A = A(I — BA)~".

(c) Show that (A+BCD) ' =A"1-A'B(C'+DA'B)"'DA™!. (Hint: Multiply the right side
by A+ BCD and cleverly gather terms.) This is perhaps the most used of matrix identities, and
is known by various names — the matrix inversion lemma, the ABC'D lemma (!), Woodbury’s
formula, etc. It is rediscovered from time to time in different guises. Its noteworthy feature is
that, if A=! is known, then the inverse of a modification of A is expressed as a modification of
A~! that may be simple to compute, e.g. when C is of small dimensions. Show, for instance,
that evaluation of (I — ab?)~!, where a and b are column vectors, only requires inversion of a
scalar quantity.

Exercise 1.4 Range and Rank

This is a practice problem in linear algebra (except that you have perhaps only seen such results
stated for the case of real matrices and vectors, rather than complex ones — the extensions are routine).

Assume that A € C™*™ (i.e., A is a complex m X n matrix) and B € C™*?. We shall use the
symbols R(A) and NV(A) to respectively denote the range space and null space (or kernel) of the matrix
A. Following the Matlab convention, we use the symbol A’ to denote the transpose of the complex
conjugate of the matrix A; R+ (A) denotes the subspace orthogonal to the subspace R(A), i.e. the set
of vectors x such that 'y =0, Vy € R(A), etc.

(a) Show that R+(A) = N(4’) and N+ (A) = R(4).
(b) Show that
rank(A4) 4+ rank(B) —n < rank(AB) < min{rank(A), rank(B)}

This result is referred to as Sylvester’s inequality.

Exercise 1.5 Vandermonde Matrix
A matrix with the following structure is referred to as a Vandermonde matrix:

IEED VDt D
I X A3 - At
1A, A2 An—t



This matrix is clearly singular if the A; are not all distinct. Show the converse, namely that if all n of
the \; are distinct, then the matrix is nonsingular. One way to do this — although not the easiest!
— is to show by induction that the determinant of the Vandermonde matrix is

1,J=n

I =2

i=1;5>i

Look for an easier argument first.

Exercise 1.6 Matrix Derivatives

(a) Suppose A(t) and B(t) are matrices whose entries are differentiable functions of ¢, and assume the
product A(¢)B(t) is well-defined. Show that

d _dA(b)
% A(t)B(t) = 7B(t) + A(t)

dB(t)
Cdt

where the derivative of a matrix is, by definition, the matrix of derivatives — i.e., to obtain the
derivative of a matrix, simply replace each entry of the matrix by its derivative. (Note: The
ordering of the matrices in the above result is important!).

(b) Use the result of (a) to evaluate the derivative of the inverse of a matrix A(t), i.e. evaluate the
derivative of A7L(t).

Exercise 1.7 Suppose T is a linear transformation from X to itself. Verify that any two matrix
representations, A and B, of T are related by a nonsingular transformation; i.e., A = R~!BR for some
R. Show that as R varies over all nonsingular matrices, we get all possible representations.

Exercise 1.8 Let X be the vector space of polynomials of order less than or equal to M.

(a) Show that the set B = {1, x, ... 2™} is a basis for this vector space.

(b) Consider the mapping T from X to X defined as:

Fla) = Ty(e) = - ga)

. Show that T is linear.
. Derive a matrix representation for 7" in terms of the basis B.

. What are the eigenvalues of T'.

= W N =

. Compute one eigenvector associated with one of the eighenvalues.



Chapter 2

Least Squares Estimation

2.1 Introduction

If the criterion used to measure the error e = y — Ax in the case of inconsistent system of
equations is the sum of squared magnitudes of the error components, i.e. €’e, or equivalently
the square root of this, which is the usual Euclidean norm or 2-norm ||el|2, then the problem
is called a least squares problem. Formally it can be written as

min [}y — Ax].. (2.1)

The x that minimizes this criterion is called the least square error estimate, or more simply,
the least squares estimate. The choice of this criterion and the solution of the problem go
back to Legendre (1805) and Gauss (around the same time).

Example 2.1 Suppose we make some measurements y; of an unknown function
f(t) at discrete points t;, i = 1,..., N:

yi=f(t), i=1,...,N.

We want to find the function g(¢) in the space y of polynomials of order m —1 <
N — 1 that best approximates f(t) at the measured points ¢;, where

m—1
X = {g(t) = Z ait', o real}

1=0

For any ¢(t) € x, we will have y; = g(t;) +¢; for i = 1,..., N. Writing this in



matrix form for the available data, we have

U1 1 tl t% L tgnil (%)) €1
=1: : +
YN Loty 5 - 37 ] L ama en
N e’ N ~ AN - N e’

Yy A x e

N
The problem is to find aq, ..., ®m,_1 such that e'e = Z e? is minimized.

i—1

2.2 Computing the Estimate
The solution, &, of Equation 2.1 is characterized by:
(y — Az) L R(A).

All elements in a basis of R(A) must be orthogonal to (y — AZ). Equivalently this is true for
the set of columns of A, [a,...,ay,]. Thus

(y—Az) LR(A) ©a(y—Ax)=0 fori=1,...,n
< Ally—Az) =0
o AAG = Ay

This system of m equations in the m unknowns of interest is referred to as the normal
equations. We can solve for the unique 2 iff A’A is invertible. Conditions for this will be
derived shortly. In the sequel, we will present the generalization of the above ideas for infinite
dimensional vector spaces.

2.3 Preliminary: The Gram Product

Given the array of n4 vectors A = [a; | --- | an,] and the array of np vectors B = [by | -+ | by ]
from a given inner product space, let < A, B > denote the ny x ng matriz whose (i, j)-th
element is < a;,b; >. We shall refer to this object as the Gram product (but note that this
terminology is not standard!).

If the vector space under consideration is R™ or C™, then both A and B are matrices
with m rows, but our definition of < A, B > can actually handle more general A, B. In
fact, the vector space can be infinite dimensional, as long as we are only examining finite
collections of vectors from this space. For instance, we could use the same notation to treat
finite collections of vectors chosen from the infinite-dimensional vector space £? of square



integrable functions, i.e. functions a(t) for which [°°_a?(t) dt < co. The inner product in £
is < a(t),b(t) >= [>°_a*(t)b(t)dt. (The space £? is an example of an infinite dimensional
Hilbert space, and most of what we know for finite dimensional spaces — which are also Hilbert
spaces! — has natural generalizations to infinite dimensional Hilbert spaces. Many of these
generalizations involve introducing notions of topology and measure, so we shall not venture
too far there. It is worth also mentioning here another important infinite dimensional Hilbert
space that is central to the probabilistic treatment of least squares estimation: the space
of zero-mean random variables, with the expected value E(ab) serving as the inner product
< a,b>.)

For the usual Euclidean inner product in an m-dimensional space, where < a;,b; >=
a;bj, we simply have <A, B> = A'B. For the inner product defined by < a;,b; >= a; Sb;
for a positive definite, Hermitian matrix S, we have <A, B>== A'SB.

e Verify that the symmetry and linearity of the inner product imply the same for the
Gram product, so < AF,BG+ CH == F' <A, B> G + F' < A,C = H, for any
constant matrices F, G, H (a constant matrix is a matrix of scalars), with A, B, C
denoting arrays whose columns are vectors.

2.4 The Least Squares Estimation Problem

The problem of interest is to find the least square error (LSE) estimate of the parameter vector
x that arises in the linear model y = Az, where A is an array of n vectors, A = [a1, -+ , a,].
Defining the error e by

e=y— Ax

what we want to determine is
7 = argmin ||e|| = arg min ||y — Ax|| , y, A given
xr xX

(where “arg min,” should be read as “the value of the argument x that minimizes”). To state
this yet another way, note that as x is varied, Ax ranges over the subspace R(A), so we are
looking for the point

y= AT

in R(A) that comes closest to y, as measured by whatever norm we are using.

Rather than restricting the norm in the above expression to be the Euclidean 2-norm
used in Lecture 1, we shall now actually permit it to be any norm induced by an inner product,
so |le|| = /< e,e>. This will allow us to solve the so-called weighted least squares problem
in a finite dimensional space with no additional work, because error criteria of the form
¢/ Se for positive definite Hermitian S are thereby included. Also, our problem formulation
then applies to infinite dimensional spaces that have an inner product defined on them, with
the restriction that our model Ax be confined to a finite dimensional subspace. This actually
covers the cases of most interest to us; treatment of the more general case involves introducing
further topological notions (closed subspaces, etc.), and we avoid doing this.



We shall also assume that the vectors a;, ¢ = 1,...,n in A are independent. This
assumption is satisfied by any reasonably parametrized model, for otherwise there would be
an infinite number of choices of x that attained any achievable value of the error y — Ax. If
the vectors in A are discovered to be dependent, then a re-parametrization of the model is
needed to yield a well-parametrized model with independent vectors in the new A. (A subtler
problem — and one that we shall say something more about in the context of ill-conditioning
and the singular value decomposition — is that the vectors in A can be nearly dependent,
causing practical difficulties in numerical estimation of the parameters.)

Gram Matrix Lemma

An important route to verifying the independence of the vectors that make up the columns of
A is a lemma that we shall refer to as the Gram Matriz Lemma. This states that the vectors
in A are independent iff the associated Gram matrix (or Gramian) < A, A== [< a;,a; >]
is invertible; all norms are equivalent, as far as this result is concerned — one can pick any
norm. As noted above, for the case of the usual Euclidean inner product, < A, A= = A’A. For
an inner product of the form < a;,a; >= a;Sa;, where S is Hermitian and positive definite,
we have <A, A== A'SA. The lemma applies to the infinite dimensional setting as well (e.g.
£?), provided we are only considering the independence of a finite subset of vectors.

Proof: If the vectors in A are dependent, there is some nonzero vector n such that An =
>_jazn; = 0. But then >, < a;,a; >n; = 0, by the linearity of the inner product; in
matrix form, we can write <A, A>n =0 —so <A, A> is not invertible.

Conversely, if < A, A > is not invertible, then < A, A> 1 = 0 for some nonzero 7. But
then ' <A, A> n =0, so by the linearity of inner products < Y n;a;, > ajn; > = 0,
i.e. the norm of the vector ) a;n; = An is zero, so the vectors in A are dependent.

2.5 The Projection Theorem and the Least Squares Estimate

The solution to our least squares problem is now given by the Projection Theorem, also referred
to as the Orthogonality Principle, which states that

e=(y—A%) L TR(A)

from which - — as we shall see — ¥ can be determined. In words, the theorem/“principle”
states that the point § = AZ in the subspace R(A) that comes closest to y is characterized
by the fact that the associated error € = y — y is orthogonal to R(A), i.e., orthogonal to the
space spanned by the vectors in A. This principle was presented and proved in the previous
chapter. We repeat the proof here in the context of the above problem.

Proof: We first show that y has a unique decomposition of the form y = y; +y,, where y; € R(A)
and yo € R-(A). We can write any y; € R(A) in the form y; = Aa for some vector a.



If we want (y —y1) € RE(A), we must see if there is an a that satisfies
<aj,(y—Aa)>=0, i=1,....,n
or, using our Gram product notation,
<A (y—Aa)== 10
Rearranging this equation and using the linearity of the Gram product, we get
<A A-a=<Ay~

which is in the form of the normal equations that we encountered in Lecture 1. Under
our assumption that the vectors making up the columns of A are independent, the Gram
matrix lemma shows that < A, A > is invertible, so the unique solution of the preceding
equation is

a=<AA-"1< Ay~

We now have the decomposition that we sought.

To show that the preceding decomposition is unique, let y = y1, + Y2, be another such
decomposition, with y1, € R(A) and y2, € R(A). Then

Y1 — Yia = Y2 — Y2a

and the left side is in R(A) while the right side is in its orthogonal complement. It is
easy to show that the only vector common to a subspace and its orthogonal complement
is the zero vector, so y1 —y1, = 0 and ys — y2, = 0, i.e., the decomposition of y is unique.

To proceed, decompose the error ¢ = y — Ax similarly (and uniquely) into the sum of
e1 € R(A) and e; € RH(A). Note that

lel® = llex]l* + flez|f?
Now we can rewrite e = y — Ax as

er e =y +y2— Ax
or

e2 —y2=y1 —e1 — Ax

Since the right side of the above equation lies in R(A) and the left side lies in R+(A),
each side separately must equal 0 — again because this is the only vector common to
a subspace and its orthogonal complement. We thus have es = yo, and the choice of x
can do nothing to affect e;. On the other hand, e; = y; — Az = A(a — z), and the best
we can do as far as minimizing ||e||? is to make e; = 0 by choosing x = a, so0 & = «, i.e.,



T=<AA-"1<Ay~

This solves the least squares estimation problem that we have posed.

The above result, though rather abstractly developed, is immediately applicable to many
concrete cases of interest.

e Specializing to the case of R™ or C™, and choosing x to minimize the usual Euclidean
norm,

m
el = e'e =" |esf
=1

we have

7= (A'4) Ay
Note that if the columns of A form a mutually orthogonal set (i.e. an orthogonal basis
for R(A)), then A’A is diagonal, and its inversion is trivial.

e If instead we choose to minimize ¢’Se for some positive definite Hermitian S (# T), we
have a weighted least squares problem, with solution given by

T= (A'SA)lA'Sy

For instance, with a diagonal S, the criterion that we are trying to minimize becomes

m
> siilei]?
i=1

where the s;; are all positive. We can thereby preferentially weight those equations in
our linear system for which we want a smaller error in the final solution; a larger value
of s;; will encourage a smaller e;.

Such weighting is important in any practical situation, where different measurements y;
may have been subjected to different levels of noise or uncertainty. One might expect
that s; should be inversely proportional to the noise intensity on the ith equation. In
fact, a probabilistic derivation, assuming zero-mean noise on each equation in the system
but noise that is uncorrelated across equations, shows that s;; should vary inversely with
the variance of e;.

A full matrix S rather than a diagonal one would make sense if the errors were correlated
across measurements. A probabilistic treatment shows that the proper weighting matrix
is S = (E[ee'])™!, the inverse of the covariance matriz of e. In the deterministic setting,
one has far less guidance on picking a good S.



e The boxed result also allows us to immediately write down the choice of coefficients x;
that minimizes the integral
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for specified functions y(t) and a;(t). If, for instance, y(¢) is of finite extent (or finite
“support”) T, and the a;(t) are sinusoids whose frequencies are integral multiples of
27 /T, then the formulas that we obtain for the x; are just the familiar Fourier series
expressions. A simplification in this example is that the vectors in A are orthogonal, so
<A, A> is diagonal.

2.6 Recursive Least Squares (optional)

What if the data is coming in sequentially? Do we have to recompute everything each time
a new data point comes in, or can we write our new, updated estimate in terms of our old
estimate?
Consider the model
yi=Aix+e , 1=0,1,..., (2.2)

where y; € C™*1, A; € C™*" x € C"¥!, and ¢; € C™*!. The vector e; represents the
mismatch between the measurement y; and the model for it, Aix, where Ay is known and x
is the vector of parameters to be estimated. At each time k, we wish to find

k k
T = arg min (Z(yl — A;x)iSi(yi — Am)) = arg min (Z eéSieZ) , (2.3)
i=1 1=1
where S; € C™*™ ig a positive definite Hermitian matrix of weights, so that we can vary the
importance of the e;’s and components of the e;’s in determining Zy.
To compute %1, let:

Yo Ay €0
Y1 _ A el
Ykt1 = . ; App1 = . ; €py1 = . ;
Yk+1 A1 €kl
and
Sk+1 = diag (So, S, ..., Skt1)

where S; is the weighting matrix for e;.

Our problem is then equivalent to



min(ej,,  Sk18k+1)

subject to:  Tp i1 = App1Tp41 + Crgr

The solution can thus be written as

U< - ~ —_ = .
(Ak15k+1A4k4+1)Tht1 = Ap g1 Sk+1Tr41

or in summation form as

k+1 k+1
(Z A;SiAz) Tepr = AlSiyi

i=0 i=0
Defining
k+1
Qut1 = > AjSiA;.
i=0

we can write a recursion for Q4 as follows:

Qry1 = Qi+ Ay Skr1 Ay

Rearranging the summation form equation for Zj;y;, we get

Thy1 = Qs [( o AQSiAi) T+ A§c+15k+1yk+1]

= Q;:il [Qk@'\k + A§g+15k+1yk+1}

This clearly displays the new estimate as a weighted combination of the old estimate and the
new data, so we have the desired recursion. Another useful form of this result is obtained by
substituting from the recursion for Q11 above to get

~ ~ -1 / ~ !
Try1 = T — Qpq (Aky1Ser1 Ak 1T — Ap 1 Skr1Uk41)

which finally reduces to

~ ~ -1 ! ~
Try1 = Tk + Qi Ak 1% +1 Whr1 — Ak 1Zk)
—_—

-

Kalman Filter Gain innovations

The quantity Q,;_il_lAﬁC_i_lSkH is called the Kalman gain, and ypy1 — Ag112, is called the
innovations, since it compares the difference between a data update and the prediction given
the last estimate.

Unfortunately, as one acquires more and more data, i.e. as k grows large, the Kalman gain
goes to zero. One data point cannot make much headway against the mass of previous data
which has ‘hardened’ the estimate. If we leave this estimator as is—without modification—the
estimator ‘goes to sleep’ after a while, and thus doesn’t adapt well to parameter changes. The
homework investigates the concept of a ‘fading memory’ so that the estimator doesn’t go to
sleep.



An Implementation Issue

Another concept which is important in the implementation of the RLS algorithm is the com-
putation of Q,:il. If the dimension of Q) is very large, computation of its inverse can be
computationally expensive, so one would like to have a recursion for Q,:il.

This recursion is easy to obtain. Applying the handy matrix 