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Chapter 1

Linear Algebra Review

1.1 Introduction

Dynamic systems are systems that evolve with time. Our models for them will comprise
coupled sets of ordinary diferential equations (ode's). We will study how the internal variables
and outputs of such systems respond to their inputs and initial conditions, how their internal
behavior can be inferred from input/output (I/O) measurements, how the inputs can be
controlled to produce desired behavior, and so on. Most of our attention will be focused on
linear models (and within this class, on time invariant models, i.e. on LTI models), for reasons
that include the following :

• linear models describe small perturbations from nominal operation, and most control
design is aimed at regulating such perturbations;

• linear models are far more tractable than general nonlinear models, so systematic and
detailed control design approaches can be developed;

• engineered systems are often made up of modules that are designed to operate in essen-
tially linear fashion, with any nonlinearities introduced in carefully selected locations
and forms.

To describe the interactions of coupled variables in linear models, the tools of linear
algebra are essential. In the frst part of this course (4 or 5 lectures), we shall come up to
speed with the \Ax = y" or linear equations part of linear algebra, by studying a variety of
least squares problems. This will also serve to introduce ideas related to dynamic systems |
e.g., recursive processing of I/O measurements from a fnite-impulse-response (FIR) discrete-
time (DT) LTI system, to produce estimates of its impulse response coefcients.

Later parts of the course will treat in considerable detail the representation, struc-
ture, and behavior of multi-input, multi-output (MIMO) LTI systems. The \Av = ,v"



	                

	                

           

	              

                 

  

         

 

        

                   

                

    

               

                

                  

        

	                

                 

 

	                   

 

                  

   

	        

 

           

             

       

 

                  

                    

              

        

        

            

                

                

           

              

                 

  

         

 

 

 

       

                   

                

    

               

                

                  

        

                

                 

 

                   

 

                  

   

        

 

           

             

       

 

                  

                    

              

        

        

             

• Show that the intersection of two subspaces of a vector space is itself a subspace.

• Show that the union of two subspaces is in general not a subspace. Also determine
under what condition the union of subspaces will be a subspace.

• Show that the (Minkowski or) direct sum of subspaces, which by defnition comprises
vectors that can be written as the sum of vectors drawn from each of the subspaces, is
a subspace.

Get in the habit of working up small (inR2 orR3, for instance) concrete examples for yourself,
as you tackle problems such as the above. This will help you develop a feel for what is being
stated | perhaps suggesting a strategy for a proof of a claim, or suggesting a counterexample
to disprove a claim.
Review what it means for a set of vectors to be (linearly) dependent or (linearly) in-
dependent. A space is n-dimensional if every set of more than n vectors is dependent, but
there is some set of n vectors that is independent; any such set of n independent vectors is
referred to as a basis for the space.

• Show that any vector in an n-dimensional space can be written as a unique linear
combination of the vectors in a basis set; we therefore say that any basis set spans the
space.

• Show that a basis for a subspace can always be augmented to form a basis for the entire
space.

If a space has a set of n independent vectors for every nonnegative n, then the space is
called infnite dimensional.

• Show that the set of functions f(t) = tn;1 , n = 1, 2, 3, · · · forms a basis for an infnite
dimensional space. (One route to proving this uses a key property of Vandermonde
matrices, which you may have encountered somewhere.)

Norms

The \lengths" of vectors are measured by introducing the idea of a norm. A norm for a vector
space V over the feld of real numbersR or complex numbersC is defned to be a function that
maps vectors x to nonnegative real numbers kxk, and that satisfes the following properties:

1. Positivity: kxk > 0 for x 6= 0

2. Homogeneity: kaxk = jaj kxk , scalar a.

3. Triangle inequality: kx+ yk : kxk+ kyk , 8x, y 2 V:



 

        

 

 

 

   

 

  

        

	         

 

         

                

                  

           

 

	    

 

 

 

 

 

  

 

 

 

   

 

              

            

            

	                

            

 

   

 

                 

   

 

 

 

 

   

 

           

  

                  

                  

          

        

 

 

                      

          

	         

	               

             

	   

 

 

 

 

               

             

        

 

 

 

   

 

  

        

         

 

         

                

                  

           

 

    

 

 

 

 

 

  

 

 

 

   

 

              

            

            

                

            

 

   

 

                 

   
 

  

 

 

   

 

           

  

                  

                  

          

        

 

 

                        

          

         

               

             

   

 

 

 

 

               

             

p• Verify that the usual Euclidean norm on Rn or Cn (namely x0x with 0 denoting the
complex conjugate of the transpose) satisfes these conditions.

• A complex matrix Q is termed Hermitian if Q0 = Q; if Q is real, then this condition
simply states that Q is symmetric. Verify that x0Qx is always real, if Q is Hermitian.
A matrix is termed positive defnite if x0Qx is real and positive for x =6 0. Verify thatp
x0Qx constitutes a norm if Q is Hermitian and positive defnite.P• Verify that in Rn both kxk1 = n jxij and kxk1 = maxi jxij constitute norms. These1

are referred to as the 1-norm and 1-norm respectively, while the examples of norms
mentioned earlier are all instances of (weighted or unweighted) 2-norms. Describe the
sets of vectors that have unit norm in each of these cases.

• The space of continuous fucntions on the interval [0, 1] clearly forms a vector space.
One possible norm defned on this space is the 1-norm defned as:

kfk1 = sup jf(t)j:
t2[0,1]

This measures the peak value of the function in the interval [0, 1]. Another norm is the
2-norm defned as: Z 1

1

2

kfk2 = jf(t)j2dt :
0

Verify that these measures satisfy the three properties of the norm.

Inner Product

The vector spaces that are most useful in practice are those on which one can defne a notion
of inner product. An inner product is a function of two vectors, usually denoted by < x, y >
where x and y are vectors, with the following properties:

1. Symmetry: < x, y >=< y, x >0.

2. Linearity: < x, ay + bz >= a < x, y > + b < x, z > for all scalars a and b.

3. Positivity: < x, x > positive for x 6= 0.

p• Verify that < x, x > defnes a norm.

• Verify that x0Qy constitutes an inner product if Q is Hermitian and positive defnite.
The case of Q = I corresponds to the usual Euclidean inner product.

• Verify that Z 1

x(t)y(t)dt
0

defnes an inner product on the space of continuous functions. In this case, the norm
generated from this inner product is the same as the 2-norm defned earlier.



	               

     

                  

                     

                 

                   

   

 

 

	            

    

     

    

 

              

             

     

                

 

 

                        

      

  	  

	

         

 

       

 

    

   

 

 

   

  

      

	                 

 

 

 

 

 

 

  

 

 

 


 

               

     

                  

                     

                 

                   

    

            

    

     

    

 

              

             

     

                

 

 

                       

      

    

 

         

 

      

 

    

   

 

 

    

  

      

                 

 

 

 

 

 

 

  

 

 

• Cauchy-Schwartz Inequality Verify that for any x and y in an inner product space

j < x, y > j : kxkkyk

with equality if and only if x = ay for some scalar a. (Hint: Expand < x+ay, x+ay >).

Two vectors x, y are said to be orthogonal if < x, y >= 0; two sets of vectors X and Y
are called orthogonal if every vector in one is orthogonal to every vector in the other. The
orthogonal complement of a set of vectors X is the set of vectors orthogonal to X , and is
denoted by X..

• Show that the orthogonal complement of any set is a subspace.

1.3 The Projection Theorem

Consider the following minimization problem:

min ky ;mk
m2M

where the norm is defned through an inner product. The projection theorem (suggested by
the fgure below), states that the optimal solution m̂ is characterized as follows:

(y ; m̂) lM:

To verify this theorem, assume the converse. Then there exists an m0, km0k = 1, such
m,m0 >= 8 6= 0. We now argue that ( ^that < y ; ^ m+ 8m0) 2M achieves a smaller value to

the above minimization problem. In particular,

ky ; m̂; 8m0k2 = ky ;m ^ ^^ k2; < y ;m, 8m0 > ; < 8m0, y ;m > +j8j2km0k2
= ky ; m̂k2 ; j8j2 ; j8j2 + j8j2
= ky ; m̂k2 ; j8j2

This conradicts the optimality of m̂.

• Given a subspace S, show that any vector x can be uniquely written as x = xS + xS1,
where xS 2 S and xS1 2 S..
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;

;

y ; m̂
..}. . . ;. .y .;

;
;m̂

;
;

;
;

;
;

;
;

; M

;

1.4 Matrices

Our usual notion of a matrix is that of a rectangular array of scalars. The defnitions of matrix
addition, multiplication, etc., are aimed at compactly representing and analyzing systems of
equations of the form

a11x1 + · · ·+ a1nxn = y1
..· · · .

am1x1 + · · ·+ amnxn = ym

This system of equations can be written as Ax = y if we defne 101010
a11 · · · a1n x1 y1

A =
B@ CA , x =

B@ ...
xn

CA , y =
B@ CA. . ... .· · ·. .

am1 · · · amn

.
ym

P

The rules of matrix addition, matrix multiplication, and scalar multiplication of a matrix
remain unchanged if the entries of the matrices we deal with are themselves (conformably
dimensioned) matrices rather than scalars. A matrix with matrix entries is referred to as a
block matrix or a partitioned matrix.

For example, the aij, xj, and yi in respectively A, x, and y above can be matrices, and
the equation Ax = y will still hold, as long as the dimensions of the various submatrices are
conformable with the expressions aijxj = yi for i = 1, · · · ,m and j = 1, · · · , n. What this
requires is that the number of rows in aij should equal the number of rows in yi, the number
of columns in aij should equal the number of rows in xj , and the number of columns in the
xj and yi should be the same.

• Verify that




 
 





 



 


 





 



 






 
 
 






 


 
 
 
 
 






 
 
 
 
 
 

 
 
 



 
 




             

               

        

 

   

 

 

 

 

       

 

           

              

     


 
 

  

 

 

 

 

   

 

 

 

            

       

 

        

    

                   

                 

        

              

 

 

 

 

              

                 

 

              

 

  

      

 

      

     

 

    

 

 

  

     


      

   

                

         


 

 

  

 
  

 
   

   

 

 

     

 

    

 

             

               

        

 

   

 

  

       

 

           

              

      
 

 

  

  

   

 

 

 

            

       

 

        

    

                   

                 

        

              

 

 

 

 

              

    

 

 

 

 

      

            

              

      

 

      

 

 

 

 

 

 

     

 

    

 

      

   

                

         

10
4 510 1010BBBBB@

CCCCCA
!1 2 2 8 9 1 2 2

4 5B@ CA B@ CA +
B@ CA0 1 3 0 1 3 2 0=

8 9
1 1 7 1 1 7

2 0

In addition to these simple rules for matrix addition, matrix multiplication, and scalar
multiplication of partitioned matrices, there is a simple | and simply verifed | rule for

0(complex conjugate) transposition of a partitioned matrix: if [A]ij = aij , then [A0]ij = aji,
i.e., the (i, j)-th block element of A0 is the transpose of the (j, i)-th block element of A.

For more involved matrix operations, one has to proceed with caution. For instance, the
determinant of the square block-matrix !

A A1 2

P

A =
A3 A4

is clearly not A1A4;A3A2 unless all the blocks are actually scalar! We shall lead you to
the correct expression (in the case where A1 is square and invertible) in a future Homework.

Matrices as Linear Transformations

T is a transformation or mapping from X to Y , two vector spaces, if it associates to each
x 2 X a unique element y 2 Y . This transformation is linear if it satisfes

T (ax+ fy) = aT (x) + fT (y):

• Verify that an nxm matrix A is a linear transformation from Rm to Rn.

Does every linear transformation have a matrix representation? Assume that both X and Y
Every x 2 X

P
m
i=1 aixi.

Similarly every element y 2 Y

are fnite dimensional spaces with respective bases fx1, : : : xmg and fy1, : : : yng.
can be uniquely expressed as: x = Equivalently, every x is represented uniquely in
terms of an element a 2 Rm. is uniquely represented in terms

n mXX
n
=1 bijyi and hencei

X
of an element b 2 Rn. Now: T (xj) =

m

T (x) = ajT (xj) = yi( ajbij)
j=1 i=1 j=1

A matrix representation is then given by B = (bij). It is evident that a matrix representation
is not unique and depends on the basis choice.



     

             

 

  

 

 

             

           

      

                  

              

                

              

                

              

             

                

             

        

              

        

 

      

                

           

  

 

 

 

 

 

  

 

 

 

  

                  

                

            

              

     


 

     

             

  

   

             

           

      

                  

              

                

              

                

              

             

                

             

        

              

        

 

      

                

           

  

 

 

 

 

 

  

 

 

 

  

                  

                

            

              

     

1.5 Linear Systems of Equations

Suppose that we have the following system of real or complex linear equations:

Am�n n�1 m�1x = y

When does this system have a solution x for given A and y?

9 a solution x() y 2 R(A)()R([A y]) = R(A)

We now analyze some possible cases:

(1) If n = m, then det(A) 6= 0) x = A;1y, and x is the unique solution.

(2) If m > n, then there are more equations than unknowns, i.e. the system is \overcon-
strained". If A and/or y re�ect actual experimental data, then it is quite likely that the
n-component vector y does not lie in R(A), since this subspace is only n-dimensional
(if A has full column rank) or less, but lives in an m-dimensional space. The system
will then be inconsistent. This is the sort of situation encountered in estimation or
identifcation problems, where x is a parameter vector of low dimension compared to
the dimension of the measurements that are available. We then look for a choice of x
that comes closest to achieving consistency, according to some error criterion. We shall
say quite a bit more about this shortly.

(3) If m < n, then there are fewer equations than unknowns, and the system is \undercon-
strained". If the system has a particular solution xp (and when rank(A) = m, there is
guaranteed to be a solution for any y) then there exist an infnite number of solutions.
More specifcally, x is a solution if (if and only if)

x = xp + xh , Axp = y , Axh = 0 i:e: xh 2 N (A)

Since the nullspace N (A) has dimension at least n ; m, there are at least this many
degrees of freedom in the solution. This is the sort of situation that occurs in many
control problems, where the control objectives do not uniquely constrain or determine
the control. We then typically search among the available solutions for ones that are
optimal according to some criterion.






    

     

  

 

 

 

 

 

 

 

 

 

          

 

               

  

  

 

 

  

                  

              

	      

 

 

 

        

 

 

                

    

    

 

  

  

  

 

     

              

  

 

  

   

 

               

  

  

   

 

 

 

 

	                     

                

     

    

                

                

                    

                  


 

 

    

 

  

 

 

 

 

 

 

 

 

 

          

 

         

  

  

 

 

  

                  

              

      

 

 

 

        

 

 

                

    

 

 

  

  

  

 

     

           

  

 

  

   

 

            

  

  

   

 

 

 

 

                     

                

     

    

                

                

                    

                  

Exercises

Exercise 1.1 Partitioned Matrices
Suppose

A =
A1

0
A2

A4

with A1 and A4 square.

(a) Write the determinant detA in terms of detA1 and detA4. (Hint: Write A as the product

I 0 A1 A2

0 A4 0 I

and use the fact that the determinant of the product of two square matrices is the product of
the individual determinants | the individual determinants are easy to evaluate in this case.)

(b) Assume for this part that A1 and A4 are nonsingular (i.e., square and invertible). Now fnd A;1.
(Hint: Write AB = I and partition B and I commensurably with the partitioning of A.)

Exercise 1.2 Partitioned Matrices
Suppose

A1 A2A =
A3 A4

where the Ai are matrices of conformable dimension.

(a) What can A be premultiplied by to get the matrix

A3 A4 ?
A1 A2

(b) Assume that A1 is nonsingular. What can A be premultiplied by to get the matrix

A1 A2

0 C

where C = A4 ; A3A
;1A2 ?1

(c) Suppose A is a square matrix. Use the result in (b) | and the fact mentioned in the hint to
Problem 1(a) | to obtain an expression for det(A) in terms of determinants involving only the
submatrices A1, A2, A3, A4.

Exercise 1.3 Matrix Identities
Prove the following very useful matrix identities. In proving identities such as these, see if you

can obtain proofs that make as few assumptions as possible beyond those implied by the problem
statement. For example, in (1) and (2) below, neither A nor B need be square, and in (3) neither B
nor D need be square | so avoid assuming that any of these matrices is (square and) invertible!.



                           
   


     

 

      

                 

      

         

 

 

	     

 

 

 

 

 

 

 

      

                  

               

                

  

 

                

 

                

     

 

             

  

     

                 

                  

    

 

                 

                   

         

 

       

                 

           

          

	   

          

        

    

             

 

 

 

 

   

 

 

 

 

 

 

   

 

 

    

 

 

 

 

 

    

 

 

 

 

 

 

   

 

 

 
 
 
 










(a) det(I ; AB) = det(I ; BA), if A is p x q and B is q x p. (Hint: Evaluate the determinants of 

I A I ;A I ;A I A 

, 

B I 0 I 0 I B I 

to obtain the desired result). One common situation in which the above result is useful is when 

p > q; why is this so? 

(b) Show that (I ; AB);1A = A(I ; BA);1 . 

(c) Show that (A + BCD);1 = A;1 ; A;1B(C;1 + DA;1B);1DA;1 . (Hint: Multiply the right side 

by A + BCD and cleverly gather terms.) This is perhaps the most used of matrix identities, and 

is known by various names | the matrix inversion lemma, the ABCD lemma (!), Woodbury's 

formula, etc. It is rediscovered from time to time in diferent guises. Its noteworthy feature is 

that, if A;1 is known, then the inverse of a modifcation of A is expressed as a modifcation of 

A;1 that may be simple to compute, e.g. when C is of small dimensions. Show, for instance, 

that evaluation of (I ; abT );1 , where a and b are column vectors, only requires inversion of a 

scalar quantity. 

Exercise 1.4 Range and Rank 

This is a practice problem in linear algebra (except that you have perhaps only seen such results 

stated for the case of real matrices and vectors, rather than complex ones | the extensions are routine). 

Assume that A 2 Cmxn (i.e., A is a complex m x n matrix) and B 2 Cnxp. We shall use the 

symbols R(A) and N (A) to respectively denote the range space and null space (or kernel) of the matrix 

A. Following the Matlab convention, we use the symbol A0 to denote the transpose of the complex 

conjugate of the matrix A; RJ(A) denotes the subspace orthogonal to the subspace R(A), i.e. the set 

0of vectors x such that x y = 0 , 8y 2 R(A), etc. 

(a) Show that RJ(A) = N (A0) and N 

J(A) = R(A0). 

(b) Show that 

rank(A) + rank(B) ; n = rank(AB) = minfrank(A), rank(B)g 

This result is referred to as Sylvester's inequality. 

Exercise 1.5 Vandermonde Matrix 

A matrix with the following structure is referred to as a Vandermonde matrix: 

1 ,1 

,2 

1    ,n;1 

1 

1 ,2 

,2 

2    ,n;1 

2 

. . . . . . 

. . 

. .    . . 

1 ,n 

,2 

n    ,n;1 

n 

10 CCCA 

BBB@ 



       

 

             

 

 

                 

              

 

 

  

   

      

    

	                 

      

 

   

 

  

	   

                  

                

          

	                    

   

                 

                  

               

                  

          

 

        

           

  

 

      

             

        

          

 

This matrix is clearly singular if the ,i 

are not all distinct. Show the converse, namely that if all n of 

the ,i 

are distinct, then the matrix is nonsingular. One way to do this | although not the easiest! 

| is to show by induction that the determinant of the Vandermonde matrix is 

i,j=nY 

(,j 

; ,i) 

i=1 ; j>i 

Look for an easier argument frst. 

Exercise 1.6 Matrix Derivatives 

(a) Suppose A(t) and B(t) are matrices whose entries are diferentiable functions of t, and assume the 

product A(t)B(t) is well-defned. Show that 

d dA(t) dB(t)
A(t)B(t) = B(t) + A(t)

dt dt dt 

where the derivative of a matrix is, by defnition, the matrix of derivatives | i.e., to obtain the 

derivative of a matrix, simply replace each entry of the matrix by its derivative. (Note: The 

ordering of the matrices in the above result is important!). 

(b) Use the result of (a) to evaluate the derivative of the inverse of a matrix A(t), i.e. evaluate the 

derivative of A;1(t). 

Exercise 1.7 Suppose T is a linear transformation from X to itself. Verify that any two matrix 

representations, A and B, of T are related by a nonsingular transformation; i.e., A = R;1BR for some 

R. Show that as R varies over all nonsingular matrices, we get all possible representations. 

Exercise 1.8 Let X be the vector space of polynomials of order less than or equal to M . 

M(a) Show that the set B = f1, x, : : : x g is a basis for this vector space. 

(b) Consider the mapping T from X to X defned as: 

d 

f(x) = Tg(x) = g(x)
dx 

1. Show that T is linear. 

2. Derive a matrix representation for T in terms of the basis B. 

3. What are the eigenvalues of T . 

4. Compute one eigenvector associated with one of the eighenvalues. 



  

  
 

  

                    

               

                 

            

     

 

                

                

          

       

 

    

      

 

    

                   

             

 

   

 

 

 

        

 

  

 

      

Chapter 2 

Least Squares Estimation 

2.1 Introduction 

If the criterion used to measure the error e = y ; Ax in the case of inconsistent system of 

equations is the sum of squared magnitudes of the error components, i.e. e0e, or equivalently 

the square root of this, which is the usual Euclidean norm or 2-norm kek2, then the problem 

is called a least squares problem. Formally it can be written as 

min ky ; Axk2: (2.1) 

x 

The x that minimizes this criterion is called the least square error estimate, or more simply, 

the least squares estimate. The choice of this criterion and the solution of the problem go 

back to Legendre (1805) and Gauss (around the same time). 

Example 2.1 Suppose we make some measurements yi 

of an unknown function 

f(t) at discrete points ti, i = 1, : : : , N : 

yi 

= f(ti) , i = 1, : : : , N: 

We want to fnd the function g(t) in the space X of polynomials of order m ; 1 < 

N ; 1 that best approximates f(t) at the measured points ti, where ( )
m;1X 

X = g(t) = ait
i, ai 

real 

i=0 

For any g(t) 2 X, we will have yi 

= g(ti) + ei 

for i = 1, : : : , N . Writing this in 



        

 

 

 

 

 

 


 
 

 

 

  


 



 
 
 



 


 



 


 











 

 

 

 


 








 


 
 


 


 
 
 
 
 


 

 

 


 

 


 
 
 
 
 



 
 

 

     

 

   

 

  

 

 

 
 


 

    

         

    

                   

       

     

 

 

      

      

   

                 

                 

                

   

     

    

 

  

 

   

 

     

 

  

 

   

 

 

            

 

 

 

   

  

 

               

    

       

 

         

                  

                

                

          

 

  

matrix form for the available data, we have 3232 32322 

m;11 t1 

t1 

· · · t1 

. . . . . . 

y1 

a0 

e1 664 

775 

64 

75 

64 

75+ 

64 

75 

. . 

. . .= 

. 

am;1 {z
X 

x 

N 

. . . 

eNtm;11 tN 

t2 

N 

· · · NyN | } | } | {z
e

}| }{z
y 

{z
A 

0 2The problem is to fnd a0, : : : , am;1 

such that e e = e is minimized.i 

i;1 

2.2 Computing the Estimate 

The solution, x̂, of Equation 2.1 is characterized by: 

(y ; Ax̂) l R(A): 

All elements in a basis of R(A) must be orthogonal to (y ; Ax̂). Equivalently this is true for 

the set of columns of A, [a1, : : : , an]. Thus 

(y ; Ax̂) l R(A) , ai 

0 (y ; Ax̂) = 0 for i = 1, : : : , n 

, A0(y ; Ax̂) = 0 

, A0Ax̂ = A0y 

This system of m equations in the m unknowns of interest is referred to as the normal 

equations. We can solve for the unique x̂ if A0A is invertible. Conditions for this will be 

derived shortly. In the sequel, we will present the generalization of the above ideas for infnite 

dimensional vector spaces. 

2.3 Preliminary: The Gram Product 

Given the array of nA 

vectors A = [a1 

j · · · j anA 

] and the array of nB 

vectors B = [b1 

j · · · j bnB 

] 

from a given inner product space, let - A, B > denote the nA 

x nB 

matrix whose (i, j)-th 

element is < ai, bj 

>. We shall refer to this object as the Gram product (but note that this 

terminology is not standard!). 

If the vector space under consideration is Rm or Cm , then both A and B are matrices 

with m rows, but our defnition of - A, B > can actually handle more general A, B. In 

fact, the vector space can be infnite dimensional, as long as we are only examining fnite 

collections of vectors from this space. For instance, we could use the same notation to treat 

fnite collections of vectors chosen from the infnite-dimensional vector space L2 of square 



 

       

 

        

 

 

   

 

    

 

       

                 

             

             

              

              

              

   

           

 

 

 

               

 

  

 

 

 

             

	                

          

 

      

 

      

                  

      

      

                 

                   

 

   

     

     

      

 

             

 

                 

                   

    

 

 

 

               

              

                   

                  

               

             

               

               

                

           

R 1integrable functions, i.e. functions a(t) for which 

2(t) dt < 1. The inner product in L2 

;1 

aR 1is < a(t), b(t) >= 

�(t)b(t) dt. (The space L2 is an example of an infnite dimensional;1 

a 

Hilbert space, and most of what we know for fnite dimensional spaces | which are also Hilbert 

spaces! | has natural generalizations to infnite dimensional Hilbert spaces. Many of these 

generalizations involve introducing notions of topology and measure, so we shall not venture 

too far there. It is worth also mentioning here another important infnite dimensional Hilbert 

space that is central to the probabilistic treatment of least squares estimation: the space 

of zero-mean random variables, with the expected value E(ab) serving as the inner product 

< a, b >.) 

For the usual Euclidean inner product in an m-dimensional space, where < ai, bj 

>= 

0 A0B. 

0ai 

bj , we simply have -A, B > = For the inner product defned by < ai, bj 

> = ai 

S bj 

for a positive defnite, Hermitian matrix S, we have -A, B > = A0SB. 

� Verify that the symmetry and linearity of the inner product imply the same for the 

Gram product, so - AF, BG + CH > = F 

0 - A, B > G + F 

0 - A, C > H, for any 

constant matrices F , G, H (a constant matrix is a matrix of scalars), with A, B, C 

denoting arrays whose columns are vectors. 

2.4 The Least Squares Estimation Problem 

The problem of interest is to fnd the least square error (LSE) estimate of the parameter vector 

x that arises in the linear model y � Ax, where A is an array of n vectors, A = [a1 

, · · · , an]. 

Defning the error e by 

e = y ; Ax 

what we want to determine is 

xb = arg min kek = arg min ky ; Axk , y, A given 

x x 

(where \arg minx 

" should be read as \the value of the argument x that minimizes"). To state 

this yet another way, note that as x is varied, Ax ranges over the subspace R(A), so we are 

looking for the point 

yb = Axb 

in R(A) that comes closest to y, as measured by whatever norm we are using. 

Rather than restricting the norm in the above expression to be the Euclidean 2-norm 

used in Lecture 1, we shall now actually permit it to be any norm induced by an inner product, p
so kek = < e, e >. This will allow us to solve the so-called weighted least squares problem 

in a fnite dimensional space with no additional work, because error criteria of the form 

e0Se for positive defnite Hermitian S are thereby included. Also, our problem formulation 

then applies to infnite dimensional spaces that have an inner product defned on them, with 

the restriction that our model Ax be confned to a fnite dimensional subspace. This actually 

covers the cases of most interest to us; treatment of the more general case involves introducing 

further topological notions (closed subspaces, etc.), and we avoid doing this. 



       

 

       

             

                   

                

               

                

                

         

   

                

                   

             

 

 

                  

                 

      

 

  

 

        

               

              

                  

 

 

 

    

 

  

          

              

                    

 

 

 

             

  

  

 

      

 

           

         

                

        

 

    

        

 

       

    

 

 

 

           

       

 

   

 

        

                

             

                 

 

 

 

 

     

 

    

 

      

We shall also assume that the vectors ai 

, i = 1, : : : , n in A are independent. This 

assumption is satisfed by any reasonably parametrized model, for otherwise there would be 

an infnite number of choices of x that attained any achievable value of the error y ; Ax. If 

the vectors in A are discovered to be dependent, then a re-parametrization of the model is 

needed to yield a well-parametrized model with independent vectors in the new A. (A subtler 

problem | and one that we shall say something more about in the context of ill-conditioning 

and the singular value decomposition | is that the vectors in A can be nearly dependent, 

causing practical difculties in numerical estimation of the parameters.) 

Gram Matrix Lemma 

An important route to verifying the independence of the vectors that make up the columns of 

A is a lemma that we shall refer to as the Gram Matrix Lemma. This states that the vectors 

in A are independent if the associated Gram matrix (or Gramian) -A, A >= [< ai, aj 

>] 

is invertible; all norms are equivalent, as far as this result is concerned | one can pick any 

norm. As noted above, for the case of the usual Euclidean inner product, -A, A> = A0A. For 

0an inner product of the form < ai, aj 

> = aiSaj, where S is Hermitian and positive defnite, 

we have -A, A>= A0SA. The lemma applies to the infnite dimensional setting as well (e.g. 

L2), provided we are only considering the independence of a fnite subset of vectors. 

Proof: If the vectors in A are dependent, there is some nonzero vector r such that Ar = P P 

j 

ajrj 

= 0. But then j 

< ai, aj 

> rj 

= 0, by the linearity of the inner product; in 

matrix form, we can write -A, A> r = 0 | so -A, A> is not invertible. 

Conversely, if -A, A > is not invertible, then -A, A > r = 0 for some nonzero r. But P P 

then r0 -A, A > r = 0, so by the linearity of inner products < riai 

, ajrj 

> = 0,P 

i.e. the norm of the vector ajrj 

= Ar is zero, so the vectors in A are dependent. 

2.5 The Projection Theorem and the Least Squares Estimate 

The solution to our least squares problem is now given by the Projection Theorem, also referred 

to as the Orthogonality Principle, which states that 

eb = (y ; Axb) l R(A) 

from which - | as we shall see | xb can be determined. In words, the theorem/\principle" 

states that the point yb = Axb in the subspace R(A) that comes closest to y is characterized 

by the fact that the associated error eb = y ; yb is orthogonal to R(A), i.e., orthogonal to the 

space spanned by the vectors in A. This principle was presented and proved in the previous 

chapter. We repeat the proof here in the context of the above problem. 

Proof: We frst show that y has a unique decomposition of the form y = y1+y2, where y1 

2 R(A) 

and y2 

2 R.(A). We can write any y1 

2 R(A) in the form y1 

= Aa for some vector a. 



                 

        

      

     

             

     

                

               

              

  

    

        

           

 

 

 

   

  

 

  

 

  

 

 

 

 

 

 

 

                  

               

     

  

   

  

         

                 

 

  

 

   

 

 

 

 

 

          

 

 

 

 

 

 

 

  

 

 

 

 

 

 

 

 

  

                  

                

         

 

       

          

 

 

 

         

       

 

   

 

        

 

   

If we want (y ; y1) 2 R.(A), we must see if there is an a that satisfes 

< ai, (y ; Aa) > = 0 , i = 1, : : : , n 

or, using our Gram product notation, 

-A, (y ; Aa)> = 0 

Rearranging this equation and using the linearity of the Gram product, we get 

-A, A> a = -A, y > 

which is in the form of the normal equations that we encountered in Lecture 1. Under 

our assumption that the vectors making up the columns of A are independent, the Gram 

matrix lemma shows that -A, A> is invertible, so the unique solution of the preceding 

equation is 

;1 a = -A, A> -A, y > 

We now have the decomposition that we sought. 

To show that the preceding decomposition is unique, let y = y1a 

+ y2a 

be another such 

decomposition, with y1a 

2 R(A) and y2a 

2 R.(A). Then 

y1 

; y1a 

= y2 

; y2a 

and the left side is in R(A) while the right side is in its orthogonal complement. It is 

easy to show that the only vector common to a subspace and its orthogonal complement 

is the zero vector, so y1 

;y1a 

= 0 and y2 

;y2a 

= 0, i.e., the decomposition of y is unique. 

To proceed, decompose the error e = y ; Ax similarly (and uniquely) into the sum of 

e1 

2 R(A) and e2 

2 R.(A). Note that 

kek2 = ke1k2 + ke2k2 

Now we can rewrite e = y ; Ax as 

e1 

+ e2 

= y1 

+ y2 

; Ax 

or 

e2 

; y2 

= y1 

; e1 

; Ax 

Since the right side of the above equation lies in R(A) and the left side lies in R.(A), 

each side separately must equal 0 | again because this is the only vector common to 

a subspace and its orthogonal complement. We thus have e2 

= y2, and the choice of x 

can do nothing to afect e2. On the other hand, e1 

= y1 

; Ax = A(a ; x), and the best 

we can do as far as minimizing kek2 is to make e1 

= 0 by choosing x = a, so xb = a, i.e., 



 

 

 

  

           

            

    

	      

 

          

 

 

 

   

 

 

 
 

 

 


 

                

           

	                

          

 

 

               

 

 

 

  

 

           

                 

 

 

     

           

 

              

 

 

             

             

         

 

    

    

                 

           

               

          

xb = -A, A>;1 -A, y > 

This solves the least squares estimation problem that we have posed. 

The above result, though rather abstractly developed, is immediately applicable to many 

concrete cases of interest. 

� Specializing to the case of Rm or Cm , and choosing x to minimize the usual Euclidean 

norm, Xm 

kek2 = e 

0 e = jeij2 

i=1 

we have 

xb = (A0A);1A0 y 

Note that if the columns of A form a mutually orthogonal set (i.e. an orthogonal basis 

for R(A)), then A0A is diagonal, and its inversion is trivial. 

� If instead we choose to minimize e0Se for some positive defnite Hermitian S (=6 I), we 

have a weighted least squares problem, with solution given by 

xb = (A0SA);1A0Sy 

For instance, with a diagonal S, the criterion that we are trying to minimize becomes 

mX 

siijeij2 

i=1 

where the sii 

are all positive. We can thereby preferentially weight those equations in 

our linear system for which we want a smaller error in the fnal solution; a larger value 

of sii 

will encourage a smaller ei. 

Such weighting is important in any practical situation, where diferent measurements yi 

may have been subjected to diferent levels of noise or uncertainty. One might expect 

that sii 

should be inversely proportional to the noise intensity on the ith equation. In 

fact, a probabilistic derivation, assuming zero-mean noise on each equation in the system 

but noise that is uncorrelated across equations, shows that sii 

should vary inversely with 

the variance of ei. 

A full matrix S rather than a diagonal one would make sense if the errors were correlated 

across measurements. A probabilistic treatment shows that the proper weighting matrix 

is S = (E[ee0]);1 , the inverse of the covariance matrix of e. In the deterministic setting, 

one has far less guidance on picking a good S. 



	               

 

    


 

   

 

 

 

 

 

 

 

                

              

          

 

      

               

   

     

                

                   

 

 

   

 

   

 

    

 

 

 

 

 

 

 

 

     

 

 

 

   

 

  

    

 

       

 

    

                


 

 

 

 

 

 

 	

 

 

   

  

 

 

 

 

              

            

    

    


  

 

	   




 


 


 




 

 

 




 


 


 





 

 

 




 

 

 


 


 


 
 
 
 
 
 

	   

 

 

   

  

    

 

 

      

      







� The boxed result also allows us to immediately write down the choice of coefcients xi 

that minimizes the integral Z 

k kX 

[ y(t) ; a1(t)x1 

; a2(t)x2 

; · · · ; an(t)xn 

]2 dt 

for specifed functions y(t) and ai(t). If, for instance, y(t) is of fnite extent (or fnite 

\support") T , and the ai(t) are sinusoids whose frequencies are integral multiples of 

2��T , then the formulas that we obtain for the xi 

are just the familiar Fourier series 

expressions. A simplifcation in this example is that the vectors in A are orthogonal, so 

-A, A> is diagonal. 

2.6 Recursive Least Squares (optional) 

What if the data is coming in sequentially� Do we have to recompute everything each time 

a new data point comes in, or can we write our new, updated estimate in terms of our old 

estimate� 

X 

Consider the model 

yi 

= Aix + ei 

, i = 0, 1, : : : , (2.2) 

2 Cm�1 2 Cm�n x 2 Cn�1 2 Cm�1where yi 

, Ai 

, , and ei 

. The vector ek 

represents the 

mismatch between the measurement yk 

and the model for it, Akx, where Ak 

is known and x 

is the vector of parameters to be estimated. At each time k, we wish to fnd 

bxk 

� �! ! 

0 = arg min (yi 

; Aix)
0 

iSi(yi 

; Aix) = arg min eiSiei 

, (2.3) 

x x 

i=1 i=1 

where Si 

2 Cm�m is a positive defnite Hermitian matrix of weights, so that we can vary the 

importance of the ei's and components of the ei's in determining xbk. 

To compute xbk+1, let: 323232 

y0 

A0 

e0 

yk+1 

= 

666664 

y1 

: 

: 

777775 

; Ak+1 

= 

666664 

A1 

: 

: 

777775 

; 

666664 

e1 

: 

: 

777775 

;ek+1 

= 

yk+1 

Ak+1 

ek+1 

and 

Sk+1 

= diag (S0 

, S1 

, : : : , Sk+1) 

where Si 

is the weighting matrix for ei. 

Our problem is then equivalent to 



 

 

  

 

 

 

 

 

       

 

 

 

     

 

 

 

 
 

 

 

 

  

 

 

 

 

 

 

 

 

      

 

  

 

 

 

 

 

 

         

  

 

 
 

 

 

 

 

 

 

 
 

 

 

 

 

 

 

 

                

                 

     

 

   

 

 

 

 

 

 

 

 

 

 

 

 

 

    

 

 

 

 

 
 

  

  

 

 

  

   

 

  

 

 

 

      

 

 

 

   

 

              

   

                

                

             

                

               

 

  

min(e0 

k+1Sk+1ek+1) 

subject to: = Ak+1xk+1 

+ ek+1yk+1 

The solution can thus be written as 

0 0 

(Ak+1Sk+1Ak+1)xbk+1 

= Ak+1Sk+1yk+1 

or in summation form as � !
k+1 k+1X X 

A0 

iSiAi 

xbk+1 

= A0 

iSiyi 

i=0 i=0 

Defning 

k+1X 

Qk+1 

= A0 

iSiAi: 

i=0 

we can write a recursion for Qk+1 

as follows: 

Qk+1 

= Qk 

+ Ak 

0 

+1Sk+1Ak+1: 

Rearranging the summation form equation for xbk+1, we get h P  i 

k = Q;1 

iSiAi 

bk 

+ A0xbk+1 k+1 

i=0 

A0 x k+1Sk+1yk+1 h i 

= Q;1 bk 

+ A0Qkx k+1Sk+1yk+1k+1 

This clearly displays the new estimate as a weighted combination of the old estimate and the 

new data, so we have the desired recursion. Another useful form of this result is obtained by 

substituting from the recursion for Qk+1 

above to get ;  0 x = xbk 

; Q;1 A0 bk 

; Ak 

,bk+1 k+1 

k+1Sk+1Ak+1x +1Sk+1yk+1 

which fnally reduces to 

bk 

+ Q;1 0 xbk+1 

= x Ak+1Sk+1 

(yk+1 

; Ak+1xbk)| 

k+1 {z } | {z }
Kalman Filter Gain 

innovations 

The quantity Q;1 A0 is called the Kalman gain, and yk+1 

; Ak+1xbk 

is called thek+1 

Sk+1k+1 

innovations, since it compares the diference between a data update and the prediction given 

the last estimate. 

Unfortunately, as one acquires more and more data, i.e. as k grows large, the Kalman gain 

goes to zero. One data point cannot make much headway against the mass of previous data 

which has `hardened' the estimate. If we leave this estimator as is|without modifcation|the 

estimator `goes to sleep' after a while, and thus doesn't adapt well to parameter changes. The 

homework investigates the concept of a `fading memory' so that the estimator doesn't go to 

sleep. 



   

              

  

 

    

 

          

           

 


 

          
    

  

 

 

 

    

 

 

 

 

    

 

    

 

 

 

 

  

 

 

 

 

  

 

 

 

  

 

 

 

 

     

 

 

 

 

 

 

 

 

 

 

 

 

 

       

 

  

 

 

 

       

 

  

      

  

 

    

   

       

 

  

 

  

 

 

 

 

 

 

  

 

     

 

        

An Implementation Issue 

Another concept which is important in the implementation of the RLS algorithm is the com-
putation of Q;1 If the dimension of Qk 

is very large, computation of its inverse can be k+1. 

computationally expensive, so one would like to have a recursion for Q;1 

k+1. 

This recursion is easy to obtain. Applying the handy matrix identity 

(A + BCD);1 = A;1 ; A;1B DA;1B + C;1 

;1 

DA;1 

to the recursion for Qk+1 

yields 

Q;1 = Q;1 ; Q;1A0
;1 ;1 :k+1 k k k+1 

Ak+1Qk
;1A0 

k+1 

+ Sk
;
+1
1 Ak+1Qk 

Upon defning 

= Q;1Pk+1 k+1 

, 

this becomes 

Pk+1 

= Pk 

; PkA
0 

k+1 

S;1 + Ak+1PkA
0 ;1 

Ak+1Pk 

:k+1 

k+1 

which is called the (discrete-time) Riccati equation. 

Interpretation 

We have xbk 

and yk+1 

available for computing our updated estimate. Interpreting xbk 

as a 

measurement, we see our model becomes " # " # " # 

xbk 

I ek = x + : 

yk+1 

Ak+1 

ek+1 

The criterion, then, by which we choose xbk+1 

is thus ; 0 xbk+1 

= argmin e 

0 

kQkek 

+ ek+1Sk+1ek+1 

: 

In this context, one interprets Qk 

as the weighting factor for the previous estimate. 



 

        

                

             

 

 

 

        

 

         

               

  

        

        

    

                

                  

                  

           

                     

  

                

                    

    

 

               

                   

                

   

    

       

    

 

   

 

  

             

                

                  

              

 

  

                 

                 

                  

               

     

  

  

 

             

            

            

               

        

        

Exercises 

Exercise 2.1 Least Squares Fit of an Ellipse 

Suppose a particular object is modeled as moving in an elliptical orbit centered at the origin. 

Its nominal trajectory is described in rectangular coordinates (r, s) by the constraint equation x1r
2 + 

x2s
2 + x3rs = 1, where x1, x2, and x3 

are unknown parameters that specify the orbit. We have 

available the following noisy measurements of the object's coordinates (r, s) at ten diferent points on 

its orbit: 

(0.6728, 0.0589) (0.3380, 0.4093) (0.2510, 0.3559) (-0.0684, 0.5449) 

(-0.4329, 0.3657) (-0.6921, 0.0252) (-0.3681, -0.2020) (0.0019, -0.3769) 

(0.0825, -0.3508) (0.5294, -0.2918) 

The ten measurements are believed to be equally reliable. For your convenience, these ten pairs of 

measured (r, s) values have been stored in column vectors named r and s that you can access through 

the 6.241 locker on Athena.* After add 6.241, and once in the directory in which you are running 

Matlab, you can copy the data using cp /mit/6.241/Public/fall95/hw1rs.mat hw1rs.mat. Then, 

in Matlab, type load hw1rs to load the desired data; type who to confrm that the vectors r and s are 

indeed available. 

Using the assumed constraint equation, we can arrange the given information in the form of the 

linear system of (approximate) equations Ax � b, where A is a known 10x3 matrix, b is a known 10x1 

T vector, and x = ( x1, x2, x3 

) . This system of 10 equations in 3 unknowns is inconsistent. We wish to 

fnd the solution x that minimizes the Euclidean norm (or length) of the error Ax ; b. Compare the 

solutions obtained by using the following four Matlab invocations, each of which in principle gives the 

desired least-square-error solution: 

(a) x = Anb 

(b) x = pinv(  A) * b 

(c) x = inv(  A0 * A) * A0 * b 

(d) [q, r] = qr(A), followed by implementation of the approach described in Exercise 3.1. 

For more information on these commands, try help slash, help qr, help pinv, help inv, etc. 

[Incidentally, the prime, 

0 , in Matlab takes the transpose of the complex conjugate of a matrix; if you 

want the ordinary transpose of a complex matrix C, you have to write C:  

0 or transp(C).] 

You should include in your solutions a plot the ellipse that corresponds to your estimate of x. 

If you create the following function fle in your Matlab directory, with the name ellipse.m, you can 

obtain the polar coordinates theta, rho of n points on the ellipse specifed by the parameter vector x. 

To do this, enter [theta,rho]=ellipse(x,n); at the Matlab prompt. You can then plot the ellipse 

by using the polar(theta,rho) command. 

function [theta,rho]=ellipse(x,n) 

% [theta,rho]=ellipse(x,n) 

% 

% The vector x = [x(1),x(2),x(3)]', defnes an ellipse centered at the origin 

% via the equation x(1)*r^ 2 + x(2)*s^ 2 +x(3)*r*s = 1. 

% This routine generates the polar coordinates of points on the ellipse, 

% to send to a plot command. It does this by solving for the radial 

% distance in n equally spaced angular directions. 

% Use polar(theta,rho) to actually plot the ellipse. 

* Athena is MIT's UNIX-based computing environment. OCW does not provide access to it. 



  
 

        
 

  
 

      

 

 

     

	               

 

   

   

            

        

      

 

     

 

  

             

  

       

       

               

 

                   

                  

     

              


 

 

      

 

 
 

             

  

    

             

  

       

       

             

    

theta = 0:(2*pi/n):(2*pi); 

a = x(1)*cos(theta).^ 2 + x(2)*sin(theta).^ 2 + x(3)*(cos(theta).*sin(theta)); 

rho = ones(size(a))./sqrt(a); 

Exercise 2.2 Approximation by a Polynomial 

Let f(t) = 0:5e0:8t , t 2 [0, 2]. 

(a) Suppose 16 exact measurements of f(t) are available to you, taken at the times ti 

listed in the 

array T below: 

T = [2 � 10;3 , 0:136, 0:268, 0:402, 0:536, 0:668, 0:802, 0:936, 

1:068, 1:202, 1:336, 1:468, 1:602, 1:736, 1:868, 2:000] 

Use Matlab to generate these measurements: 

yi 

= f(ti) i = 1, : : : , 16 ti 

2 T 

Now determine the coe�cients of the least square error polynomial approximation of the mea-
surements, for 

1. a polynomial of degree 15, p15(t); 

2. a polynomial of degree 2, p2(t). 

Compare the quality of the two approximations by plotting y(ti), p15(ti) and p2(ti) for all ti 

in T . To see how well we are approximating the function on the whole interval, also plot f(t), 

p15(t) and p2(t) on the interval [0, 2]. (Pick a very fne grid for the interval, e.g. t=[0:1000]'/500.) 

Report your observations and comments. 

(b) Now suppose that your measurements are afected by some noise. Generate the measurements 

using 

yi 

= f(ti) + e(ti) i = 1, : : : , 16 ti 

2 T 

where the vector of noise values can be generated in the following way: 

randn(0seed0 , 0); 

e = randn(size(T )); 

Again determine the coe�cients of the least square error polynomial approximation of the mea-
surements for 

1. a polynomial of degree 15, p15(t); 

2. a polynomial of degree 2, p2(t). 

Compare the two approximations as in part (a). Report your observations and comments. 

Explain any surprising results. 



	                  

  

 

               

       

 

 

   

 

    

 

 

 

                 

                   

      

    

 

 

   

 

 

 

           

 

   

	   

 

       

 

 

   

 

     

 

  

 

 

 

             

 

 

 

 

 

 

 

                

 

 

 

 

 

 

 

 

 

 

        

     

      

 

   

 

   

 

 

        

	                   

    

 

      

 

 

 

 	       

 

         
 

 

 

 

 

 

 

 

 

 

  

               

                  

                

                  

               

         

(c) So far we have obtained polynomial approximations of f(t) , t 2 [0, 2] , by approximating the 

measurements at ti 

2 T . We are now interested in minimizing the square error of the polynomial 

approximation over the whole interval [0, 2]: Z 2 

min kf(t) ; pn(t)k2 = min jf(t) ; pn(t)j2 dt2 

0 

where pn(t) is some polynomial of degree n. Find the polynomial p2(t) of degree 2 that solves 

the above problem. Are the optimal p2(t) in this case and the optimal p2(t) of parts (a) and (b) 

very diferent from each other? Elaborate. 

Exercise 2.3 Combining Estimates 

Suppose y1 

= C1x + e1 

and y2 

= C2x + e2, where x is an n-vector, and C1, C2 

have full column 

Trank. Let x̂  1 

denote the value of x that minimizes e1 

S1e1, and x̂  2 

denote the value that minimizes 

Te2 

S2e2, where S1 

and S2 

are positive defnite matrices. Show that the value x̂ of x that minimizes 

T Te1 

S1e1 

+ e2 

S2e2 

can be written entirely in terms of x̂ 1, x̂  2, and the n x n matrices Q1 

= C1 

T S1C1 

and 

Q2 

= C2 

T S2C2. What is the signifcance of this result? 

Exercise 2.4 Exponentially Windowed Estimates 

Suppose we observe the scalar measurements 

yi 

= cix + ei 

, i = 1, 2, : : : 

where ci 

and x are possibly vectors (row- and column-vectors respectively). 

(a) Show (by reducing this to a problem that we already know how to solve | don't start from 

scratch!) that the value x̂ k 

of x that minimizes the criterion 

kX 

fk;i 2 ei 

, some fxed f, 0 � f � 1 

i�1 

is given by Xk ;1 

Xk 

fk;i T fk;i T x̂ k 

= ci 

ci 

ci 

yi 

i�1 i�1 

The so-called fade or forgetting factor f allows us to preferentially weight the more recent mea-
surements by picking 0 � f � 1, so that old data is discounted at an exponential rate. We 

then say that the data has been subjected to exponential fading or forgetting or weighting or 

windowing or tapering or ... . This is usually desirable, in order to keep the flter adaptive to 

changes that may occur in x. Otherwise the flter becomes progressively less attentive to new 

data and falls asleep, with its gain approaching 0. 



	    

 

 

  

 

 

 

 

 

 

  

 

 




 

 

 

 

 

 




  

 

 

 

 

 

       

	    

 

   

 

     

 

        

    

 

            

 

                  

              

                

      

            

 

   

 

 

                  

            

            

                 

                  

   

	                    

           

 

 

 

  

             

              

     

 

 

 

      

                

	  

 

     

 

     

	       

 

 

 

           

 

 

  

 

            

      

 

  

 

      

  

(b) Now show that 

x̂ k 

= x̂ k;1 

+ Q; 

k 

1 ck
T (yk 

; ckx̂  k;1 

) 

where 

TQk 

= fQk;1 

+ ck 

ck, Q0 

= 0 

The vector gk 

= Q;1 cT is termed the gain of the estimator.k k 

(c) If x and ci 

are scalars, and ci 

is a constant c, determine gk 

as a function of k. What is the 

steady-state gain g1? Does g1 

increase or decrease as f increases | and why do you expect 

this? 

Exercise 2.5 Suppose our model for some waveform y(t) is y(t) = a sin (!t), where a is a scalar, 

and suppose we have measurements y(t1), : : : , y(tp). Because of modeling errors and the presence of 

measurement noise, we will generally not fnd any choice of model parameters that allows us to pre-
cisely account for all p measurements. 

(a) If ! is known, fnd the value of a that minimizes 

pX 

[y(ti) ; a sin(!ti)]
2 

i�1 

(b) Determine this value of a if ! = 2 and if the measured values of y(t) are: 

y(1) = +2:31 y(2) = ;2:01 y(3) = ;1:33 y(4) = +3:23 

y(5) = ;1:28 y(6) = ;1:66 y(7) = +3:28 y(8) = ;0:88 

(I generated this data using the equation y(t) = 3 sin(2t) + e(t) evaluated at the integer values 

t = 1, : : : , 8, and with e(t) for each t being a random number uniformly distributed in the interval 

- 0.5 to +0.5.) 

(c) Suppose that a and ! are unknown, and that we wish to determine the values of these two variables 

that minimize the above criterion. Assume you are given initial estimates a0 

and !0 

for the 

minimizing values of these variables. Using the Gauss-Newton algorithm for this nonlinear least 

squares problem, i.e. applying LLSE to the problem obtained by linearizing about the initial 

estimates, determine explicitly the estimates a1 

and !1 

obtained after one iteration of this 

algorithm. Use the following notation to help you write out the solution in a condensed form: X X X 

a = sin2(!0ti) , b = t2 

i 

cos 

2(!0ti) , c = ti[sin(w0ti)][cos(w0ti)] 

(d) What values do you get for a1 

and !1 

with the data given in (b) above if the initial guesses 

are a0 

= 3:2 and !0 

= 1:8 ? Continue the iterative estimation a few more steps. Repeat the 

procedure when the initial guesses are a0 

= 3:5 and !0 

= 2:5, verifying that the algorithm does 

not converge. 



	                  

               

         

 

     

 

    

              

 

  

                

            

 

    

               

    

 

    

     

              

                      

     

               

                  

                           

              

        

                

                

                   

 

                   

                  

        

              

 

 

 

 

                  

       

    

                

       

 

     

 

   

                        

     

 

         

      

 

 

 

 

 

 

 

 

 

  

 

 

 

             

        

            

 

 

	 

 

(e) Since only ! enters the model nonlinearly, we might think of a decomposed algorithm, in which a 

is estimated using linear least squares and ! is estimated via nonlinear least squares. Suppose, 

for example, that our initial estimate of ! is !0 

= 1:8. Now obtain an estimate a1 

of a using the 

linear least squares method that you used in (b). Then obtain an (improved?) estimate !1 

of !, 

using one iteration of a Gauss-Newton algorithm (similar to what is needed in (c), except that 

now you are only trying to estimate !). Next obtain the estimate a2 

via linear least squares, 

and so on. Compare your results with what you obtain via this decomposed procedure when 

your initial estimate is !0 

= 2:5 instead of 1.8. 

Exercise 2.6 Comparing Diferent Estimators 

This problem asks you to compare the behavior of diferent parameter estimation algorithms by 

ftting a model of the type y(t) = a sin(21t) + b cos(41t) to noisy data taken at values of t that are .02 

apart in the interval (0,2]. 

First synthesize the data on which you will test the algorithms. Even though your estimation 

algorithms will assume that a and b are constant, we are interested in seeing how they track parameter 

changes as well. Accordingly, let a = 2, b = 2 for the frst 50 points, and a = 1, b = 3 for the next 50 

points. To get (approximately) normally distributed random variables, we use the function randn to 

produce variables with mean 0 and variance 1. 

An elegant way to generate the data in Matlab, exploiting Matlab's facility with vectors, is to 

defne the vectors t1 = 0:02 : 0:02 : 1:0 and t2 = 1:02 : 0:02 : 2:0, then set 

y1 = 2 * sin(2 * pi * t1) + 2 * cos(4 * pi * t1) + s * randn(size(t1)) 

and 

y2 = sin(2 * pi * t2) + 3 * cos(4 * pi * t2) + s * randn(size(t2)) 

where s determines the standard deviation of the noise. Pick s = 1 for this problem. Finally, set 

y = [y1, y2]. No loops, no counters, no fuss!! 

Now estimate a and b from y using the following algorithms. Assume prior estimates â 0 

= 3 

and b̂0 

= 1, weighted equally with the measurements (so all weights can be taken as 1 without loss of 

generality). Plot your results to aid comparison. 

(i) Recursive least squares. 

(ii) Recursive least squares with exponentially fading memory, as in Problem 3. Use f = :96. 

(iii) The algorithm in (ii), but with Qk 

of Problem 3 replaced by qk 

= (1/n)xtrace(Qk), where 

n is the number of parameters, so n = 2 in this case. (Recall that the trace of a matrix is the sum of 

its diagonal elements. Note that qk 

itself satisfes a recursion, which you should write down.) 

(iv) An algorithm of the form 

:04 T x̂ k 

= x̂ k;1 

+ ck 

(yk 

; ckx̂ k;1)Tckck 

where ck 

= [sin(21t), cos(41t)] evaluated at the kth sampling instant, so t = :02k. 

Exercise 2.7 Recursive Estimation of a State Vector 

This course will soon begin to consider state-space models of the form 

x` 

= Ax`;1 

(2.4) 



 

 

                    

                  

 

   

 

                 

              

   

 

 

 

 

 

 

        

              

              

 

 

                

  

 

        

 

    

 

 

      

 

 

 

 

 

  

                

 

 

 

  

 

 

 

 

 

 

 

 

    

 

  

 

 

 

     

 

             

     

 

    

 

  

 

 

 

      

 

        
 

          
 

               
  


              

 




    

 

 
 


       

 

   
 

 

       


                


              


    


                   


                  


          
  
 

  

    

   

                 

                     

                 

where x` 

is an n-vector denoting the state at time ` of our model of some system, and A is a known 

n x n matrix. For example, suppose the system of interest is a rotating machine, with angular position 

d` 

and angular velocity !` 

at time t = `T , where T is some fxed sampling interval. If we believed the 

machine to be rotating at constant speed, we would be led to the model � � � �� � 

d` 

1 T d`;1 = 

!` 

0 1 !`;1 

Assume A to be nonsingular throughout this problem. 

For the rotating machine example above, it is often of interest to obtain least-square-error esti-
mates of the position and (constant) velocity, using noisy measurements of the angular position dj 

at 

the sampling instants. More generally, it is of interest to obtain a least-square-error estimate of the 

state vector xi 

in the model (2.4) from noisy p-component measurements yj 

that are related to xj 

by 

a linear equation of the form 

yj 

= Cxj 

+ ej 

, j = 1, : : : , i 

where C is a p x n matrix. We shall also assume that a prior estimate x̂  0 

of x0 

is available: 

x̂  0 

= x0 

+ e0 

Let x̂ iji 

denote the value of xi 

that minimizes 

iX 

kejk2 

j�0 

This is the estimate of xi 

given the prior estimate and measurements up to time i, or the \fltered 

estimate" of xi. Similarly, let x̂ iji;1 

denote the value of xi 

that minimizes 

i;1X 

kejk2 

j�0 

This is the least-square-error estimate of xi 

given the prior estimate and measurements up to time 

i ; 1, and is termed the \one-step prediction" of xi. 

a) Set up the linear system of equations whose least square error solution would be x̂  iji. Similarly, 

set up the linear system of equations whose least square error solution would be x̂  iji;1 

. 

b) Show that x̂ iji;1 

= Ax̂  i;1ji;1. 

c) Determine a recursion that expresses x̂  iji 

in terms of x̂  i;1ji;1 

and yi. This is the prototype of what 

is known as the Kalman �lter. A more elaborate version of the Kalman flter would include additive 

noise driving the state-space model, and other embellishments, all in a stochastic context (rather than 

the deterministic one given here). 

Exercise 2.8 Let x̂ denote the value of x that minimizes ky ; Axk2 , where A has full column rank. 

Let x denote the value of x that minimizes this same criterion, but now subject to the constraint that 

z = Dx, where D has full row rank. Show that 

;1 

x = x̂+ (AT A);1DT D(AT A);1DT (z ; Dx̂) 

(Hint: One approach to solving this is to use our recursive least squares formulation, but modifed for 

the limiting case where one of the measurement sets | namely z = Dx in this case | is known to 

have no error. You may have to use some of the matrix identities from the previous chapter). 



  

         

  

               

             

 

    

                

   

 

            

           

    

            

                

      

 

   

 

               

            

 

 

    

               

                  

  

  

 

  

Chapter 3 

Least Squares Solution of y �-A, x> 

3.1 Introduction 

We turn to a problem that is dual to the overconstrained estimation problems considered so 

far. Let A denote an array of m vectors, A = [a1j · · · jam], where the ai 

are vectors from any 

space on which an inner product is defned. The space is allowed to be infnite dimensional, 

e.g. the space L2 of square integrable functions mentioned in Chapter 2 . We are interested 

in the vector x, of minimum length, that satisfy the equation 

y =-A x> (1a) 

where we have used the Gram product notation introduced in Chapter 2. 

Example 3.1 Let y[0] denote the output at time 0 of a noncausal FIR flter whose 

input is the sequence x[k], with 

NX 

y[0] = hix[;i]: 

ih;N 

Describe the set of input values that yield y[0] = 0; repeat for y[0] = 7. The PNsolution of minimum energy (or RMS value) is the one that minimizes ih;N 

x2[i]. 

3.2 Constructing all Solutions 

When the ai's are drawn from ordinary (real or complex) Euclidean n-space, with the usual 

(unweighted) inner product, A is an nx m matrix of full column rank, and the equation (1a) 

is simply 

y = A0 x  (1b) 



 

 

         

 

        

                

           

 

      

        

 

 

            

            

 

    

                

               

                

   

  

  

  

                

               

                

             

    

   

 

  

                      

               

 

 

                  

                 

                 

     

 

     

 

   

    

  

 

 

 

 

  

 

      

 

 

  

 

 

  

 

 

  

 

    

 

 

     

 

  

 

               

                 

             

        

 

         

 

 

                

                

           

where A0 has full row rank. Since the m rows of A0 in (1b) are independent, this matrix has m 

independent columns as well. It follows that the system (1b), which can be read as expressing 

y in terms of a linear combination of the columns of A0 (with weights given by the components 

of x) has solutions x for any y. 

If A0 were square and therefore (under our rank assumption) invertible, (1b) would have 

a unique solution, obtained simply by premultiplying (1b) by the inverse of A0 . The closest we 

come to having an invertible matrix in the non-square case is by invoking the Gram matrix 

lemma, which tells us that A0A is invertible under our rank assumption. This fact, and 

inspection of (1b), allow us to explicitly write down one particular solution of (1b), which we 

denote by xx: 

xx = A (A0 A);1 y (2a) 

Simple substitution of this expression in (1b) verifes that it is indeed a solution. We shall 

shortly see that this solution actually has minimum length (norm) among all solutions of (1b). 

For the more general equation in (1a), we can establish the existence of a solution by 

demonstrating that the appropriate generalization of the expression in (2a) does indeed satisfy 

(1a). For this, pick 

;1 xx = A -A A> y (2b) 

It is easy to see that this satisfes (1a), if we use the fact that -A A� >=-A A> � for any 

array � of scalars; in our case � is the m x 1 array -A A>;1 y. 

Any other x is a solution of (1a) i� it di�ers from the particular solution above (or any 

other particular solution) by a solution of the homogeneous equation -A x >= 0; the same 

statement can be made for solutions of (1b). The proof is easy, and presented below for (1b), 

with x denoting any solution, xp 

denoting a particular solution, and xh 

denoting a solution 

of the homogeneous equation: 

y = A0 xp 

= A0 x ) A0 (x ; xp) = 0 ) x = xp 

+ xh| {z }
xh 

Conversely, 

y = A0 xp 

A0 xh 

= 0 ) y = A0 |(xp 

+ {z 

xh}) ) x = xp 

+ xh: 

x 

Equations of the form (1a), (1b) commonly arise in situations where x represents a vector 

of control inputs and y represents a vector of objectives or targets. The problem is then to 

use some appropriate criterion and/or constraints to narrow down the set of controls. 

Example 3.2 Let m = 1, so that A0 is a single nonzero row, which we shall denote 

by a0 . If y = 0, the set of solutions corresponds to vectors x that are orthogonal 

to the vector a, i.e. to vectors in the orthogonal complement of a, namely in the 

subspace Ra�(a). Use this to costruct all solutions to Example 3.1. 



              

               

   

 

             

 

  

 

            

            

                

        

               

 

 

                  

                

                  

               

                    

                  

                   

         

    

          

 

       

            

 

     

               

      

 

      

 

 

                  

 

   

 

  

                

   

     

 

           

         

 

         

 

 

 

    

     
 

  

 

 
 

 

                  

 

    

       

 

  

             

              

 

 

        

There are several di�erent criteria and constraints that may reasonably be used to select 

among the di�erent possible solutions. For example, in some problems it may be natural to 

restrict the components xi 

of x to be nonnegative, and to ask for the control that minimizes P 

sixi, where si 

represents the cost of control component xi. This is the prototypical form 

of what is termed the linear programming problem. (You should geometrically characterize 

the solution to this problem for the case given in the above example.) The general linear 

programming problem arises in a host of applications. 

We shall focus on the problem of determining the solution x of (1a) for which kxk2 =< 

x x > is minimized; in the case of (1b), we are looking to minimize x0x. For the situation 

depicted in the above example, the optimum x is immediately seen to be the solution vector 

that is aligned with a. It can be found by projecting any particular solution of (1b) onto the 

space spanned by the vector a. (This fact is related to the Cauchy-Schwartz inequality: For 

x of a specifed length, the inner product < a x > is maximized by aligning x with a, and for 

specifed < a x > the length of x is minimized by again aligning x with a.) The generalization 

to m > 1 and to the broader setting of (1a) is direct, and is presented next. You should note 

the similarity to the proof of the orthogonality principle. 

3.3 Least Squares Solution 

Let x be a particular solution of (1a). Denote by xA 

its unique projection onto the range of 

A (i.e. onto the space spanned by the vectors ai) and let xA� 

denote the projection onto the 

space orthogonal to this. Following the same development as in the proof of the orthogonality 

principle in Lecture 2, we fnd 

;1 xA 

= A -A A> -A x> (3a) 

with xA� 

= x ; xA. Now (1a) allows us to make the substitution y =-A x> in (3a), so 

;1 xA 

= A -A A> y (3b) 

which is exactly the expression we had for the solution xx that we determined earlier by 

inspection, see (2b). 

Now note from (3b) that xA 

is the same for all solutions x, because it is determined 

entirely by A and y. Hence it is only xA� 

that is varied by varying x. The orthogonality of 

xA 

and xA� 

allows us to write 

< x x > = < xA 

xA 

> + < xA� 

xA� 

> 

so the best we can do as far as minimizing < x x > is concerned is to make xA� 

= 0. In other 

words, the optimum solution is x = xA 

= xx. 

Example 3.3 For the FIR flter mentioned in Example 3.1, and considering all in-
put sequences x[k] that result in y[0] = 7, fnd the sequence for which 

PN
ih;N 

x2[i] 

is minimized. (Work out this example for yourself!) 
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Example 3.4 Consider a unit mass moving in a straight line under the action of 

a force x(t), with position at time t given by p(t). Assume p(0) = 0, p_(0) = 0, and 

suppose we wish to have p(T ) = y (with no constraint on p_(T )). Then Z T 

y = p(T ) = (T ; t)x(t) dt =< a(t) x(t) > (4) 

0 

This is a typical underconstrained problem, with many choices of x(t) for 0 : t : T 

that will result in p(T ) = y. Let us fnd the solution x(t) for which Z T 

x 

2(t) dt = < x(t) x(t) > (5) 

0 

is minimized. Evaluating the expression in (2a), we fnd 

x(t) = (T ; t)y/(T 

3/3) (6) 

How does your solution change if there is the additional constraint that the mass 

should be brought to rest at time T , so that p_(T ) = 0? 

We leave you to consider how weighted norms can be minimized. 



 

               

                 

                 

           

	           

	             

	                   

                    

       

                   

                 

                   

               

 

 

	   

 

                  

                   

                

 

 

                     

                  

       

 

            

                 

     

 

 

 

 

 

                

   

 

           

       

 

        

              

                

                    

              

            

            

                

   

 

 

 

 

 

Exercises 

Exercise 3.1 Least Square Error Solution We begin with a mini-tutorial on orthogonal and unitary 

matrices. An orthogonal matrix may be defned as a square real matrix whose columns are of unit 

length and mutually orthogonal to each other | i.e., its columns form an orthonormal set. It follows 

quite easily (as you should try and verify for yourself) that: 

� the inverse of an orthogonal matrix is just its transpose� 

� the rows of an orthogonal matrix form an orthonormal set as well� 

0� the usual Euclidean inner product of two real vectors v and w, namely the scalar v w, equals 

the inner product of Uv and Uw, if U is an orthogonal matrix | and therefore the length of v,p
namely v 

0v, equals that of Uv. 

A unitary matrix is similarly defned, except that its entries are allowed to be complex | so its inverse 

is the complex conjugate of its transpose. A fact about orthogonal matrices that turns out to be 

important in several numerical algorithms is the following: Given a real m � n matrix A of full column 

rank, it is possible (in many ways) to fnd an orthogonal matrix U such that � � 

R 

UA = 

0 

where R is a nonsingular, upper-triangular matrix. (If A is complex, then we can fnd a unitary matrix 

U that leads to the same equation.) To see how to compute U in Matlab, read the comments obtained 

by typing help qr� the matrix Q that is referred to in the comments is just U 0 . 

We now turn to the problem of interest. Given a real m � n matrix A of full column rank, and 

a real m-vector y, we wish to approximately satisfy the equation y = Ax. Specifcally, let us choose 

the vector x to minimize ky ; Axk2 = (y ; Ax)0(y ; Ax), the squared Euclidean length of the \error" 

y ; Ax. By invoking the above results on orthogonal matrices, show that (in the notation introduced 

earlier) the minimizing x is 

x̂ = R;1 y1 

where y1 

denotes the vector formed from the frst n components of Uy. (In practice, we would not 

bother to fnd R;1 explicitly. Instead, taking advantage of the upper-triangular structure of R, we 

would solve the system of equations Rx̂ = y1 

by back substitution, starting from the last equation.) 

The above way of solving a least-squares problem (proposed by Householder in 1958, but some-
times referred to as Golub's algorithm) is numerically preferable in most cases to solving the \normal 

equations" in the form x̂ = (A0A);1A0y, and is essentially what Matlab does when you write x̂ = Any. 

An (oversimplifed!) explanation of the trouble with the normal equation solution is that it implic-
itly evaluates the product (R0R);1R0 , whereas the Householder/Golub method recognizes that this 

product simply equals R;1 , and thereby avoids unnecessary and error prone steps. 

Exercise 3.2 Suppose the input sequence fujg and the output sequence fyjg of a particular system 

are related by Xn 

yk 

= hiuk;i 

i�1 



     

      

 

       

 

   

    

 

   

 

 

              

 

     

      

 

    

  

 

 

 

   

 

 

       

     

	                        

          

               

                        

                     

 

      

 

  

        

 

           

                  

  

	    

 

         

 

     

   

 

 

 

             

where all quantities are scalar. 

(i) Assume we want to have yn 

equal to some specifed number yf. Determine u0, : : : , un;1 

so as to 

achieve this while minimizing u0
2 + : : : + un 

2 

;1. 

(ii) Suppose now that we are willing to relax our objective of exactly attaining yn 

= yf. This leads us 

to the following modifed problem. Determine u0, : : : , un;1 

so as to minimize 

)2 2 2 r(yf ; yn 

+ u0 

+ : : : + un;1 

where r is a positive weighting parameter. 

(a) Solve the modifed problem. 

(b) What do you expect the answer to be in the limiting cases of r = 0 and r = 1? Show that your 

answer in (a) indeed gives you these expected limiting results. 

Exercise 3.3 Return to the problem considered in Example 3.4. Suppose that, in addition to re-
quiring p(T ) = y for a specifed y, we also want p_(T ) = 0. In other words, we want to bring the mass 

to rest at the position y at time T . Of all the force functions x(t) that can accomplish this, determine R T
the one that minimizes < x(t), x(t) >= 

0 

x2(t) dt. 

Exercise 3.4 (a) Given y = A0x, with A0 of full row rank, fnd the solution vector x for which 

0x Wx is minimum, where W = L0L and L is nonsingular (i.e. where W is Hermitian and posi-
tive defnite). 

(b) A specifed current I0 

is to be sent through the fxed voltage source V0 

in the fgure. Find what 

values v1, v2, v3 

and v4 

must take so that the total power dissipation in the resistors is minimized. 



  

     

 

  

               

                 

                  

              

              

                

               

   

           

               

             

            

    

 

  

  

 
 

    
 

 

 

 

  

 
 

      
 

 

  

   

  

Chapter 4 

Matrix Norms and Singular Value 

Decomposition 

4.1 Introduction 

In this lecture, we introduce the notion of a norm for matrices. The singular value decom-

position or SVD of a matrix is then presented. The SVD exposes the 2-norm of a matrix, 

but its value to us goes much further: it enables the solution of a class of matrix perturbation 

problems that form the basis for the stability robustness concepts introduced later; it solves 

the so-called total least squares problem, which is a generalization of the least squares estima-
tion problem considered earlier; and it allows us to clarify the notion of conditioning, in the 

context of matrix inversion. These applications of the SVD are presented at greater length in 

the next lecture. 

Example 4.1 To provide some immediate motivation for the study and applica-
tion of matrix norms, we begin with an example that clearly brings out the issue 

of matrix conditioning with respect to inversion. The question of interest is how 

sensitive the inverse of a matrix is to perturbations of the matrix. 

Consider inverting the matrix � � 

100 100 

A = (4.1)
100:2 100 

A quick calculation shows that � � ;5 5 

A;1 = (4.2)
5:01 ;5 

Now suppose we invert the perturbed matrix � � 

100 100 

A +�A = (4.3)
100:1 100 



    

 

 

 

 

 

  

  

  

            

  

 

              

      

 

            

    

 

      

 

       

      

 

         

             

                 

                

                   

               

                  

                

                

      

             

             

                

   

                 

    

 

   

 

     

 

	  

                

    

 

 

	   

 

  

 

	  

 

 

                   

                 

              

               

                

             

 

 

   

 

	  

  

 

The result now is � � ;10 10 

(A +�A);1 = A;1 + �(A;1) = (4.4)
10:01 ;10 

Here �A denotes the perturbation in A and �(A;1) denotes the resulting per-
turbation in A;1 . Evidently a 0.1% change in one entry of A has resulted in a 

100% change in the entries of A;1 . If we want to solve the problem Ax = b where 

b = [1 ; 1]T , then x = A;1b = [;10 10:01]T , while after perturbation of A we 

get x +�x = (A +�A);1b = [;20 20:01]T . Again, we see a 100% change in the 

entries of the solution with only a 0.1% change in the starting data. 

The situation seen in the above example is much worse than what can ever arise in the 

scalar case. If a is a scalar, then d(a;1)�(a;1) = ;da�a, so the fractional change in the 

inverse of a has the same maginitude as the fractional change in a itself. What is seen in the 

above example, therefore, is a purely matrix phenomenon. It would seem to be related to 

the fact that A is nearly singular | in the sense that its columns are nearly dependent, its 

determinant is much smaller than its largest element, and so on. In what follows (see next 

lecture), we shall develop a sound way to measure nearness to singularity, and show how this 

measure relates to sensitivity under inversion. 

Before understanding such sensitivity to perturbations in more detail, we need ways to 

measure the \magnitudes" of vectors and matrices. We have already introduced the notion 

of vector norms in Lecture 1, so we now turn to the defnition of matrix norms. 

4.2 Matrix Norms 

An m � n complex matrix may be viewed as an operator on the (fnite dimensional) normed 

vector space C 

n: 

Amxn : ( C 

n� k � k2 

) ;! ( C 

m� k � k2 

) (4.5) 

where the norm here is taken to be the standard Euclidean norm. Defne the induced 2-norm 

of A as follows: 

4 

kAxk2kAk2 

= sup (4.6) 

x 6=0 

kxk2 

= max kAxk2 

: (4.7) 

kxk
2 

=1 

The term \induced" refers to the fact that the defnition of a norm for vectors such as Ax and 

x is what enables the above defnition of a matrix norm. From this defnition, it follows that 

the induced norm measures the amount of \amplifcation" the matrix A provides to vectors 

on the unit sphere in C 

n , i.e. it measures the \gain" of the matrix. 

Rather than measuring the vectors x and Ax using the 2-norm, we could use any p-norm, 

the interesting cases being p = 1� 2� 1. Our notation for this is 

kAk p 

= max kAxk p 

: (4.8) 

kxk =1 p 



                

                 

          

    

       

      

 

     

 

     

                   

  

      

 

     

 

 

 

 

  

 

 

 

   

     
 

   

 

     




  

 

 

     

  

 

 

    

 

          

                

 

  

 

 

 

 

  

  

            

 

  

  

    

  

   

 


 


 

 

  

 

 

 

     

               

                  

              

An important question to consider is whether or not the induced norm is actually a norm, 

in the sense defned for vectors in Lecture 1. Recall the three conditions that defne a norm: 

1. kxk 2 0, and kxk = 0 () x = 0; 

2. koxk = joj kxk; 

3. kx + yk < kxk + kyk . 

Now let us verify that kAk is a norm on C 

mxn | using the preceding defnition: p 

1. kAk 2 0 since kAxk 2 0 for any x. Futhermore, kAk = 0 () A = 0, since kAk is p p p p 

calculated from the maximum of kAxk p 

evaluated on the unit sphere. 

2. koAkp 

= joj kAkp 

follows from koykp 

= joj kykp 

(for any y). 

3. The triangle inequality holds since: 

kA + Bk p 

= max k(A + B)xk pkxk p=1   
< max kAxk p 

+ kBxk pkxk =1p 

< kAk + kBk p 

: p 

Induced norms have two additional properties that are very important: 

1. kAxk < kAk kxk , which is a direct consequence of the defnition of an induced norm;p p p 

2. For Amxn , Bnxr , 

kABk p 

< kAk kBk p 

(4.9)p 

which is called the submultiplicative property. This also follows directly from the defni-
tion: 

kABxk p 

< kAk kBxk pp 

< kAk kBk kxk for any x: p p p 

Dividing by kxk p 

: 

kABxk p < kAk kBk � p pkxk p 

from which the result follows. 

Before we turn to a more detailed study of ideas surrounding the induced 2-norm, which 

will be the focus of this lecture and the next, we make some remarks about the other induced 

norms of practical interest, namely the induced 1-norm and induced 1-norm. We shall also 
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say something about an important matrix norm that is not an induced norm, namely the 

Frobenius norm. 

It is a fairly simple exercise to prove that 

Xm 

kAk1 

= max jaij j (max of absolute column sums of A) (4.10)
1�j�n 

i=1 

and Xn 

kAk1 

= max jaijj (max of absolute row sums of A) : (4.11)
1�i�m 

j=1 

(Note that these defnitions reduce to the familiar ones for the 1-norm and 1-norm of column 

vectors in the case n = 1.) 

The proof for the induced 1-norm involves two stages, namely: 

1. Prove that the quantity in Equation (4.11) provides an upper bound �: 

kAxk1 

< �kxk1 

8x ; 

2. Show that this bound is achievable for some x = x̂: 

kAx̂k1 

= �kx̂k1 

for some x̂ : 

In order to show how these steps can be implemented, we give the details for the 1-norm 

case. Let x 2 C 

n and consider 

Xn 

kAxk1 

= max j aijxjj
1�i�m 

j=1 Xn 

< max jaijjjxj j
1�i�m 

j=1 0 1 Xn 

< 

@ max jaij jA max jxjj
1�i�m 1�j�n 

j=1 0 1 Xn 

= 

@ max jaij jA kxk1 

1�i�m 

j=1 

The above inequalities show that an upper bound � is given by 

Xn 

max kAxk1 

< � = max jaijj: 

kxk1=1 

1�i�m 

j=1 



                    




 

 

             

 

      

 




 

 

 

 

 



 



 

 

 

 

   

 

 

    

 

 

                 

              

                 

  

 


 


 

 

 


 

 


 

  

 

 




 


 

 

 

	  

                  

                 

 

 

                  

             

              

        

    

              

   

   

	      

 

     

 

        

            

      

	     

 

   

 

  

 

     

 

 

  

	       

 

  

 

Now in order to show that this upper bound is achieved by some vector x̂, let �i be an index P n 

j=1 

ja�ij  

j.at which the expression of � achieves a maximum, that is � = Defne the vector x̂ 

as 32 66664 

sgn(a�i1) 

sgn(a�i2) 

. . . 

sgn(a�in) 

77775 

x̂ = : 

Clearly kx̂k1 

= 1 and 

n 

kAx̂k1 

= ja�ijj = �: 

X 

j=1 

The proof for the 1-norm proceeds in exactly the same way, and is left to the reader. 

There are matrix norms | i.e. functions that satisfy the three defning conditions stated 

earlier | that are not induced norms. The most important example of this for us is the 

Frobenius norm: 10 1 

2n mXX 4 jaijj2A@kAkF 

(4.12)= 

j=1 i=1  1 

2trace(A0A) (verify) (4.13)
;

= 

In other words, the Frobenius norm is defned as the root sum of squares of the entries, i.e. 

the usual Euclidean 2-norm of the matrix when it is regarded simply as a vector in C 

mn . 

Although it can be shown that it is not an induced matrix norm, the Frobenius norm still has 

the submultiplicative property that was noted for induced norms. Yet other matrix norms 

may be defned (some of them without the submultiplicative property), but the ones above 

are the only ones of interest to us. 

4.3 Singular Value Decomposition 

Before we discuss the singular value decomposition of matrices, we begin with some matrix 

facts and defnitions. 

Some Matrix Facts: 

� A matrix U 2 C 

nxn is unitary if U 0U = UU 0 = I. Here, as in Matlab, the superscript 

denotes the (entry-by-entry) complex conjugate of the transpose, which is also called 

the Hermitian transpose or conjugate transpose. 

� A matrix U 2 R
nxn is orthogonal if UT U = UUT = I, where the superscript 

T denotes 

the transpose. 

� Property: If U is unitary, then kUxk2 

= kxk2. 

0 
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� If S = S0 (i.e. S equals its Hermitian transpose, in which case we say S is Hermitian), 

then there exists a unitary matrix such that U 0SU = [diagonal matrix].1 

� For any matrix A, both A0A and AA0 are Hermitian, and thus can always be diagonalized 

by unitary matrices. 

� For any matrix A, the eigenvalues of A0A and AA0 are always real and non-negative 

(proved easily by contradiction). 

Theorem 4.1 (Singular Value Decomposition, or SVD) Given any matrix A 2 C 

mxn , 

A can be written as 

nxnmxm mxn 

A = U : 

V 

0 (4.14) 

where U 0U = I, V 

0V = I, 32 

C1 6666664 

7777775 

. . . 0 

Cr 

: = (4.15) 

0 0 

ith nonzero eigenvalue of A0A. 

are arranged in order of descending magnitude, i.e.,

p
and Ci 

The Ci 

are termed the singular values of A, and= 

C1 

2 C2 

2 � � � 2 Cr 

� 0 : 

Proof: We will prove this theorem for the case rank(A) = m; the general case involves very 

little more than what is required for this case. The matrix AA0 is Hermitian, and it can 

therefore be diagonalized by a unitary matrix U 2 C 

mxm , so that 

U�1U
0 = AA0: 

Note that �1 

= diag(�1 

�2 

: : : �m) has real positive diagonal entries �i 

due to the fact that 

:2 2 2 2 0 2 C 

mxnAA0 is positive defnite. We can write �1 

= 1 

= diag(C1 

C2 

: : : Cm). Defne V1 0 :; 0by V1 

= 1
1U 0A. V1 

has orthonormal rows as can be seen from the following calculation: 

;1 1V1 

0V1 

= :1 

U 0AA0U:;1 

= I. Choose the matrix V2 

0 in such a way that #" 

V 

0 

V 

0 1= 

V 

0 

2 

is in C 

nxn and unitary. Defne the m � n matrix : = [:1j0]. This implies that 

:V 

0 = :1V1 

0 = U 0A: 

In other words we have A = U:V 

0 . 

1 One cannot always diagonalize an arbitrary matrix|cf the Jordan form. 
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Example 4.2 For the matrix A given at the beginning of this lecture, the SVD 

| computed easily in Matlab by writing [u� s� v] = svd(A) | is � �� �� 

:7068 :7075 200:1 0 :7075 :7068 

� 

Observations: 

A = 

:7075 : ; 7068 0 0:1 ;:7068 :7075 

(4.16) 

i) 

AA0 = U:V 

0V :T U 0 

2 6666664 

U::T U 0 = 3 

C1
2 

. . . 0 

7777775 

U 0U (4.17)C2 

r 

= 

0 0 

which tells us U diagonalizes AA0; 

ii) 

A0A = V :T U 0U:V 

0 

2 6666664 

V :T :V 

0 = 3 

C1
2 

. . . 0 

7777775 

V 

0V (4.18)C2 

r 

= 

0 0 

which tells us V diagonalizes A0A; 

iii) If U and V are expressed in terms of their columns, i.e., ih 

U = u1 

u2 

� � � um 

and ih 

X 

V = v1 

v2 

� � � vn 

then 

r 

A = Ciuivi 

0 (4.19) 

i=1 
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which is another way to write the SVD. The ui 

are termed the left singular vectors of 

A, and the vi 

are its right singular vectors. From this we see that we can alternately 

interpret Ax as Xr ;  
Ax = Ci 

ui 

vi 

0 x (4.20)| {z }
i=1 

projection 

which is a weighted sum of the ui, where the weights are the products of the singular 

values and the projections of x onto the vi. P rObservation (iii) tells us that Ra(A) = span fu1 

: : : urg (because Ax = |i=1 

ciui 

where the ci 

are scalar weights). Since the columns of U are independent, dim Ra(A) = r = rank (A),  

and fu1 

: : : urg constitute a basis for the range space of A. The null space of A is given by 

spanfvr+1 

: : : vng. To see this: 

U:V 

0 x = 0 () :V 

0 x = 0 2 30C1v1x 6 . 

7() 4 

. 5 

= 0. 

Crv
0 xr 

0() vix = 0 i = 1 : : : r 

() x 2 spanfvr+1 

: : : vng: 

Example 4.3 One application of singular value decomposition is to the solution 

of a system of algebraic equations. Suppose A is an m � n complex matrix and b 

is a vector in C 

m . Assume that the rank of A is equal to k, with k < m. We are 

looking for a solution of the linear system Ax = b. By applying the singular value 

decomposition procedure to A, we get 

A = U:2V 

0 3 

:1 

0 

= U 46 57 

V 

0 

0 0 

where :1 

is a k � k non-singular diagonal matrix. We will express the unitary 

matrices U and V columnwise as h i 

U = u1 

u2 

: : : um h i 

V = v1 

v2 

: : : vn 

: 

A necessary and sufcient condition for the solvability of this system of equations 

is that ui 

0 b = 0 for all i satisfying k < i < m. Otherwise, the system of equations 

is inconsistent. This condition means that the vector b must be orthogonal to the 
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last m ; k columns of U . Therefore the system of linear equations can be written 

as 32 

:1 

0 75 

64 V 

0 U 0bx = 

0 0 2 3 

u1 

0 b2 3 

u1 

0 b 6666666664 

7777777775 

. . . 

u0 

kb 

0 

. . . 

66666664 

77777775 

32 

:1 

0 

0 

2b 

. 

u 75 

64 V 

0 x = 

. . 

. . . 

:= 

0 0 

0u bm 0 

Using the above equation and the invertibility of :1, we can rewrite the system of 

equations as 32 2 30v1 

1 u0 

1b�166664 

77775 

0 6664 

7775 

1 0 

2bv u2 �2x = . . . 

: : : 

vk 

0 

� 

1 

k 

u0 bk 

By using the fact that 32 66664 

0v1 0v2 

. . . 

0vk 

77775 

h i 

v1 

v2 

: : : vk 

= I 

we obtain a solution of the form 

Xk 

x = u 

i=1 

Ci 

1 0 

ib vi: 

k nXX 

From the observations that were made earlier, we know that the vectors vk+1 

vk+2 

: : : vn 

span the kernel of A, and therefore a general solution of the system of linear equa-
tions is given by 

1
(u 

0 b)i 

vi 

+ �ivix = 

i=1 

Ci i=k+1 

where the coefcients �i, with i in the interval k+1 < i < n, are arbitrary complex 

numbers. 
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4.4 Relationship to Matrix Norms 

The singular value decomposition can be used to compute the induced 2-norm of a matrix A. 

Theorem 4.2 

kAk2 

4 

= 

kAxk2sup 

x 6=0 

kxk2 

= C1 

(4.21) 

= Cmax(A) 

which tells us that the maximum amplifcation is given by the maximum singular value. 

Proof: 

kAxk2 

kU:V 

0xk2sup = sup 

x=06 kxk2 

6 kxk2x=0 

k:V 

0xk2= sup 

x 6=0 

kxk2 

k:yk2= sup 

y=0 

kV yk26 P 

1 

r 

2 

22jyiji=1 

Ci 

= sup 

1P 

2y 6=0 r jyij2 

i=1 

< C1 

: 

For y = [1 0 � � � 0]T , k:yk2 

= C1, and the supremum is attained. (Notice that this correponds 

to x = v1. Hence, Av1 

= C1u1.) 

Another application of the singular value decomposition is in computing the minimal 

amplifcation a full rank matrix exerts on elements with 2-norm equal to 1. 

Theorem 4.3 Given A 2 C 

mxn , suppose rank(A) = n. Then 

min kAxk2 

= Cn(A) : (4.22) 

kxk
2 

=1 

Note that if rank(A) < n, then there is an x such that the minimum is zero (rewrite A in 

terms of its SVD to see this). 

Proof: For any kxk2 

= 1, 

kAxk2 

= kU:V 

0 xk2 

= k:V 

0 xk2 

(invariant under multiplication by unitary matrices) 

= k:yk2 



        

 

   

 

 

 

 

 

 

  

    	  

 

 

 

 

 

 

 

 

 

 

             

 

      

               

      

 

 

 

 

 

 

  

  

 

  

 	 

 

 

 

 

	 

 

 

    

         

 

        
 

         
 

 

     
 

 

2x2 

1 

Figure 4.1: Graphical depiction of the mapping involving A2x2 . Note that Av1 

= C1u1 

and 

that Av2 

= C2u2. 

for y = V 

0x. Now 

� 

v 

v 

A A v 
A v2 2 

1 

! 1 Xn 2 

k:yk2 

= jCiyij2 

i=1 

2 Cn 

: 

Note that the minimum is achieved for y = [0 0 � � � 0 1]T ; thus the proof is complete. 

The Frobenius norm can also be expressed quite simply in terms of the singular values. 

We leave you to verify that 0 11 

n mXX 

2 

kAkF 

= 

4 @ jaij j2A 

j=1 i=1 ; 

2= trace(A0A) 

1 

� ! 1 Xr 

= Ci 

2 (4.23) 

i=1 

Example 4.4 Matrix Inequality 

We say A < B, two square matrices, if 

x 

0Ax < x 

0Bx for all x =6 0: 

It follows that for any matrix A, not necessarily square, 

kAk2 

< � $ A0A < �2I: 
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Exercises 

Exercise 4.1 Verify that for any A, an m x n matrix, the following holds: 

1 

pp kAk1 

= kAk2 

= mkAk1: 

n 

Exercise 4.2 Suppose A0 = A. Find the exact relation between the eigenvalues and singular values 

of A. Does this hold if A is not conjugate symmetric? 

Exercise 4.3 Show that if rank(A) = 1, then, kAkF 

= kAk2. 

Exercise 4.4 This problem leads you through the argument for the existence of the SVD, using an 

iterative construction. Showing that A = U�V 

0 , where U and V are unitary matrices is equivalent to 

showing that U 0AV = �. 

a) Argue from the defnition of kAk2 

that there exist unit vectors (measured in the 2-norm) x 2 C 

n 

and y 2 C 

m such that Ax = Oy, where O = kAk2. 

b) We can extend both x and y above to orthonormal bases, i.e. we can fnd unitary matrices 

V1 

and U1 

whose frst columns are x and y respectively: 

~V1 

= [x V~ 

1] , U1 

= [y U1] 

Show that one way to do this is via Householder transformations, as follows: 

V1 

= I ; 2 

hh0 

, h = x ; [1, 0, : : : , 0]0 

h0h 

and likewise for U1. 

c) Now defne A1 

= U1 

0 AV1. Why is kA1k2 

= kAk2? 

d) Note that � � � � 

~ y0Ax y0AV O w0 

A1 

= 

1 =~ ~ ~U1 

0 Ax U1 

0 AV1 

0 B 

What is the justifcation for claiming that the lower left element in the above matrix is 0? 

e) Now show that � � 

0kA1 

O k2 

� O2 + w w 

w 

and combine this with the fact that kA1k2 

= kAk2 

= O to deduce that w = 0, so � � 

O 0 

A1 

= 

0 B 



                  

    

                   

                    

               

              

              

 

   

 

 

 

 

                       

             

           

 

 

 

 

 

 

 

        

     

 

        

 

 

 

  

          

          

  

       

   

 

 

 

 

          

 

           

       

 

      

           

 

 

   

 

                     

                     

  

 

   

 

               

At the next iteration, we apply the above procedure to B, and so on. When the iterations terminate, 

we have the SVD. 

[The reason that this is only an existence proof and not an algorithm is that it begins by invoking 

the existence of x and y, but does not show how to compute them. Very good algorithms do exist for 

computing the SVD | see Golub and Van Loan's classic, Matrix Computations, Johns Hopkins Press, 

1989. The SVD is a cornerstone of numerical computations in a host of applications.] 

Exercise 4.5 Suppose the m x n matrix A is decomposed in the form � � 

� 0 

A = U V 

0 

0 0 

where U and V are unitary matrices, and � is an invertible r x r matrix (| the SVD could be used to 

produce such a decomposition). Then the \Moore-Penrose inverse", or pseudo-inverse of A, denoted 

by A+ , can be defned as the n x m matrix � � 

�;1 0 

A+ U 0= V 

0 0 

(You can invoke it in Matlab with pinv(A).) 

a) Show that A+A and AA+ are symmetric, and that AA+A = A and A+AA+ = A+ . (These 

four conditions actually constitute an alternative defnition of the pseudo-inverse.) 

b) Show that when A has full column rank then A+ = (A0A);1A0 , and that when A has full 

row rank then A+ = A0(AA0);1 . 

c) Show that, of all x that minimize ky ; Axk2 

(and there will be many, if A does not have full 

column rank), the one with smallest length kxk2 

is given by x̂ = A+y. 

Exercise 4.6 All the matrices in this problem are real. Suppose � � 

R 

A = Q 

0 

with Q being an m x m orthogonal matrix and R an n x n invertible matrix. (Recall that such a 

decomposition exists for any matrix A that has full column rank.) Also let Y be an m x p matrix of 

the form � � 

Y1Y = Q 

Y2 

where the partitioning in the expression for Y is conformable with the partitioning for A. 



	   

 

               

          
 




    

 

 

       

 

 

          

   

 

  

	   

 

                

 

 

      

          

  

 

 

   

 

 

                

        

     

              

 

 

     

       

   

                       

    

 

         

       

 

     

         

 

     

      

 

 	   

 

   

               

                 

                 

 

    

        

   	 

 

   

    

 

 
 

              
 

^(a) What choice X of the n x p matrix X minimizes the Frobenius norm, or equivalently the squared 

Frobenius norm, of Y ; AX ? In other words, fnd 

X̂ = argmin kY ; AXk2 

F 

Also determine the value of kY ; AX̂kF 

2 . (Your answers should be expressed in terms of the 

matrices Q, R, Y1 

and Y2.) 

(b) Can your X̂ in (a) also be written as (A0A);1A0Y ? Can it be written as A+Y , where A+ denotes 

the (Moore-Penrose) pseudo-inverse of A ? 

(c) Now obtain an expression for the choice X of X that minimizes 

kY ; AXk2 

F 

+ kZ ; BXk2 

F 

where Z and B are given matrices of appropriate dimensions. (Your answer can be expressed in 

terms of A, B, Y , and Z.) 

Exercise 4.7 Structured Singular Values 

Given a complex square matrix A, defne the structured singular value function as follows. 

1 

µ2(A) = 

min222fOmax(6) j det(I ; 6A) = 0g 

where 6 is some set of matrices. 

a) If 6 = faI : a 2 C g, show that µ2(A) = p(A), where p is the spectral radius of A, defned 

as: p(A) = maxi 

j>ij and the >i's are the eigenvalues of A. 

b) If 6 = f6 2 C 

nxn g, show that µ2(A) = Omax(A) 

c) If 6 = fdiag(a1, · · · , an) j ai 

2 C g, show that 

p(A) = µ2(A) = µ2(D
;1AD) = Omax(D

;1AD) 

where 

D 2 fdiag(d1, · · · , dn) j di  0g 

Exercise 4.8 Consider again the structured singular value function of a complex square matrix A 

defned in the preceding problem. If A has more structure, it is sometimes possible to compute µ2(A) 

exactly. In this problem, assume A is a rank-one matrix, so that we can write A = uv0 where u, v are 

complex vectors of dimension n. Compute µ2(A) when 

(a) 6 = diag(�1, : : : , �n), �i 

2 C . 

(b) 6 = diag(�1, : : : , �n), �i 

2 R. 

To simplify the computation, minimize the Frobenius norm of 6 in the defntion of µ2(A). 



  

 
 

  

             

                 

              

               

                   

  

   

     

 

       

 	         	

 

 

 

	       	

 

           

      

    

	 

 

 

    

             

 

 

 

Chapter 5 

Matrix Perturbations 

5.1 Introduction 

The following question arises frequently in matrix theory: What is the smallest possible per-
turbation of a matrix that causes it to lose rank� We discuss two cases next, with perturbations 

measured in the 2-norm, and then discuss the measurement of perturbations in the Frobenius 

norm. This provides us with a new formulation to the least squares estimation problem in 

which uncertainty is present in the matrix A as well as the vector y. This is known as total 

least squares. 

5.2 Additive Perturbation 

Theorem 5.1 Suppose A 2 C 

m�n has full column rank (= n). Then 

min fk k j A +   has rank  ng = cn(A) : (5.1) 

�2C 

m�n 

2 

Proof: Suppose A +   has rank  n. 6 2 

= 1 andThen there exists x = 0 such that kxk 

(A +  ) x = 0 : 

Since  x = ;Ax, 

k xk = kAxk2 2 

  cn(A) : (5.2) 

From the properties of induced norms (see Section 3.1), we also know that 

k k kxk  k xk2 2 2: 



       

 

       

	  

   

                

                

 

   

          

  

 

 

  

 

             

 

    

 

     

   

	 

 

 

 

 

 

 

 

 

 

  

            

	   

        

 

 

 

 

 

        	  

 

 

 

               

     

 

 

 

 

  

          

  

 

 

 

           

 

 

 

 

Using Equation (24.3) and the fact that kxk2 

= 1, we arrive at the following: 

k k2 

 k xk2 

  cn(A) (5.3) 

To complete the proof, we must show that the lower bound from Equation (5.3) can be 

achieved. Thus, we must construct a   so that A +   has rank  n and k k2 

= cn(A)� such 

a   will be a minimizing solution. For this, choose 

0 = ;cnunvn 

where un, vn 

are the left and right singular vectors associated with the smallest singular value 

cn 

of A. Notice that k k2 

= cn(A). This choice yields 

�(A +  ) vn 

= cnun 

; cnunv vnn 

= cnun 

; cnun 

= 0 : 

That is, A +   has rank  n. This completes the proof. 

5.3 Multiplicative Perturbation 

Theorem 5.2 (Small Gain) Given A 2 C 

m�n , 

1 

min fk k2 

j I ; A  is singular g = : (5.4) 

�2C 

n�m c1(A) 

Proof: Suppose I ; A  is singular. Then there exists x 6= 0 such that 

(I ; A ) x = 0 

so 

kA xk2 

= kxk2 

: (5.5) 

From the properties of induced norms (see Lecture 4 notes), 

kA xk2 

� kAk2k xk2 

= c1(A)k xk2 

: 

Upon substituting the result in Equation (5.5) for kA xk2, we fnd 

kxk2 

� c1(A)k xk2 

: 



   

 

 

 

 

  

 

 

  

 

 

  

 

                

                 

    

 

 

 

 


 

 

            

 

 

      

       

 

 

 

   

 

 

 

 

 

 

 

 

 

 

 

  

  

    

                

        

 

 

 

 

       

 

    

          

           

                 

  

 

      

Dividing through by c1(A)kxk2 

yields 

k xk2 

1  kxk2 

c1(A) 

which implies 

1 k k2  : (5.6)
c1(A) 

To conclude the proof, we must show that this lower bound can be achieved. Thus, we 

construct a  which satisfes Equation (5.6) with equality and also causes (I ; A ) to be 

singular. For this, choose 

1 0 = v1u1 

: 

c1(A) 

Notice that the lower bound (Equation (5.6)) is satisfed with equality, i.e., k k2 

= 1/c1(A). 

Now choose x = u1. Then: 

(I ; A ) x = (I ; A ) u1  
Av1u

0 

1= I ; u1
c1 

Av1
= u1 

; 

c1| {z }
u1 

= u1 

; u1 

(since Av1 

= c1u1) 

= 0 : 

This completes the proof. 

The theorem just proved is called the small gain theorem. The reason for this is that 

it guarantees (I ; A ) is nonsingular provided 

1 k k2  : kAk2 

This condition is most often written as 

k k2kAk2  1  (5.7) 

i.e., the product of the gains is less than one. 

Remark: We can actually obtain the additive perturbation result from multiplicative per-
turbation methods. Assume A is invertible, and  is a matrix which makes its sum with A 

singular. Since   
A + = A I + A;1  



         

 

        

            
 

    

  

 

 
 

   

 

       

             

           

         

 

 

 

 

 

 

  

 

  

  

 

 

 

 

 

 

 

            

 

     

 

 

 
 

   

     

             

     

  

    

        

 

    

 

  

 

 

 

          

                 

                

             

               

    

              

           

                 

                  

; � 

and A is nonsingular, then I + A;1 must be singular. By our work with multiplicative 

perturbations, we know that the associated with the smallest k k2 

that makes this quantity 

singular satisfes 

1 k k2 

= = cn(A) 

c1(A;1) 

: 

5.4 Perturbations Measured in the Frobenius Norm 

We will now demonstrate that, for the multiplicative and additive perturbation cases where 

we minimized the induced 2-norm, we also minimized the Frobenius norm. 

Let A 2 C 

m�n , and let rank(A) = r. 

0 1 1 

n mXX 

2 

kAkF 

= 

4 @ jaij j2A (5.8) 

j�1 i�1 ; � 1 

2= trace(A0A) (5.9) � ! 1 

2Xr 

= ci 

2 (the trace of a matrix is the sum of its eigenvalues) (5.10) 

i�1 

c1(A) : (5.11) 

Therefore, 

kAkF 

kAk2 

(5.12) 

which is a useful inequality. 

In both the perturbation problems that we considered earlier, we found a rank-one solu-
tion, or dyad, for  : 

= �uv0 (5.13) 

where � 2 C , u 2 C 

m , v 2 C 

n such that kuk2 

= kvk2 

= 1. It is easy to show that the Frobenius 

norm and induced 2-norm are equal for rank one matrices of the form in Equation (5.13). It 

follows from this that the which minimizes the induced 2-norm also minimizes the Frobenius 

norm, for the additive and multiplicative perturbation cases we have examined. In general, 

however, minimizing the induced 2-norm of a matrix does not imply the Frobenius norm is 

minimized (or vice versa.) 

Example 5.1 This example is intended to illustrate the use of the singular value 

decomposition and Frobenius norms in the solution of a minimum distance prob-
lem. Suppose we have a matrix A 2 C 

n�n , and we are interested in fnding the 

closest matrix to A of the form cW where c is a complex number and W is a 



             

     

    

 

   

 

        

   

 

  

	 

       

 

 

            

           

   

 

 

 

 

     

 

   

 

   

 

    

 

              

   

   

 

 

 

 

 

 

                

              

        

 

	 

   

 

    

        

	 

     

  

 

 

 

  

 

 

 

  

  

  

 

 

 

    

 

 

  

 

 

 

 

	 

 

 

               

             

        

unitary matrix. The distance is to be measured by the Frobenius norm. This 

problem can be formulated as 

min kA ; cW kF 

c2C �W 2C 

n�n 

where W 

0W = I. We can write ; � kA ; cW k2 = Tr (A ; cW )0(A ; cW )F 

= Tr(A0A) ; c 

0Tr(W 

0A) ; cTr(A0W ) + jcj2Tr(W 

0W ): 

Note that Tr(W 

0W ) = Tr(I) = n. Therefore, we have ; � kA ; cW k2 = kAk2 

F 

; 2Re  c 

0Tr(W 

0A) + njcj2 (5.14)F 

and by taking 

c = 

1 

Tr(W 

0A) 

n 

the right hand side of Equation (5.14) will be minimized. Therefore we have that 

1 kA ; cW k2 kAkF 

2 ; jTr(W 

0A)j2:F n 

Now we must minimize the right hand side with respect to W , which is equivalent 

to maximizing jTr(W 

0A)j. In order to achieve this we employ the singular value 

decomposition of A as U�V 

0 , which gives 

jTr(W 

0A)j2 = jTr(W 

0U�V 

0)j2 

= jTr(V 

0W 

0U�)j2: 

The matrix Z = V 

0W 

0U satisfes 

ZZ 0 = V 

0W 

0UU 0WV 

= I: 

Therefore, � Xn Xn 

!2 

jTr(Z�)j2 = j ciziij2 � ci 

i�1 i�1 

implies that � !2Xn1 

min kA ; cW k2 

F 

kAk2 

F 

; ci 

: (5.15)
c�W n 

i�1 

In order to complete this example we show that the lower bound in Equation (5.15) 

can actually be achieved with a specifc choice of W . Observe that 

Tr(W 

0U�V 

0) = Tr(W 

0UV 

0�) 



    

 

 

 

  

 

     

 

 

 

 

 

   

 

 

        

	 

 

 

 

    

 

 

 

 

	  
 

	 

 

  

        

 

 

 

  

 

	   

 

 

                 

             

	    

                 

                 

                   

                  

                 

                

                

 	        

            

	 

 

 

 

 

 

   

 

 

    

	 

	  

  

    

 

 	 

 

 

 

 

 	    

 

  

and by letting W 

0 = V U 0 we obtain 

Xn 

Tr(W 

0A) = Tr(�) = ci 

i�1 

and 

n1 

X 

c = ci: 

n 

i�1 

Putting all the pieces together, we get that � !2n XnX 1 

min kA ; cW k2 = c 

2 ; c 

2 

F i i
c�W n 

i�1 i�1 

and the minimizing unitary matrix is given by � ! Xn 

cW =
1 

ci 

UV 

0: 

n 

i�1 

It is clear also that, in order for a matrix to be exactly represented as a complex 

multiple of a unitary matrix, all of its singular values must be equal. 

5.5 Total Least Squares 

We have previously examined solving least squares problems of the form y = Ax + e. An 

interpretation of the problem we solved there is that we perturbed y as little as possible | 

in the least squares sense | to make the resulting equation y ; e = Ax consistent. It is 

natural to ask what happens if we allow A to be perturbed as well, in addition to perturbing 

y. This makes sense in situations where the uncertainty in our model and the noise in our 

measurements cannot or should not be attributed entirely to y, but also to A. The simplest 

least squares problem of this type is one that allows a perturbed model of the form 

y = (A + ) x + e : (5.16) 

The so-called total least squares estimation problem can now be stated as 0 11 X X 

2 

. .min 

@ j ijj2 + jeij2A = min k . ekF 

(5.17)
��e ��e 

i�j i 

= min k 

^ kF 

(5.18)
��e 

where � � 

. .^ = . e : (5.19) 



              

                

               

              

              

               

             

              

                  

        

     

  

 

 

 

 

  

 

    

 

 

 

 

 

              

      

                 

 

             

                  

               

              

               

                 

   

 

   

   

 

 

 

        

 

   

 

                 

    

    

 

 

      

 

                  

            

  

     

                    

       

 

         

Weighted versions of this problem can also be posed, but we omit these generalizations. 

Note that no constraints have been imposed on in the above problem statement, and 

this can often limit the direct usefulness of the total least squares formulation in practical 

problems. In practice, the expected or allowed perturbations of A are often quite structured� 

however, the solution of the total least squares problem under such structural constraints is 

much harder than that of the unconstrained problem that we present the solution of next. 

Nevertheless, the total least squares formulation can provide a useful benchmark. (The same 

sorts of comments can of course be made about the conventional least squares formulation: 

it is often not the criterion that we would want to use, but its tractability compared to other 

criteria makes it a useful point of departure.) 

If we make the defnitions h 

Â = A 

. . . ;y 

i 

" 

x̂ = 

x 

1 

# 

(5.20) 

then the perturbed model in Equation (5.16) can be rewritten as 

^ ^A + x̂ = 0 : (5.21) 

^This equation makes evident that what we seek is the with minimal Frobenius norm that 

^ ^ ^satisfes Equation (5.21)|the smallest that makes A + singular. 

Let us suppose that A has full column rank (n), and that it has more rows than columns 

(which is normally the case, since in least squares estimation we typically have many more 

^ measurements than parameters to estimate). In addition, let us assume that A has rank 

(n + 1), which is also generally true. From what we've learned about additive perturbations, 

^ we now see that a minimal (in a Frobenius sense) that satisfes Equation (5.21) is 

^ = ;cn+1un+1vn 

0 

+1 

(5.22) 

^where the cn+1, un+1 

and vn+1 

are derived from the SVD of A (i.e. cn+1 

is the smallest 

^ ^ ^singular value of A, etc.). Given that we now know A and  , choosing x̂ = vn+1, and 

rescaling x̂, we have " # 

x 

Â+ ^ = 0 

1 

which gives us x, the total least squares solution. This solution is due to Golub and Van Loan 

(see their classic text on Matrix Computations, Second Edition, Johns Hopkins University 

Press, 1989). 

5.6 Conditioning of Matrix Inversion 

We are now in a position to address some of the issues that came up in Example 1 of Lecture 

4, regarding the sensitivity of the inverse A;1 and of the solution x = A;1b to perturbations 



                  

   

 

            

   

 

     

                  

                

               

     

  

 

 

 

 

     

    

  

  

 

             

                

   

   

                 

         

 

 

 

              

 

   

                 

    

               

            

     

   

    

       

                 

                  

                

               

in A (and/or b, for that matter). We frst consider the case where A is invertible, and examine 

the sensitivity of A;1 . Taking di�erentials in the defning equation A;1A = I, we fnd 

d(A;1) A + A;1 dA = 0 (5.23) 

where the order of the terms in each half of the sum is important, of course. (Rather than 

working with di�erentials, we could equivalently work with perturbations of the form A + �P , 

etc., where � is vanishingly small, but this really amounts to the same thing.) Rearranging 

the preceding expression, we fnd 

d(A;1) = ;A;1 dA A;1 (5.24) 

Taking norms, the result is 

kd(A;1)k � kA;1k2kdAk (5.25) 

or equivalently 

kd(A;1)k kdAk � kAkkA;1k kA;1k kAk 

(5.26) 

This derivation holds for any submultiplicative norm. The product kAkkA;1k is termed the 

condition number of A with respect to inversion (or simply the condition number of A) and 

denoted by K(A): 

K(A) = kAkkA;1k (5.27) 

When we wish to specify which norm is being used, a subscript is attached to K(A). Our 

earlier results on the SVD show, for example, that 

K2(A) = cmax/cmin 

(5.28) 

The condition number in this 2-norm tells us how slender the ellipsoid Ax for kxk2 

= 1 is | 

see Figure 5.1. In what follows, we shall focus on the 2-norm condition number (but will omit 

the subscript unless essential). 

Some properties of the 2-norm condition number (all of which are easy to show, and 

some of which extend to the condition number in other norms) are 

� K(A) 1� 

� K(A) = K(A;1)� 

� K(AB) � K(A)K(B)� 

� Given U 0U = I, K(UA) = K(A). 

The importance of (5.26) is that the bound can actually be attained for some choice of the 

perturbation dA and of the matrix norm, so the situation can get as bad as the bound allows: 

the fractional change in the inverse can be K(A) times as large as the fractional change 

in the original. In the case of 2-norms, a particular perturbation that attains the bound 
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2 1(A) (A) 

Figure 5.1: Depiction of how A (a real 2 � 2 matrix) maps the unit circle. The major axis of 

the ellipse corresponds to the largest singular value, the minor axis to the smallest. 

can be derived from the of Theorem 5.1, by simply replacing ;cn 

in by a di�erential 

perturbation: 

0dA = ;dc unv (5.29)n 

We have established that a large condition number corresponds to a matrix whose inverse 

is very sensitive to relatively small perturbations in the matrix. Such a matrix is termed ill 

conditioned or poorly conditioned with respect to inversion. A perfectly conditioned matrix 

is one whose condition number takes the minimum possible value, namely 1. 

A high condition number also indicates that a matrix is close to losing rank, in the 

following sense: There is a perturbation of small norm (= cmin) relative to kAk (= cmax) 

such that A + has lower rank than A. This follows from our additive perturbation result 

in Theorem 5.1. This interpretation extends to non-square matrices as well. We shall term 

the ratio in (5.28) the condition number of A even when A is non-square, and think of it as 

a measure of nearness to a rank loss. 

Turning now to the sensitivity of the solution x = A;1b of a linear system of equations 

in the form Ax = b, we can proceed similarly. Taking di�erentials, we fnd that 

dx = ;A;1 dA A;1b + A;1 db = ;A;1 dA x + A;1b (5.30) 

Taking norms then yields 

kdxk � kA;1kkdAkkxk + kA;1kkdbk (5.31) 

Dividing both sides of this by kxk, and using the fact that kxk (kbk/kAk), we get 

kdxk kdAk kdbk � K(A) + (5.32)kxk kAk kbk 

We can come close to attaining this bound if, for example, b happens to be nearly collinear 

with the column of U in the SVD of A that is associated with cmin, and if appropriate 

perturbations occur. Once again, therefore, the fractional change in the answer can be close 

to K(A) times as large as the fractional changes in the given matrices. 



                             

       

  

         

 

               

              

                           

     

  

        

            

  

   

  

    

 

             

                 

                 

               

         

              

           

     

            

 

   

                

                

                 

                

  

 

  

 

               

                 

 

   

 

           

                 

        

             

 

 

 

 

Example 5.2 For the matrix A given in Example 1 of Lecture 4, the SVD is 

100 100 :7068 :7075 200:1 0 :7075 :7068 

A = = 

100:2 100 :7075 : ; 7068 0 0:1 ;:7068 :7075 

(5.33) 

The condition number of A is seen to be 2001, which accounts for the 1000-fold 

magnifcation of error in the inverse for the perturbation we used in that example. 

The perturbation of smallest 2-norm that causes A + to become singular is 

:7068 :7075 0 0 :7075 :7068 

= 

:7075 : ; 7068 0 ;0:1 ;:7068 :7075 

whose norm is 0.1. Carrying out the multiplication gives 

:05 ;:05 � ;:05 :05 

With b = [1 ;1]T , we saw large sensitivity of the solution x to perturbations in A. 

Note that this b is indeed nearly collinear with the second column of U . If, on the 

other hand, we had b = [1 1], which is more closely aligned with the frst column 

of U , then the solution would have been hardly a�ected by the perturbation in A 

| a claim that we leave you to verify. 

Thus K(A) serves as a bound on the magnifcation factor that relates fractional changes 

in A or b to fractional changes in our solution x. 

Conditioning of Least Squares Estimation 

Our objective in the least-square-error estimation problem was to fnd the value xb of x that 

minimizes ky ; Axk22, under the assumption that A has full column rank. A detailed analysis 

of the conditioning of this case is beyond our scope (see Matrix Computations by Golub and 

Van Loan, cited above, for a detailed treatment). We shall make do here with a statement of 

the main result in the case that the fractional residual is much less than 1, i.e. 

ky ; Axbk2 � 1 (5.34)kyk2 

This low-residual case is certainly of interest in practice, assuming that one is ftting a rea-
sonably good model to the data. In this case, it can be shown that the fractional change 

kdxbk2/kxbk2 

in the solution xb can approach K(A) times the sum of the fractional changes in 

A and y, where K(A) = cmax(A)/cmin(A). In the light of our earlier results for the case of 

invertible A, this result is perhaps not surprising. 

Given this result, it is easy to explain why solving the normal equations 

(A0A)xb = A0 y 



  

 

          

                  

   

  

                

             

              

         

 

   

                

   

 

        

to determine xb is numerically unattractive (in the low-residual case). The numerical inversion 

of A0A is governed by the condition number of A0A, and this is the square of the condition 

number of A: 

K(A0A) = K2(A) 

You should confrm this using the SVD of A. The process of directly solving the normal 

equations will thus introduce errors that are not intrinsic to the least-square-error problem, 

because this problem is governed by the condition number K(A), according to the result 

quoted above. Fortunately, there are other algorithms for computing xb that are governed 

by the condition number K(A) rather than the square of this (and Matlab uses one such 

algorithm to compute xb when you invoke its least squares solution command). 



 

                  

	   

        

            
 

                     
 

          
 

                      

                  

	                    

               

 

  

        

     

             

                  

                 

                   

                   

          

	                 

                     

              

                      

             

             

   

 

  

  

                  

 

 

               

             

         

       

 

  

     

 

       

 

  

         

Exercises 

Exercise 5.1 Suppose the complex m x n matrix A is perturbed to the matrix A + E. 

(a) Show that 

j Omax(A + E) ; Omax(A) j = Omax(E) 

Also fnd an E that results in the inequality being achieved with equality. 

(Hint: To show the inequality, write (A + E) = A + E and A = (A + E) ; E, take the 2-norm 

on both sides of each equation, and use the triangle inequality.) 

It turns out that the result in (a) actually applies to all the singular values of A and A + E, not 

just the largest one. Part (b) below is one version of the result for the smallest singular value. 

(b) Suppose A has less than full column rank, i.e. has rank< n, but A + E has full column rank. 

Show (following a procedure similar to part (a) | but looking at min k(A + E)xk2 

rather than 

the norm of A + E, etc.) that 

Omin(A + E) = Omax(E) 

Again fnd an E that results in the inequality being achieved with equality. 

[The result in (b), and some extensions of it, give rise to the following sound (and widely used) 

procedure for estimating the rank of some underlying matrix A, given only the matrix A + E 

and knowledge of kEk2: Compute the SVD of A + E, then declare the \numerical rank" of A to 

be the number of singular values of A + E that are larger than the threshold kEk2. The given 

information is consistent with having an A of this rank.] 

(c) Verify the above results using your own examples in MATLAB. You might also fnd it interesting 

to verify numerically that for large m, n, the norm of the matrix E = s * randn(m, n) | which 

is a matrix whose entries are independent, zero-mean, Gaussian, with standard deviation s |p p
is close to s * ( m + n). So if A is perturbed by such a matrix, then a reasonable value to use 

as a threshold when determining the numerical rank of A is this number. 

Exercise 5.2 Let A and E be m x n matrices. Show that 

min kA ; Ek2 

= Or+1(A): 

rank E�r 

To prove this, notice that the rank constraint on E can be interpreted as follows: If v1, : : : , vr+1 

are 

linearly independent vectors, then there exists a nonzero vector z, expressed as a linear combination 

of such vectors, that belongs to the nullspace of E. Proceed as follows: 

1. Select the vi's from the SVD of A. 

2. Select a candidate element z with kzk2 

= 1. 

3. Show that k(A ; E)zk2 

2 Or+1. This implies that kA ; Ek2 

2 Or+1. 

4. Construct an E that achieves the above bound. 



           

 

       

         

	  

    

 

  

          

           

	                    

             

 

 


 

       
 

	                  

                     

        

 

 

 

     

                        

                  

     

            

  

   

        

 

    

    

       

   




 
 

 


 

 

 

  

  


 

         

 

    

      

 

 

Exercise 5.3 Consider the real, square system of equations Ax = (U�V 

T )x = y, where U and V 

are orthogonal matrices, with 

� = 

1 

0 

0 

10;6 

, y = U 

1 

10;6 

All norms in this problem are taken to be 2-norms. 

(a) What is the norm of the exact solution x � 

(b) Suppose y is perturbed to y + �y, and that correspondingly the solution changes from x in (a) to 

x + �x. Find a perturbation �y, with k�yk = 10;6 , such that 

k�xk k�yk � �(A)kxk kyk 

where �(A) is the condition number of A. 

(c) Suppose instead of perturbing y we perturb A, changing it to A + �A, with the solution corre-
spondingly changing from x to x + �x (for some �x that is di�erent than in part (b) ). Find a 

perturbation �A, with k�Ak = 10;7 , such that 

k�xk k�Ak � �(A)kxk kAk 

Exercise 5.4 Positive De�nite Matrices 

A matrix A is positive semi-defnite if x0Ax 2 0 for all x 6= 0. We say Y is the square root of a 

Hermitian positive semi-defnite matrix if Y 

0Y = A. Show that Y always exists and can be constructed 

from the SVD of A. 

Exercise 5.5 Let A and B have compatible dimensions. Show that if 

kAxk2 

= kBxk2 

for all x, 

then there exists a matrix Y with kY k2 

= 1 such that 

A = Y B: 

Assume B has full rank to simplicity. 

Exercise 5.6 (a) Suppose ���� 

X 

A 

���� 

= �: 

Show that there exists a matrix Y with kY k2 

= 1 such that 

X = Y (�2I ; A0A) 

1 

2 



  

    

 

                

 

 

    

           

 

  

 


 



 

      





 


 

 

 
 
 


 

 
 
  
 


 


 


 
 
 

                 

                   

                 

      

  

 

  


 



  
  
 
 





 


 

 

      


  

 

  

                   

      

 

      

 

    

 

 

               


  

 
 


 
 
 


 


  

 


    

 

   
 

 






 

 

 




 

 


 


 





 


 
     
 

 

   

 

    

 


 

  

 
  


 


 

  




 
 

 


 

 

 

  

  


 

   

 

 

 

    

             

 

            

                  

(b) Suppose 

k( X A )k = �: 

1 

Show that there exists a matrix Z with kZk = 1 such that X = (�2I ; AA�) 

2 Z. 

Exercise 5.7 Matrix Dilation 

The problems above can help us prove the following important result: 

�0 

:= min 

X 

���� 

X B 

C A 

���� 

= max 

� 

k( C A )k , 

���� 

B 

A 

���� 

� 

: 

This is known as the matrix dilation theorem. Notice that the left hand side is always greater 

than or equal to the right hand side irrespective of the choice of X . Below, we outline the steps 

necessary to prove that this lower bound is tight. Matrix dilations play an important role in systems 

theory particularly in model reduction problems. 

1. Let �1 

be defned as ���� 

B 

A 

���� 

� 

: 

� 

�1 

= max k( C A )k , 

Show that: 

�0 

2 �1: 

2. Use the previous exercise to show that there exists two matrices Y and Z with norms less than 

or equal to one such that 

1 1 

B = Y (�1
2I ; A�A) 

2 , C = (�1
2I ; AA�) 

2 Z:  

~3. Defne a candidate solution to be X = ;Y A�Z. Show by direct substitution that ���� 

~X B 

C A 

���� 

���� 

���� 

�Z Y (�1
2I ; A�A) 

1 ;Y A 

2 

= 1 

2 ZC = (�1
2I ; AA�) A ���� 

���� 

1 

Y 0 ;A� (�1
2I ; A�A) 

2 Z 0 

= 1 

2C = (�1
2I ; AA�) A0 I 0 I 

4. Show that ���� 

~X B 

C A 

���� 

= �1: 

This implies that �0 

= �1 

which proves the assertion. 

Exercise 5.8 Prove or disprove (through a counter example) the following singular values inequali-
ties. 

1. Omin(A + B) = Omin(A) + Omin(B) for any A and B. 

2. Omin(A + E) = Omax(E) whenever A does not have column rank, and E is any matrix. 



      

 

  

 

 

   

        

3. If Omax(A) < 1, then 

1 

Omax(I ; A);1 = 

1 ; Omax(A) 

4. Oi(I + A) = Oi(A) + 1. 



  

 


      

               

                

               

                    

        

             

             

            

            

             

      

                

               

                  

                    

                

               

             

             

 

   

Chapter 6 

Dynamic Models 

6.1 Introduction: Signals, Systems and Models 

A system may be thought of as something that imposes constraints on | or enforces re-
lationships among | a set of variables. This \system as constraints" point of view is very 

general and powerful. Rather more restricted, but still very useful and common, is the view 

of a system as a mapping from a set of input variables to a set of output variables� a mapping 

is evidently a very particular form of constraint. 

A (behavioral) model lists the variables of interest (the \manifest" variables) and the 

constraints that they must satisfy. Any combination of variables that satisfes the constraints 

is possible or allowed, and is termed a behavior of the model. 

To facilitate the specifcation of the constraints, one may introduce auxiliary (\latent") 

variables. One might then distinguish among the manifest behavior, latent behavior, and full 

behavior (manifest as well as latent). 

For a dynamic model, the \variables" referred to above are actually signals that evolve as a 

function of time (and/or a function of other independent variables, e.g. space). We frst need 

to specify a time axis T (discrete, continuous, infnite, semi-infnite . . . ) and a signal space 

W , i.e. the space of values the signals live in at each time instant. A dynamic model for a 

set of signals fwi(t)g is then completed by listing the constraints that the wi(t) must satisfy. 

Any combination w(t) = [ w1(t), � � � , w`(t) ] of signals that satisfes the constraints is a 

behavior of the model, w(t) 2 B , where B denotes the behavior. 

We now present some examples of dynamic models, to highlight various possible model 

representations. 

Example 6.1 (Circuit) 
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-+ 2w (t) 

w (t)1 

Suppose the signals (variables) of interest | the manifest signals | in the above 

circuit diagram are w1(t), w2(t) and w3(t) for t 2 0, so the signal space W is R
3 

and the time axis T is R
+ (i.e. the interval [0, 1]). Picking all other component 

voltages and currents as latent signals, we can write the constraints that defne 

the model as: 8 { 2 Kirchhof's voltage law (KVL) equations 
2 Kirchhof's current law (KCL) equations {: 4 defning equations for the components 

Any set of manifest and latent signals that simultaneously satisfes (or solves) the 

preceding constraint equations constitutes a behavior, and the behavior B of the 

model is the space of all such solutions. 

The same behavior may equivalently be described by a model written entirely in 

terms of the manifest variables, by eliminating all the other variables in the above 

equations to obtain 

w1
0 = + Cw_1 

; w2 

(6.1)
R 

0 = ;w3 

+ Lw_ 2 

+ w1 

(6.2) 

Still further reduction to a single second-order diferential equation is possible, by 

taking the derivative of one of these equations and eliminating one variable. 

Example 6.2 (Mass-Spring System) 

An object of mass M moves on a horizontal frictionless slide, and is attached to 

one end of it by a linear spring with spring constant k. A horizontal force u(t) 

is applied to the mass. Assume that the variable z measures the change in the 

spring length from its natural length. From Newton's law we obtain the model 

Mzz = ;kz + u: 

Example 6.3 (Inverted Pendulum) 



     

                

              

              

                

                

                

             

                  

             

    

              

                

      

     

             

     

 

        

 

 

   

 

     

            

 

        

 

 

  

 

       

             

 

    

 

  

 

   

             

       

M 

kzz u 
M 

k 
u Free Body Diagram 

Figure 6.1: Mass Spring System. 

A cart of mass M slides on a horizontal frictionless track, and is pulled by a 

horizontal force u(t). On the cart an inverted pendulum of mass m is attached 

via a frictionless hinge, as shown in Figure 28.1. The pendulum's center of mass 

is located at a distance l from its two ends, and the pendulum's moment of inertia 

about its center of mass is denoted by I. The point of support of the pendulum 

is a distance s(t) from some reference point. The angle �(t) is the angle that the 

pendulum makes with respect to the vertical axis. The vertical force exerted by 

the cart on the base of the pendulum is denoted by P , and the horizontal force by 

N . What we wish to model are the constraints governing the (manifest) signals 

u(t), s(t) and �(t). 

First let us write the equations of motion that result from the free-body diagram 

of the cart. The vertical forces P , R and Mg balance out. For the horizontal 

forces we have the following equation: 

Msz = u ; N: (6.3) 

From the free-body diagram of the pendulum, the balance of forces in the hori-
zontal direction gives the equation 

d2 

m (s + l sin(�)) = N, or 

dt2 � � 

zm sz ; l sin(�)(�_)2 + l cos(�)� = N, (6.4) 

and the balance of forces in the vertical direction gives the equation 

d2 

m (l cos(�)) = P ; mg, or 

dt2 � � 

m ;l cos(�)(�_)2 ; l sin(�)�z = P ; mg: (6.5) 

From equations (28.16) and (28.17) we can eliminate the force N to obtain � � 

_(M + m)sz+ m l cos(�)�z ; l sin(�)(�)2 = u: (6.6) 

By balancing the moments around the center of mass, we get the equation 

I�z= P l sin(�) ; Nl cos(�): (6.7) 



    

        

	  

     

 

  

 

 

	  

     

 

  

 

 

        

        

             

              

 

 

            

 

 	    

  

 

   

 

s(t) 

theta 

l 

u(t) 

s+ l sin(theta) 

P 

N 

u P 
mg 

N 
Mg R 

Figure 6.2: Inverted Pendulum 

Substituting (28.17) and (28.18) into (28.19) gives us � � 

I�z = l mg ; ml cos(�)(�_)2 ; ml sin(�)�z sin(�) � � 

; l msz ; ml sin(�)(�_)2 + ml cos(�)�z cos(�): 

Simplifying the above expression gives us the equation 

(I + ml2)�z = mgl sin(�) ; mlszcos(�): (6.8) 

The equations that comprise our model for the system are (28.20) and (28.21). 

We can have a further simplifcation of the system of equations by removing the 

term �z from equation (28.20), and the term sz from equation (28.21). Defne the 

constants 

M = M + m 

I + ml2 

L = : 

ml 



 

 

      

 

  

 

 

 

 

    

 

 

 

 

   

           

 

  

 

 

 

 

 

 

 

 

  

 

 

   

    

            

             

            

            

              

         

         

            

    

       

      

                   

                

           

             

            

               

           

              

            

            

                

 

       

          

                

              

Substituting �z from (28.21) into (28.20), we get � � 

ml ml ml 1 _1 ; cos(�)2 sz+ g sin(�) cos(�) ; sin(�)(�)2 = u: (6.9)ML ML M M 

Similarly we can substitute sz from (28.20) into (28.21) to get � � 

ml g ml 1 

1 ; cos(�)2 �z; sin(�) + sin(�) cos(�)(�_)2 = ; cos(�)u: (6.10)ML L ML ML 

Example 6.4 (Predator-Prey Model) 

While the previous examples are physically based, there are many examples of 

dynamic models that are hypothesized on the basis of a behavioral pattern. For 

a classical illustration, consider an island populated primarily by goats and foxes. 

Goats survive on the island's vegetation while foxes survive by eating goats. 

To build a model of the population growth of these two interacting animals, defne: 

N1(t) = number of goats at time t (6.11) 

N2(t) = number of foxes at time t (6.12) 

where t refers to (discrete) time measured in multiples of months. Volterra pro-
posed the following model: 

N1(t + 1) = aN1(t) ; bN1(t)N2(t) (6.13) 

N2(t + 1) = cN2(t) + dN1(t)N2(t) (6.14) 

The constants a, b, c, and d are all positive, with a � 1, c � 1. If there were no 

goats on the island, N1(0) = 0, then | according to this model | the foxes' pop-
ulation would decrease geometrically (i.e. as a discrete-time exponential). If there 

were no foxes on the island, then the goat population would grow geometrically 

(presumably there is an unlimited supply of vegetation, water and space). On 

the other hand, if both species existed on the island, then the frequency of their 

encounters, which is modeled as being proportional to the product N1N2, deter-
mines at what rate goats are eaten and foxes are well-fed. Among the questions 

that might now be asked are: What sorts of qualitative behavioral characteristics 

are associated with such a model, and what predictions follow from this behav-
ior� What choices of the parameters a, b, c, d best match the behavior observed in 

practice� 

Example 6.5 (Smearing in an Imaging System) 

Consider a model that describes the relationship between a two-dimensional ob-
ject and its image on a planar flm in a camera. Due to limited aperture, lens 

imperfections and focusing errors, the image of a unit point source at the origin 



                

              

          

  

       

          

 

 

           

 

              

           

 

 

           

 

              

   

               

     

   

                

               

             

                  

           

 

                

         

            

 

            

                    

  

    

 

        

              

 

      

   

in the object, represented by the unit impulse �(x, y) in the object plane, will be 

smeared. The intensity of the light at the image may be modeled by some func-
;a(x2 +y2 )tion h(x, y), x, y 2 R, for example h(x, y) = e . An object u(x, y) can be 

viewed as the superposition of individual points distributed spatially, i.e., Z Z 1 

u(x, y) = �(x ; �, y ; �) u(�, �)d� d� : 

;1 

Assuming that the efect of the lens is linear and translation invariant, the image 

of such an object is given by the following intensity function: Z Z 1 

m(x, y) = h(x ; �, y ; �) u(�, d�)d� d� 

;1 

We can view u as the input to this system, m as the output. 

6.2 System Representations 

There are two general representations of a dynamic model that we shall be interested in, 

namely behavioral and input-output description. 

6.2.1 Behavioral Models 

This a very general representation, which we have actually taken as the basis for our initial 

defnition of a dynamic model. In this representation, the system is described as a collection 

of constraints on designated signals, wi. Any combination w(t) = [ w1(t), � � � , w`(t) ] of 

signals that satisfes the constraints is a behavior of the model, w(t) 2 B , where B denotes 

the behavior. An example of such a representation is Example 6.1. 

Linearity 

We call a model linear if its behavior constitutes a vector space, i.e. if superposition applies: 

wa(t), wb(t) 2 B =) �wa(t) + � wb(t) 2 B (6.15) 

where � and � are arbitrary scalars. Example 6.1 is evidently linear. 

Time-Invariance 

We call a model time-invariant (or translation-invariant, or shift-invariant) if every possible 

time shift of a behavior | in which each of the signals is shifted by the same amount | yields 

a behavior: 

w(t) 2 B =) �� 

w(t) = w(t ; �) 2 B , (6.16) 

for all valid � , i.e. � for which T ; � � T, with �� 

denoting the � -shift operator. Example 6.1 

is evidently time-invariant. 



  

                 

          

 

       

            

         

   

                   

             

  

                   

                    

               

         

     

           

               

     

   

                

               

   

 

 

 

       

         

 

 

 

 

     

 

 

            

        

  

              

         

 

  

 

    

Memoryless Models 

A model is memoryless if the constraints that describe the associated signals w( � ) are purely 

algebraic, i.e., they only involve constraints on w(t0) for each t0 

2 T (and so do not involve 

derivatives, integrals, etc.). More interesting to us are non-memoryless, or dynamic systems, 

where the constraints involve signal values at diferent times. 

6.2.2 Input-Output Models 

For this class of models, the system is modeled as a mapping from a set of input signals u(t) 

to a set of output signals, y(t). We may represent this map as 

y(t) = (S u) (t) (6.17) 

(i.e., the result of operating on the entire signal u( � ) with the mapping S yields the signal 

y( � ), and the particular value of the output at some time t is then denoted as above). The 

above mapping clearly also constitutes a constraint relating u(t) and y(t)� this fact could be 

emphasized by trivially rewriting the equation in the form 

y(t) ; (S u) (t) = 0 : (6.18) 

The defnitions of linearity, time-invariance and memorylessness from the behavioral case 

therefore specialize easily to mappings. An example of a system representation in the form of 

a mapping is Example 6.5. 

Linearity and Time-Invariance 

From the behavioral point of view, the signals of interest are given by w(t) = [u(t) y(t)]. It 

then follows from the preceding discussion of behavioral models that the model is linear if 

and only if � � 

S (�ua 

+ �ub) (t) = �ya(t) + �yb(t) = �(S ua)(t) + �(S ub)(t) (6.19) 

and the model is time-invariant if and only if � � 

S �� 

u (t) = (�� 

y)(t) = y(t ; �) (6.20) 

where �� 

is again the � -shift operator (so time-invariance of a mapping corresponds to requir-
ing mapping to commute with the shift operator). 

Memoryless Models 

Again specializing the behavioral defnition, we see that a mapping is memoryless if and 

only if y(t0) only depends on u(t0), for every t0 

2 T: � � 

y(t0) = (S u) (t0) = f u(t0) : (6.21) 



 

                  

           

 

      

 

     

 

  

   

             

 

           

              

  

 

 

  

                   

            

            

     

 

               

             

          

Causality 

We say the mapping is causal if the output does not depend on future values of the input. 

To describe causality conveniently in mathematical form, defne the truncation operator PT 

on a signal by the condition ( 

u(t) for t � T 

(PT 

u) (t) = : (6.22)
0 for t � T 

Thus, if u is a record of a function over all time, then (PT 

u) is a record of u up to time T , 

trivially extended by 0. Then the system S is said to be causal if 

PT 

SPT 

= PT 

S : (6.23) 

In other words, the output up to time T depends only on the input up to time T . 

Example 6.6 Example 6.5 shows a system represented as an input-output map. 

It is evident that the model is linear, translation-invariant, and not memoryless 

(unless h(x, y) = �(x, y)). 

Notes 

For much more on the behavioral approach to modeling and analysis of dynamic systems, see 

J. C. Willems, \Paradigms and Puzzles in the Theory of Dynamic Systems," IEEE 

Transactions on Automatic Control, Vol. 36, pp. 259{294, March 1991. 



 

                  

 

 

 

  

 

           

            

 

    

 

 

 

   

 

              

                  

 

 

       

  

  

    

   

 

 

 

   


 
  

 

 

 

      



 

 

 

 

   


                   

             

 

 

   

 

       

                

     

 

 

 

   

 

 

 

 

 

 

   

 

 

 


 

  
 

 

 

 

 

 

 

 

Exercises 

Exercise 6.1 Suppose the output y(t) of a system is related to the input u(t) via the following 

relation: Z 1 

;(t;s)y(t) = e u(s)ds: 

0 

Verify that the model is linear, time-varying, non-causal, and not memoryless. 

Exercise 6.2 Suppose the input-output relation of a system is given by ( 

u(t) if ju(t)j : 1 

y(t) = u(t) 

: 

if ju(t)j > 1ju(t)j 

This input-output relation represents a saturation element. Is this map nonlinear? Is it memoryless? 

Exercise 6.3 Consider a system modeled as a map from u(t) to y(t), and assume you know that 

when  
1 for 1 : t : 2 

u(t) =  
0 otherwise 

the corresponding output is 8 

t;1 ; et;2e for t : 1 

1;t ; et;2y(t) = 
2 ; e for 1 : t : 2 : : 

e2;t ; e1;t for t 2 2 

In addition, the system takes the zero input to the zero output. Is the system causal? Is it memoryless? 

A particular mapping that is consistent with the above experiment is described by Z 1 

;jt;sjy(t) = e u(s)ds: (6.24) 

;1 

Is the model linear? Is it time-invariant? 

Exercise 6.4 For each of the following maps, determine whether the model is (a) linear, (b) time-
invariant, (c) causal, (d) memoryless. 

(i) Z t 

y(t) = (t ; s)3 u(s)ds 

0 

(ii) Z t 

y(t) = 1 + (t ; s)3 u(s)ds 

0 

(iii) 

y(t) = u 

3(t) 

(iv) Z t 

y(t) = e;ts u(s)ds 

0 



  

 
 

  

               

    

                 

                

             

               

	                

              

               

  

	               

             

                

	                 

            

              

      

Chapter 7 

State-Space Models 

7.1 Introduction 

A central question in dealing with a causal discrete-time (DT) system with input u, output 

y, is the following: 

Given the input at some time n, i.e. given u[n], how much information do we need about 

past inputs, i.e. about u[k] for k � n, in order to determine the present output, namely y[n] � 

The same question can be asked for continuous-time (CT) systems. This question addresses 

the issue of memory in the system. Why is this a central question� Some reasons: 

� The answer gives us an idea of the complexity, or number of degrees of freedom, asso-
ciated with the dynamic behavior of the system. The more information we need about 

past inputs in order to determine the present output, the richer the variety of possible 

output behaviors. 

� In a control application, the answer to the above question suggests the required degree 

of complexity of the controller, because the controller has to remember enough about 

the past to determine the e�ects of present control actions on the response of the system. 

� For a computer algorithm that acts causally on a data stream, the answer to the above 

question suggests how much memory will be needed to run the algorithm. 

We now describe the general structure of state-space models, for which the preceding question 

has an immediate and transparent answer. 



   

                  

              

                

 

   


 
 
 
 
 






 


 


 


 


 


 


 
 



 
 
 
 
 
 

   

       

       

        

               

 

 

     

 

    

        

 

            

               

          

  

                

                

                  

                       

               

  

      

    
 

    

 

 


 

 

 

 

 


 

       

 

 


 

     

 

  

 


 

7.2 General Description 

For a causal system with m inputs uj(t) and p outputs yi(t) (hence m + p manifest variables), 

an nth-order state-space description is one that introduces n latent variables x`(t) called state 

variables in order to obtain a particular form for the constraints that defne the model. Letting 323232 

u1(t) y1(t) x1(t) 

u(t) = 

64 

75 , y(t) = 

64 

75 , x(t) = 

64 

75 ,. . 

. . 

. . . . . 

um(t) yp(t) xn(t) 

an nth-order state-space description takes the form 

x_ (t) = f (x(t), u(t), t) (state evolution equations) (7.1) 

y(t) = g (x(t), u(t), t) (instantaneous output equations) : (7.2) 

To save writing the same equations over for both continuous and discrete time, we interpret 

dx(t) + x_ (t) = , t 2 R or R 

dt 

for CT systems, and 

x_ (t) = x(t + 1) , t 2 Z or Z
+ 

for DT systems. We will only consider fnite-order (or fnite-dimensional, or lumped) state-
space models, although there is also a rather well developed (but much more subtle and 

technical) theory of infnite-order (or infnite-dimensional, or distributed) state-space models. 

DT Models 

The key feature of a state-space description is the following property, which we shall refer to 

as the state property. Given the present state vector (or \state") and present input at time 

t, we can compute: (i) the present output, using (7.2); and (ii) the next state using (7.1). It 

is easy to see that this puts us in a position to do the same thing at time t + 1, and therefore 

to continue the process over any time interval. Extending this argument, we can make the 

following claim: 

State Property of DT state-Space Models 

Given the initial state x(t0) 

and input u(t) for t0 

� t � tf 

(with t0 

and tf 

arbitrary), 

we can compute the output y(t) for t0 

� t � tf 

and the state x(t) for t0 

� t � tf 

. 



      

 

          

                 

               

          

  

                     

                

                  

                

              

               

     

 

 

 

     

 

 

      

             

      

 

          

                

            

 

   

 

    

      

 

      

 

     

    

 

    

 

        

                 

                  

     

            

               

            

              

              

         

    

               

                

     

  

 

 

 

 

    

 

           

 

          

 

 

 

   

Thus, the state at any time t0 

summarizes everything about the past that is relevant to the 

future. Keeping in mind this fact | that the state variables are the memory variables (or, in 

more physical situations, the energy storage variables) of a system | often guides us quickly 

to good choices of state variables in any given context. 

CT Models 

The same state property turns out to hold in the CT case, at least for f( : ) that are well 

behaved enough for the state evolution equations to have a unique solution for all inputs of 

interest and over the entire time axis | these will typically be the only sorts of CT systems 

of interest to us. A demonstration of this claim, and an elucidation of the precise conditions 

under which it holds, would require an excursion into the theory of di�erential equations 

beyond what is appropriate for this course. We can make this result plausible, however, by 

considering the Taylor series approximation � � 

dx(t) 

x(t0 

+ �) � x(t0) + � (7.3)
dt t�t0 

= x(t0) + f (x(t0), u(t0), t0) � (7.4) 

where the second equation results from applying the state evolution equation (7.1). This 

suggests that we can approximately compute x(t0 

+ �), given x(t0) and u(t0); the error in the 

approximation is of order �2 , and can therefore be made smaller by making � smaller. For 

sufciently well behaved f( � ), we can similarly step forwards from t0 

+ � to t0 

+2�, and so on, 

eventually arriving at the fnal time tf 

, taking on the order of �;1 steps in the process. The 

accumulated error at time tf 

is then of order �;1:�2 = �, and can be made arbitrarily small 

by making � sufciently small. Also note that, once the state at any time is determined and 

the input at that time is known, then the output at that time is immediately given by (7.2), 

even in the CT case. 

The simple-minded Taylor series approximation in (7.4) corresponds to the crudest of 

numerical schemes | the \forward Euler" method | for integrating a system of equations of 

the form (7.1). Far more sophisticated schemes exist (e.g. Runge-Kutta methods, Adams-Gear 

schemes for \sti�" systems that exhibit widely di�ering time scales, etc.), but the forward 

Euler scheme sufces to make plausible the fact that the state property highlighted above 

applies to CT systems as well as DT ones. 

Example 7.1 RC Circuit 

This example demonstrates a fne point in the defnition of a state for CT systems. 

Consider an RC circuit in series with a voltage source u. Using KVL, we get the 

following equation describing the system: 

;u + vR 

+ RCv_C 

= 0: 

It is clear that vC 

defnes a state for the system as we described before. Does vR 

defne a state� If vR(t0) is given, and the input u(t), t0 

� t � tf 

is known, then 



     

     

              

             

              

                

    

                   

          

     

     

                 

                   

                     

                 

          

     

      

               

        

 

 

 

 

         

   

 

      

 
 

    

  

 

            

           

                

             

               

 
 

             

    

 

    

   

         

one can compute vC 

(t0) and using the state property vC 

(tf 

) can be computed 

from which vR(tf 

) can be computed. This says that vR(t) defnes a state which 

contradicts our intuition since it is not an energy storage component. 

There is an easy fx of this problem if we assume that all inputs are piece-wise 

continuous functions. In that case we defne the state property as the ability 

to compute future values of the state from the initial value x(t0) and the input 

u(t), t0 

� t � tf 

. Notice the strict inequality. We leave it to you to verify that 

this defnition rules out vR 

as a state variable. 

Linearity and Time-Invariance 

If in the state-space description (7.1), (7.2), we have 

f (x(t), u(t), t) = f (x(t), u(t)) (7.5) 

g (x(t), u(t), t) = g (x(t), u(t)) (7.6) 

then the model is time-invariant (in the sense defned earlier, for behavioral models). This 

corresponds to requiring time-invariance of the functions that specify how the state variables 

and inputs are combined to determine the state evolution and outputs. The results of exper-
iments on a time-invariant system depend only on the inputs and initial state, not on when 

the experiments are performed. 

If, on the other hand, the functions f( : ) and g( : ) in the state-space description are 

linear functions of the state variables and inputs, i.e. if 

f (x(t), u(t), t) = A(t)x(t) + B(t)u(t) (7.7) 

g (x(t), u(t), t) = C(t)x(t) + D(t)u(t) (7.8) 

then the model is linear, again in the behavioral sense. The case of a linear and periodically 

varying (LPV) model is often of interest; when A(t) = A(t + T ), B(t) = B(t + T ), C(t) = 

C(t + T ), and D(t) = D(t + T ) for all t, the model is LPV with period T . 

Of even more importance to us is the case of a model that is linear and time-invariant 

(LTI). For an LTI model, the state-space description simplifes to 

f (x(t), u(t), t) = Ax(t) + Bu(t) (7.9) 

g (x(t), u(t), t) = Cx(t) + Du(t) : (7.10) 

We will primarily study LTI models in this course. Note that LTI state-space models are 

sometimes designated as (A, B, C, D) or " # 

A B 

, 

C D 

as these four matrices completely specify the state-space model. 



  

     

     

     

      

     

          

   

                

   

             

          

               

 

    

            

 

    

              

 

  

 

   

 

 

 

  

 

    

 

 

       

 

  

  

                 

        

  

 

 

 


 

 

 

  

 

 

System Type 

x_ (t) = tx2(t) NLTV 

x_ (t) = x2(t) NLTI 

x_ (t) = tx(t) LTV 

x_ (t) = (cos t)x(t) LPV 

x_ (t) = x(t) LTI 

Table 7.1: Some examples of linear, nonlinear, time-varying, periodically-varying, and time-
invariant state-space descriptions. 

Some examples of the various classes of systems listed above are given in Table 7.1. More 

elaborate examples follow. 

One might think that the state-space formulation is restrictive since it only involves 

frst-order derivatives. However, by appropriately choosing the state variables, higher-order 

dynamics can be described. The examples in this section and on homework will make this 

clear. 

Example 7.2 (Mass-Spring System) 

For the mass-spring system in Example 6.2, we derived the following system rep-
resentation: 

Mz� = ;kz + u: 

To put this in state space form, choose position and velocity as state variables: 

x1 

= z 

x2 

= z_: (7.11) 

Therefore, 

x_ 1 

= z_ = x2 

k 1 k 1 

x_ 2 

= ; z + u = ; x1 

+ u : 

M M M M 

The input is the force u and let the output be the position of the mass. The 

resulting state space description of this system is " # " # 

x_ 1 

x2= k 1x_ 2 

; x1 

+ uM M 

y = x1 

: 



              

             

    

    

    

            

              

            

           

 

 

            

             

           

           

              

              

   

 

      

 

    

   

 

    

               

 

 

 

  

 

 

       

 

     

 

 

 

 

 

 

  

 

         

 

 

   

 

             

  


 
 
 
 



 

 

 

  

 

 

 

  


 


 

 





 



 


 
 






 



 

 


 
 
 
 

 

 

 

The above example suggests something that is true in general for mechanical systems: the 

natural state variables are the position and velocity variables (associated with potential energy 

and kinetic energy respectively). 

Example 7.3 (Nonlinear Circuit) 

L R 

x 

C C 

i = n(x 

2 1 

13 + 

-

x 

+ 

-

x 12 

)
+ 

-

v 

 ; 

Figure 7.1: Nonlinear circuit. 

We wish to put the relationships describing the above circuit's behavior in state-
space form, taking the voltage v as an input, and choosing as output variables 

the voltage across the nonlinear element and the current through the inductor. 

The constituent relationship for the nonlinear admittance in the circuit diagram 

is inonlin 

= N (vnonlin), where N ( : ) denotes some nonlinear function. 

Let us try taking as our state variables the capacitor voltages and inductor cur-
rent, because these variables represent the energy storage mechanisms in the cir-
cuit. The corresponding state-space description will express the rates of change 

of these variables in terms of the instantaneous values of these variables and the 

instantaneous value of the input voltage v. It is natural, therefore, to look for 

expressions for C1x_ 1 

(the current through C1), for C2x_ 2 

(the current through C2), 

and for Lx_ 3 

(the voltage across L). 

Applying KCL to the node where R, C1, and the nonlinear device meet, we get 

(x2 

; x1)
C1x_ 1 

= ;N (x1)
R 

Applying KCL to the node where R, C2 

and L meet, we fnd 

(x2 

; x1)
C2x_ 2 

= x3 

; 

R 

Finally, KVL applied to a loop containing L yields 

Lx_ 3 

= v ; x2 

Now we can combine these three equations to obtain a state-space description of 

this system: 

C 

1 

1 

(x1) 

1 

232  3 32 Nx2 

;x1 

R 

; 0x_ 1 

C2

;64 

75 =
64 

75 

64 0 (7.12)+x_ 2 Rx3 

; 

x2 

;x1 

; 

1 1 x vx23 L_ 

L 

75 



 

  

 

 

 

           

            

           

   

           

 

   

 

   

                

    

 

                   

 

                

          

         

    

     

      

            

              

               

              

  

                

            

     

  

                

              

        

 
 

  
 

" # 

y = 

x1 : (7.13)
x3 

Observe that the output variables are described by an instantaneous output equa-
tion of the form (7.2). This state-space description is time-invariant but nonlinear. 

This makes sense, because the circuit does contain a nonlinear element! 

Example 7.4 (Discretization) 

Assume we have a continuous-time system described in state-space form by 

dx(t) 

= Ax(t) + Bu(t), 

dt 

y(t) = Cx(t) + Du(t): 

Let us now sample this system with a period of T , and approximate the derivative 

as a forward di�erence: 

1 

(x ((k + 1)T ) ; x (kT ))  =  Ax (kT ) + Bu (kT ) , k 2 Z: (7.14)
T 

It is convenient to change our notation, writing x[k] � x(kT ), and similarly for u 

and y. Our sampled equation can thereby be rewritten as 

x[k + 1] = (I + TA) x[k] + T Bu[k] 

^ ^= Ax[k] + Bu[k] , 

y[k] = Cx[k] + Du[k] : (7.15) 

which is in standard state-space form. 

In many modern applications, control systems are implemented digitally. For that purpose, 

the control engineer must be able to analyze both discrete-time as well as continuous-time 

systems. In this example a crude sampling method was used to obtain a discrete-time model 

from a continuous-time one. We will discuss more refned discretization methods later on in 

this book. 

It is also important to point out that there are physical phenomena that directly require or 

suggest discrete-time models; not all discrete-time models that one encounters in applications 

are discretizations of continuous-time ones. 

7.3 Linearization 

Much of our attention in this course will be focused on linear models. Linear models frequently 

arise as descriptions of small perturbations away from a nominal solution of the system. 

Consider, for example, the continuous-time (CT) state-space model 

x_ (t) = f(x(t), u(t), t) 

y(t) = g(x(t), u(t), t) (7.16) 



               

              

                

               

                 

            

             

 

  

  

   

  


 
 

 


 
 

 

  

    

 

 

 

 

    

 

              

                   

               

  

 

           

                

    
 

     
 

             

              

              

               

               

              

 

              

       

       

            

             


 

 

 


 
 

 

 


   

  

 

 

  

  

 

  

 

 

 


 


 


 

 

 

  


 

 


 

 


 

 

 

 

 

 

 

 

 

 

        

 

        

   

 

          

      

where x(t) is the n-dimensional state-vector at time t, u(t) is the m-dimensional vector of 

inputs, and y(t) is the p-dimensional vector of outputs. Suppose xo(t), uo(t) and yo(t) con-
stitute a nominal solution of the system, i.e. a collection of CT signals that jointly satisfy 

the equations in (7.16). Now let the control and initial condition be perturbed from their 

nominal values to u(t) = uo(t)+ 8u(t) and x(0) = xo(0) + 8x(0) respectively, and let the state 

trajectory accordingly be perturbed to x(t) = xo(t) + 8x(t). Substituting these new values 

into (7.16) and performing a (multivariable) Taylor series expansion to frst-order terms, we 

fnd     
@f @f _8x(t) � 8x(t) + 8u(t)
@x @u o  o  
@g @g 

8y(t) � 8x(t) + 8u(t) (7.17)
@x @u o o 

where the nxn matrix [@f/@x]o 

denotes the Jacobian of f(:, :, :) with respect to x, i.e. a matrix 

whose ij-th entry is the partial derivative of the ith component of f(:, :, :) with respect to the 

jth component of x, and where the other Jacobian matrices in (7.17) are similarly defned. 

The subscript o 

indicates that the Jacobians are evaluated along the nominal trajectory, i.e. 

at x(t) = xo(t) and u(t) = uo(t). The linearized model (7.17) is evidently linear, of the form 

_8x(t) = A(t) 8x(t) + B(t) 8u(t) 

8y(t) = C(t) 8x(t) + D(t) 8u(t): (7.18) 

When the original nonlinear model is time-invariant, the linearized model will also be time-
invariant if the nominal solution is constant (i.e. if the nominal solution corresponds to 

a constant equilibrium); however, the linearized model may be time varying if the nominal 

solution is time varying (even if the original nonlinear model is time-invariant), and will be 

periodic | i.e., have periodically varying coefcients | if the nominal solution is periodic (as 

happens when the nominal solution corresponds to operation in some cyclic or periodic steady 

state). 

The same development can be carried out for discrete-time (DT) systems, but we focus 

in this lecture on the CT case. 

Example 7.5 (Linearizing a Nonlinear Circuit Model) 

Consider linearizing the state-space model we obtained for the nonlinear circuit in 

Example 7.3. We ended up there with a nonlinear model of the form 2 3 2 ;  3 2 3
1 

x2 

;x1x_ 1 C1 ;R 

;N (x 1) 0 6 7 6 1 

7 6 7 4 

x_ 2 

5 

= 4 

x3 

; 

x2 

;x1 5 

+ 4 

0 5 

: (7.19)C2 

R 

x_ 3 

; 

1 x2
1 v

L L 

For the linearization, all that happens is each xj 

is replaced by 8xj , and N (x1) is 

replaced by [dN (x1)/dx1]o 

8x1, resulting in a linear state-space model of the form 

8x_ (t) = A 8x(t) + B 8v(t) (7.20) 
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_ _ 

with ih0 101
1 1 dN 1 0 

1 

0; ;RC1 

C1 

dx1 

RC1oB@ 

CA , B = 

B@ 

CA1 1A = 
0 (7.21);RC2 

RC2 

C2 1 

L 

10 0L 

Example 7.6 (Linearizing the Inverted Pendulum) 

Recall from Example 6.3 the equations that describe the dynamics of the inverted 

pendulum. Those equations are nonlinear due to the presence of the terms sin(�), 

cos(�), and (�)2 . We can linearize these equations around � = 0 and � = 0, by 

_assuming that �(t) and �(t) remain small. Recall that for small � 

1 

sin(�) � ; �3 

6 

1 

cos(�) 1 ; �2 ,
2 

and using the linear parts of these relations the linearized system of equations 

takes the form ��
ml ml g

1 ; s� + � 

ML M L 

= 

1 

u,
M �� 

ml g 1 

1 ; �� ; � = ; u : 

ML L ML 

Using as state vector 32 6664 

s 

s_ 

� 

_� 

7775 

x = , 

the following state-space model can be easily obtained: 010 

x1 

10 

0 1 0 0 

101 

0x1 BBB@ 

CCCA 

= 

BBB@
h 

BBB@ 

CCCA 

CCCA 

+ 

BBB@ 

CCCA 

� 

M 

0 

0 0 ;� 

ml 

ML 

g 0 

0 0 0 1 

� 

g0 0 0L 

d 

dt 

x2 

x3 

x2 

x3 

x4 

u 

� 

LM;x4 i 

y = 1 0 0 0 x, 

where the constant � is given by 

1 

� = � � : 

ml1 ; ML 



 

       

             

            

              

	                  

             

              

               

  

	                

        

 

             

 

                 

        

           

                

 

 

 

    

     

	                  

               

	                  

     

                

	 

   

	  

          

Exercises 

Exercise 7.1 Consider the nonlinear di�erence equation 

y(k + n) � F [y(k + n ; 1)� : : : � y(k)� u(k + n ; 1)� : : : � u(k)� k] 

where n is a �xed integer, and k is the time index. 

(a) Find a state-space representation of order 2n ; 1 for this di�erence equation. 

(b) Find an nth-order state-space representation in LTI case (what is the form of F in this case�), 

using z-transforms for guidance (natural state variables are the coe�cients of the initial-condition 

terms in the z-transformed version of the di�erence equation | try a third-order di�erence 

equation | remind of forward shift theorem from z-transforms). This part will guide the solution 

of (c). 

(c) Find an nth-order state-space representation for the nonlinear system in (a) for the case where 

F [ : ] has the special form 

Xn 

F [ : ] � fi[y(k + n ; i)� u(k + n ; i)] 

i�1 

(Hint: Note that the di�erence equation in part (b) has this form� use your de�nition of state 

variables in (b) to guide your choice here.) 

Exercise 7.2 Consider a causal continuous-time system with input-output representation y(t) � 

h � u(t), where � denotes convolution and h(t) is the impulse response of the system: 

;t ;2th(t) � 2e ; ce for t � 0 

Here c denotes a constant. 

(a) Suppose c � 2. Use only the input-output representation of the system to show that the variables 

x1(t) � y(t) and x2(t) � y_(t) qualify as state variables of the system at time t. 

(b) Compute the transfer function of the system, and use it to describe what may be special about 

the case c � 2. 

Exercise 7.3 The input u(t) and output y(t) of a system are related by the equation 

dy(t) du(t)
+ a0(t)y(t) � b0(t)u(t) + b1(t)

dt dt 

Find a linear, time varying state-space representation of this system. 



               

                   

    


 





 

   





 

 




   


 




    


                  

       

            

          

       

     

  

                   

                   

        

                    

                  

                  

                  

       

       

   

 

              

    

               

	                 

   

	                 

        

Exercise 7.4 Given the periodically varying system x(k + 1) � A(k)x(k) + B(k)u(k) of period N , 

with A(k + N) � A(k) and B(k + N) � B(k), de�ne the sampled state z[k] and the associated extended 

input vector v[k] by 0 u(kN) 

u(kN + 1) 

. . . 

u(kN + N ; 1) 

1 CCAz[k] � x(kN) � v[k] � 

BB@ 

Now show that z[k + 1] � Fz[k] + Gv[k] for constant matrices F and G (i.e. matrices independent of 

k) by determining F and G explicitly. 

Exercise 7.5 Let the state space representations of two given systems be 

xi(k + 1) � Aixi(k) + Biui(k) � yi(k) � Cixi(k) � i � 1� 2 

Determine a state-space representation in the form 

x(k + 1) � Ax(k) + Bu(k) 

y(k) � Cx(k) 

for the new system obtained when systems 1 and 2 are interconnected (a) in series, (b) in parallel, and 

in a feedback loop. Assume the size of the inputs and outputs of the two systems are consistent for 

each of the above con�guration to make sense. 

Exercise 7.6 Consider a pendulum comprising a mass m at the end of a light but rigid rod of length 

r. The angle of the pendulum from its equilibrium position is denoted by �. Suppose a torque u(t) 

can be applied about the axis of support of the pendulum (e.g. suppose the pendulum is attached to 

the axis of an electric motor, with the current through the motor being converted to torque). A simple 

model for this system takes the form 

mr 

2��(t) + f�_(t) + mgr sin �(t) � u(t) 

_where the term f� represents a frictional torque, with f being a positive coe�cient, and g is the 

acceleration due to gravity. 

(a) Find a state-space representation for this model. Is your state-space model linear� time invariant� 

(b) What nominal input uo(t) corresponds to the nominal motion �o(t) � �t for all t, where � is 

some �xed constant� 

(c) Linearize your state-space model in (a) around the nominal solution in (b). Is the resulting model 

linear� Is it time invariant or periodically varying� 



                

                       

             

  

 

   

 

  

 

 

 

 

                     

  

 

                      


 

   
 

           

Exercise 7.7 Consider the horizontal motion of a particle of unit mass sliding under the in�uence 

of gravity on a frictionless wire. It can be shown that, if the wire is bent so that its height h is given 

by h(x) � V�(x), then a state-space model for the motion is given by 

x_ � z 

d 

z_ � ; V�(x)� 

dx 

Suppose V�(x) � x4 ; �x2 . 

(a) Verify that the above model has (z� x) � (0� 0) as equilibrium point for any � in the interval � 

r � 

� ;1 � � � 1, and it also has (z� x) � 0� � as equilibrium points when � is in the interval 

2 

0 � � � 1. 

(b) Derive the linearized system at each of these equilibrium points. 



  


 

  

        

       

        

                  

                  

                   

                 

                   

                 

               

               

                   

                 

               

   

     

                 

        

     

                

Chapter 8 

Simulation/Realization  

8.1 Introduction 

Given an nth-order state-space description of the form 

x_ (t) = f (x(t), u(t), t) (state evolution equations) (8.1) 

y(t) = g (x(t), u(t), t) (instantaneous output equations) : (8.2) 

(which may be CT or DT, depending on how we interpret the symbol x_ ), how do we simulate 

the model, i.e., how do we implement it or realize it in hardware or software? In the DT 

case, where x_ (t) = x(t + 1), this is easy if we have available: (i) storage registers that can be 

updated at each time step (or \clock cycle") | these will store the state variables; and (ii) 

a means of evaluating the functions f( · ) and g( · ) that appear in the state-space description 

| in the linear case, all that we need for this are multipliers and adders. A straightforward 

realization is then obtained as shown in the fgure below. The storage registers are labeled 

D for (one-step) delay, because the output of the block represents the data currently stored 

in the register while the input of such a block represents the data waiting to be read into the 

register at the next clock pulse. In the CT case, where x_ (t) = dx(t)/dt, the only diference is 

that the delay elements are replaced by integrators. The outputs of the integrators are then 

the state variables. 

8.2 Realization from I/O Representations 

In this section, we will describe how a state space realization can be obtained for a causal 

input-output dynamic system described in terms of convolution. 

8.2.1 Convolution with an Exponential 

Consider a causal DT LTI system with impulse response h[n] (which is 0 for n < 0): 



 

    

    

 

    

 

    

 

 

 

 

      

 

     

 

     

 

                

                  

                       

                   

     

               

 

 

 

        

 

 

 

 

  

 

 

 

   

 

 

 

 

 

 

 

 

  

 

    

u[t] 

- x[t + 1]- x[t] - y[t]-f(:, :) D 

g(:, :) 

6 6 

Figure 8.1: Simulation Diagram 

Xn 

y[n] = h[n ; k]u[k] 

;1 � 

n;1 �X 

= h[n ; k]u[k] + h[0]u[n] (8.3) 

;1 

The frst term above, namely 

n;1X 

x[n] = h[n ; k]u[k] (8.4) 

;1 

represents the efect of the past on the present. This expression shows that, in general (i.e. 

if h[n] has no special form), the number x[n] has to be recomputed from scratch for each n. 

When we move from n to n + 1, none of the past input, i.e. u[k] for k � n, can be discarded, 

because all of the past will again be needed to compute x[n + 1]. In other words, the memory 

of the system is infnite. 

Now look at an instance where special structure in h[n] makes the situation much better. 

Suppose 

h[n] = �n for n � 0, and 0 otherwise (8.5) 

Then 

n;1X 

�n;k x[n] = u[k] (8.6) 

;1 

and 

Xn 

�n+1;k x[n + 1] = u[k] 

;1 � 

n;1 �X 

�n;k = � u[k] + �u[n] 

;1 

= �x[n] + �u[n] (8.7) 



               

              

               

  

      

    

                

                  

                 

                  

                 

                

      

 

 

 

 

   

 

 

 

 

       

            

  

 

 

 

 

 

   

 

  

  

 

            

            

                 

 

 

             

      

 

 


 

 

 


 

 

 

 

 


 

 

 

 

 




(You will fnd it instructive to graphically represent the convolutions that are involved here, in 

order to understand more visually why the relationship (8.7) holds.) Gathering (8.3) and (8.6) 

with (8.7), we obtain a pair of equations that together constitute a state-space description for 

this system: 

x[n + 1] = �x[n] + �u[n] (8.8) 

y[n] = x[n] + u[n] (8.9) 

To realize this model in hardware, or to simulate it, we can use a delay-adder-gain system 

that is obtained as follows. We start with a delay element, whose output will be x[n] when its 

input is x[n +1]. Now the state evolution equation tells us how to combine the present output 

of the delay element, x[n], with the present input to the system, u[n], in order to obtain the 

present input to the delay element, x[n + 1]. This leads to the following block diagram, in 

which we have used the output equation to determine how to obtain y[n] from the present 

state and input of the system: 

u[n] 

- m - - y[n] 

6 

x[n] x[n + 1]
� � 

�D 

8.2.2 Convolution with a Sum of Exponentials 

Consider a more complicated causal impulse response than the previous example, namely 

nh[n] = �0�[n] + ( �1�1 

+ �2�2 

n + · · · + �L�
n
L 

) (8.10) 

with the �i 

being constants. The following block diagram shows that this system can be 

considered as being obtained through the parallel interconnection of causal subsystems that 

are as simple as the one treated earlier, plus a direct feedthrough of the input through the 

gain �0 

(each block is labeled with its impulse response, with causality implying that these 

responses are 0 for n < 0): 

- -�0�[n] 

B 

B 

u[n] 

B y[n]
- - �1�

n - - BBNi -
1 

��� 

� 

� 

� 

- �L�
n 

L 

- � 

... 



                

       

 

 

 

 

     

            

         

        

 

 

 

         

 

               

                


 
 

 

 




 

 

 








  
 

 

               

 

 

   

 

 





 

 

   

 

 


 

 
 

  
 



   




 


 


 


 







 
 
 

    

  

 


 

 

  

   

 


 




              

      

    

 

 

  

 

 

 

Motivated by the above structure and the treatment of the earlier, let us defne a state 

variable for each of the L subsystems: 

n;1 

�n;k[ ] [k] i 1 2, : : : , L (8.11)x n = u =i 

, ,i 

[ + 1] � [ ] + � [ ] i 1 2, : : : , L (8.12)x n = x n u n =i i i i 

, , 

X 

;1 

With this, we immediately obtain the following state-evolution equations for the subsystems: 

Also, after a little algebra, we directly fnd 

L 

X 

y[n] = �1x1[n] + �2x2[n] + · · · + �LxL[n] + ( �i) u[n] (8.13) 

0 

We have thus arrived at an Lth-order state-space description of the given system. To write 

the above state-space description in matrix form, defne the state vector at time n to be 10 

x[n] = 

BBBB@ 

x1[n] 

x2[n] 

. . . 

xL[n] 

CCCCA 

(8.14) 

Also defne the diagonal matrix A, column vector b, and row vector c as follows: 1010 

�1 

0 0 · · · 0 0 �1 

A = 

BBBB@
� 

0 �2 

0 · · · 0 0 

. . . . .. . . . . . . .. . . . . 

CCCCA 

, b = 

BBBB@ 

�2 

. . . 

CCCCA 

(8.15) 

0 0 0 · · · 0 �L 

�L � 

X 

c = �1 

�2 

· · · · · · · · · �L 

(8.16) 

Then our state-space model takes the desired matrix form, as you can easily verify: 

x[n + 1] = Ax[n] + bu[n] (8.17) 

y[n] = cx[n] + du[n] (8.18) 

where 

L 

d = �i 

(8.19) 

0 



       

                 

      

         

           

    

                 

           

 

   

   


 
   

 


 






 

   

         


 




 

    

 

   



 


 

 



 


 


    
    

   


 


 

   

  
   

 
 
 
 
 
 

    
 
 

 





   

   


 
   

   

 

 

    


   

               

              

 


 


    



 
 

   

        


 




  

   

 
 

 
 

 

 


 



 


   



 


 


      



 
 
 
 
 
 

 


 

 

   


 


 
 

 




     


 

   

8.3 Realization from an LTI Di�erential/Di�erence equation 

In this section, we describe how a realization can be obtained from a diference or a diferential 

equation. We begin with an example. 

Example 8.1 (State-Space Models for an LTI Di�erence Equation) 

Let us examine some ways of representing the following input-output diference 

equation in state-space form: 

y[n] + a1y[n ; 1] + a2y[n ; 2] = b1u[n ; 1] + b2u[n ; 2] (8.20) 

For a frst attempt, consider using as state vector the quantity 10 

x[n] = 

BBB@ 

y[n ; 1] 

y[n ; 2] 

u[n ; 1] 

u[n ; 2] 

CCCA (8.21) 

The corresponding 4th-order state-space model would take the form 010 10 101 

y[n] ;a1 

;a2 

b1 

b2 

y[n ; 1] 

y[n ; 2] 

0 BBB@ 

CCCA 

BBB@ 

BBB@
0 

CCCA 

CCCA 

+ 

BBB@ 

CCCA 

y[n ; 1] 

u[n] 

1 0 0 0 

0 0 0 0 

0 0 1 0 

0 

1 

x[n + 1] = u[n]= 

1 

u[n ; 1] 

u[n ; 1] u[n ; 2] 

y[n ; 1] 

y[n ; 2] 

u[n ; 1] 

u[n ; 2] 

0 

BBB@ 

CCCA 

�� 

y[n] = ;a1 

;a2 

b1 

b2 

+ ( 0 ) u[n](8.22) 

If we are somewhat more careful about our choice of state variables, it is possible 

to get more economical models. For a 3rd-order model, suppose we pick as state 

vector 10 

y[n]B@ 

CAx[n] = y[n ; 1] (8.23) 

u[n ; 1] 

The corresponding 3rd-order state-space model takes the form 010 10 101 

y[n + 1] ;a1 

;a2 

b2 

1 0 0 

0 0 0 

y[n] b1 B@ 

CA = 

B@ 

B@ 

CA 

CA+ 

B@ 

CAx[n + 1] = y[n] 

u[n] 

y[n ; 1] 0 u[n] 

1 1 CA 

u[n ; 1] 0 

y[n]�� B@y[n] = 1 0 0 y[n ; 1] + ( 0 ) u[n] (8.24) 

u[n ; 1] 



            

    

 

  

       

        

    

  

 

 

 

 

 

  

 

        

 

 

 

    

       

               

                  

            

              

             

       

            

             

  

             

               

  

    

        

 

 

 

           

     

 

 

 

  

 

      

     

   

              

 

              

              

A still more clever/devious choice of state variables yields a 2nd-order state-space 

model. For this, pick � ! 

y[n]
x[n] = (8.25);a2y[n ; 1] + b2u[n ; 1] 

The corresponding 2nd-order state-space model takes the form � ! � !� ! � ! 

y[n + 1] ;a1 

1 y[n] b1 = + u[n];a2y[n] + b2u[n] ;a2 

0 ;a2y[n ; 1] + b2u[n ; 1] b2 � ! � � y[n]
y[n] = 1 0 + ( 0 ) u[n] (8.26);a2y[n ; 1] + b2u[n ; 1] 

It turns out to be impossible in general to get a state-space description of order 

lower than 2 in this case. This should not be surprising, in view of the fact that we 

started with a 2nd-order diference equation, which we know (from earlier courses!) 

requires two initial conditions in order to solve forwards in time. Notice how, in 

each of the above cases, we have incorporated the information contained in the 

original diference equation that we started with. 

This example was built around a second-order diference equation, but has natural 

generalizations to the nth-order case, and natural parallels in the case of CT 

diferential equations. 

Next, we will present two realizations of an nth-Order LTI diferential equation. While 

realizations are not unique, these two have certain nice properties that will be discussed in 

the future. 

8.3.1 Observability Canonical Form 

Suppose we are given the LTI diferential equation 

(n) (n;1) (n;1)y + an;1y + · · · + a0y = b0u + b1u_ + · · · + bn;1u , 

which can be rearranged as 

(n) (n;1) (n;2)y = (bn;1u ; bn;1y(n;1)) + (bn;2u ; an;2y(n;2)) + · · · + (b0u ; a0y): 

Integrated n times, this becomes Z Z Z Z Z 

y = (bn;1u ; an;1y) + (bn;2u ; an;2y) + · · · + · · · (b0u ; a0y): (8.27) 

n 

The block diagram given in Figure 8.2 then follows directly from (8.27). This particular 

realization is called the observability canonical form realization | \canonical" in the sense of 



 

 

 


 




 

 




 

 

 

 

 


 




 

 

 




 

 

 

 

 

 


 




 

 

 

 

 

 

 

 

 

 

 

 

 


 

 

 

 

 


 

 

 

 

     

             

         

               

          

 

 

 

 

 

 

  

 

 

 

 

 

 

  

 

 

 

 

 

 

 

  

   

            


 


 




 

 


 


 


 


 





 

 




 

   

 

  


 





 
  


 









 
 


 

 

   

 

 

      

                     

               

                 

u . . . 

_ 

bn;2 

�� Z_ x_- ++ 

2 -�� 

6 

;an;2 

6 

_ 

bn;1 

��_ x2- x_ 1 -+�� 

6 

Z 

x1 

;an;1 

6 

_ _ 

b0 

b1 

��_ 

��_ x_ xn 

x_ xn;1n- - n;-1 . . .+ +�� �� 

6 6 

;a0 

;a1 

6 6 

ZZ 

y-

. . . 

Figure 8.2: Observability Canonical Form 

\simple" (but there is actually a strict mathematical defnition as well), and \observability" 

for reasons that will emerge later in the course. 

We can now read the state equations directly from Figure 8.2, once we recognize that 

the natural state variables are the outputs of the integrators: 

x_ 1 

= ;an;1x1 

+ x2 

+ bn;1u 

x_ 2 

= ;an;2x1 

+ x3 

+ bn;2u 

. . . 

x_ n 

= ;a0x1 

+ b0u 

y = x1: 

If this is written in our usual matrix form, we would have 32 32 

6666664 

;an;1 

1 0 · · · 0 

;an;2 

0 1 · · · 0 

. . . . .. 

1 

7777775 

66666664 

bn;1 

bn;2 

. . . 

. . . 

77777775 

A = , b = 

;a0 

0 · · · 0 b0 ih 

c = 1 0 · · · 0 : 

The matrix A is said to be in companion form, a term used to refer to any one of four matrices 

whose pattern of 0's and 1's is, or resembles, the pattern seen above. The characteristic 

polynomial of such a matrix can be directly read of from the remaining coefcients, as we shall 



                

 

    

                 

 

 

 

 

            

           

 

 

 

       

            









 


 


 


  


 


 

 










 

 


 

 

 

 











 

 


 


 


 

 

 

 

               




 
 




 

     

 

 

 

 


 
 
 



 

 


 


 


 

 





 




    
 

    
 










  
 







 

 


 


 


 

 

















 
 
 
 
 
 

  

 




    

 




 


 

 











 

  

                

                  

              

 

 

 

       

  
 


 

 

 

 

 




see when we talk about these polynomials, so this matrix is a \companion" to its characteristic 

polynomial. 

8.3.2 Reachability Canonical Form 

There is a \dual" realization to the one presented in the previous section for the LTI diferential 

equation 

(n) (n;1) (n;1)y + an;1y + · · · + a0y = c0u + c1u_ + · · · + cn;1u : (8.28) 

First, consider a special case of this, namely the diferential equation 

(n) (n;1)w + an;1w + · · · + a0w = u (8.29) 

To obtain an nth-order state-space realization of the system in 8.29, defne 3232 

wx1 777777775 

= 

6666666664 

7777777775 

:x = 

666666664 

w_ 

w� 

. . . 

dn;2 w 

dtn;2 

dn;1 w 

x2 

x3 

. . . 

xn;1 

xn dtn;1 

Then it is easy to verify that the following state-space description represents the given model: 232 32 323 

x1 

0 1 0 0 : : : 0 x1 

0 

d 

dt 

666666664 

777777775 

= 

666666664 

0 0 1 0 : : : 0 

0 0 0 1 : : : 0 

. . . . . . 

0 0 0 : : : 0 1 

666666664 

777777775 

x2 

x3 

. . . 

xn;1 

777777775 

+ 

666666664 

0 

0 

x2 

x3 

. . . 

xn;1 

u. . . 

0 

;a0(t) ;a1(t) 2 666666664 

;a2(t) ;an;2(t) ;an;1(t) xn: : : xn 3 

x1 

x2 

x3 

777777775 

ih 

1 0 0 0 : : : 0 :w = . . . 

xn;1 

xn 

(The matrix A here is again in one of the companion forms; the two remaining companion 

forms are the transposes of the one here and the transpose of the one in the previous section.) 

Suppose now that we want to realize another special case, namely the diferential equation 

(n) (n;1)r + an;1r + · · · + a0r = u_ (8.30) 

777777775 

1 



                   

                 

       

 

    

 

   

               

      

     

 

            

  

 

 

 

   	  

         

	  

  

   

 

 

	  

                 

    

 

 

 

 

 

  

 

 

 

  

 

 

 

  

 

	  

	 

 

    

	 

 

 

  

 

 

 

 


 

 

 


 

 

 

     

              

               

  

- -

which is the same equation as (8.29), except that the RHS is u_ rather than u. By linearity, the 

response of (8.30) will r = w_ (t), and this response can be obtained from the above realization 

by simply taking the output to be x2 

rather than x1, since x2 

= w_ = r. 

Superposing special cases of the preceding form, we see that if we have the diferential 

equation (8.28), with an RHS of 

(n;1)c0u + c1u_ + · · · + cn;1u 

then the above realization sufces, provided we take the output to be 

y = c0x1 

+ c1x2 

+ · · · + cn;1xn: (8.31) 

i.e., we just change the output equation to have h i 

c = c0 

c1 

c2 

· · · cn;1 

: (8.32) 

A block diagram of the fnal realization is shown below in 8.3. This is called the reachability 

or controllability canonical form.

  
y 

  
6 

..........................� 

cn;1 

c1 

c0 

+  Z Z Z Z 

6 6 6 

u xn_ x1_-
  
  � 6BMB

I+@
+ @ 

_ _ _ _ 

+ B+ 

@ 

;an;1 

;an;2 

;a1 

;a0
B @
B @
B 

- - xn 

xn;1- - x2_ - x2 

x1... 

Figure 8.3: Reachability Canonical Form 

Finally, for the obvious DT diference equation that is analogous to the CT diferential 

equation that we used in this example, the same scheme will work, with derivatives replaced 

by diferences. 



 

              

 

 

 

     

 

  

 

   

 

 

 

 

  

 

   

 

               

  

             

            

               

             

 

 

 

   

 

      

 

 

 

 

 

   

 

       

       

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

              

              

Exercises 

Exercise 8.1 Suppose we wish to realize a two-input di�erential equation of the form 

(n) (n;1) 

(n;1)
y + an;1y + � � � + a0y � b01u1 

+ b11u_ 1 

+ � � � + bn;1�1u1 

(n;1)
+ b02u2 

+ b12u_ 2 

+ � � � + bn;1�2u2 

Show how you would modify the observability canonical realization to accomplish this, still using only 

n integrators. 

Exercise 8.2 How would reachability canonical realization be modi�ed if the linear di�erential equa-
tion that we started with was time varying rather than time invariant� 

Exercise 8.3 Show how to modify the reachability canonical realization| but still using only n 

integrators | to obtain a realization of a two-output system of the form 

(n) (n;1) (n;1) �y1 

+ an;1y1 

+ � � � + a0y1 

� c10u + c11u_ + � � � + c1�n;1u 

(n) (n;1) (n;1)y2 

+ an;1y2 

+ � � � + a0y2 

� c20u + c21u_ + � � � + c2�n;1u : 

Exercise 8.4 Consider the two-input two-output system: 

y_1 

� y1 

+ �u1 

+ u2 

� 

y_2 

� y2 

+ u1 

+ u2 

(a) Find a realization with the minimum number of states when � 6� 1. 

(b) Find a realization with the minimum number of states when � � 1. 



  

   

 

  

              

             

              

            

  

    

           

     

     

   

 

              

                

  

                  

       

      

Chapter 10 

Discrete-Time Linear State-Space 

Models 

10.1 Introduction 

In the previous chapters we showed how dynamic models arise, and studied some special 

characteristics that they may possess. We focused on state-space models and their properties, 

presenting several examples. In this chapter we will continue the study of state-space models, 

concentrating on solutions and properties of DT linear state-space models, both time-varying 

and time-invariant. 

10.2 Time-Varying Linear Models 

A general nth-order discrete-time linear state-space description takes the following form: 

x(k + 1)   A(k)x(k) + B(k)u(k) 

y(k)   C(k)x(k) + D(k)u(k) , (10.1) 

where x(k) 2 R
n . Given the initial condition x(0) and the input sequence u(k), we would like 

to fnd the state sequence or state trajectory x(k) as well as the output sequence y(k). 

Undriven Response 

First let us consider the undriven response, that is the response when u(k)  0 for all k 2 Z. 

The state evolution equation then reduces to 

x(k + 1)   A(k)x(k) : (10.2) 



            

  


  


  

        

               

             

      	  

         

 	

           

 

    

                    

                   

  

           

 

   

    

     

        

               

                 

          

 

    

               

         

  

 

 
 

 
 

                

             

 

The response can be derived directly from (10.2) by simply iterating forward: 

x(1)   A(0)x(0) 

x(2)   A(1)x(1) 

  A(1)A(0)x(0) 

x(k)   A(k ; 1)A(k ; 2) : : : A(1)A(0)x(0) (10.3) 

Motivated by (10.3), we defne the state transition matrix, which relates the state of the 

undriven system at time k to the state at an earlier time `: 

x(k)   �(k, `)x(`) k � ` : (10.4) 

The form of the matrix follows directly from (10.3): ( 

A(k ; 1)A(k ; 2)     A(`) , k � ` � 0 

�(k, `)   : (10.5)
I , k   ` 

If A(k ;1), A(k ;2),. . . , A(`) are all invertible, then one could use the state transition matrix 

to obtain x(k) from x(`) even when k � `, but we shall typically assume k � ` when writing 

�(k, `). 

The following properties of the discrete-time state transition matrix are worth highlight-
ing: 

�(k, k)   I 

x(k)   �(k, 0)x(0) 

�(k + 1, `)   A(k)�(k, `): (10.6) 

Example 10.1 (A Su�cient Condition for Asymptotic Stability) 

The linear system (10.1) is termed asymptotically stable if, with u(k) � 0, and for 

all x(0), we have x(n) ! 0 (by which we mean kx(n)k ! 0) as n ! 1. Since 

u(k) � 0, we are in e�ect dealing with (10.2). 

Suppose 

kA(k)k � � � 1 (10.7) 

for all k, where the norm is any submultiplicative norm and � is a constant (inde-
pendent of k) that is less than 1. Then 

k�(n, 0)k � �n 

and hence 

kx(n)k � �nkx(0)k 

so x(n) ! 0 as n ! 1, no matter what x(0) is. Hence (10.7) constitutes a 

sufcient condition (though a weak one, as we'll see) for asymptotic stability of 

(10.1). 



          

           

                

                   

                 

                 

          

 

           

     

            

             

  

                   

   

    


    


       

   

        

 

        

 

 

 

                 




 

 

 

 

 




 


 
 

   

                  

                  

                 

               

             

                  

  

Example 10.2 (\Lifting" a Periodic Model to an LTI Model) 

Consider an undriven linear, periodically varying (LPV) model in state-space form. 

This is a system of the form (10.2) for which there is a smallest positive integer 

N such that A(k + N)   A(k) for all k� thus N is the period of the system. (If 

N   1, the system is actually LTI, so the cases of interest here are really those 

with N � 2.) Now focus on the state vector x(mN) for integer m, i.e., the state 

of the LPV system sampled regularly once every period. Evidently ih 

x(mN + N)   A(N ; 1)A(N ; 2)     A(0) x(mN) 

X 

  �(N, 0) x(mN) (10.8) 

The sampled state thus admits an LTI state-space model. The process of con-
structing this sampled model for an LPV system is referred to as lifting. 

Driven Response 

Now let us consider the driven system, i.e., u(k) 6  0 for at least some k. Referring back to 

(10.1), we have 

x(1)   A(0)x(0) + B(0)u(0) 

x(2)   A(1)x(1) + B(1)u(1) 

  A(1)A(0)x(0) + A(1)B(0)u(0) + B(1)u(1) (10.9) 

which leads to 

k;1 

x(k)   �(k, 0)x(0) + �(k, ` + 1)B(`)u(`) 

`=0 

  �(k, 0)x(0) + ;(k, 0)U(k, 0) , (10.10) 

where 10 

ih 

;(k, 0)   �(k, 1)B(0) j �(k, 2)B(1) j     j B(k ; 1) , U(k, 0)   

BBBB@ 

u(0) 

u(1) 

. . . 

u(k ; 1) 

CCCCA 

(10.11) 

What (10.10) shows is that the solution of the system over k steps has the same form as 

the solution over one step, which is given in the frst equation of (10.1). Also note that the 

system response is divided into two terms: one depends only on the initial state x(0) and the 

other depends only on the input. These terms are respectively called the natural or unforced 

or zero-input response, and the zero-state response. Note also that the zero-state response 

has a form that is reminiscent of a convolution sum� this form is sometimes referred to as a 

superposition sum. 



                

            

 

          

 

 

         

 

 

         

 

     

              

            

        

    

                  

     

         

                 

                  

              

    

              

             

             

   

       

  

     

  

         

      

 

    

If (10.10) had been simply claimed as a solution, without any sort of derivation, then its 

validity could be verifed by substituting it back into the system equations: 

kX 

x(k + 1)   �(k + 1, 0)x(0) + �(k + 1, ` + 1)B(`)u(`) 

`=0 

k;1X 

  �(k + 1, 0)x(0) + �(k + 1, ` + 1)B(`)u(`) + B(k)u(k) 

`=0 " #
k;1X 

  A(k) �(k, 0)x(0) + �(k, ` + 1)B(`)u(`) + B(k)u(k) 

`=0 

  A(k)x(k) + B(k)u(k) : (10.12) 

Clearly, (10.12) satisfes the system equations (10.1). It remains to be verifed that the pro-
posed solution matches the initial state at k   0. We have 

x(0)   �(0, 0)x(0)   x(0) , (10.13) 

which completes the check. 

If Y(k, 0) is defned similarly to U(k, 0), then following the sort of derivation that led to 

(10.10), we can establish that 

Y(k, 0)   �(k, 0)x(0) +�(k, 0)U(k, 0) (10.14) 

for appropriately defned matrices �(k, 0) and �(k, 0). We leave you to work out the details. 

Once again, (10.14) for the output over k steps has the same form as the expression for the 

output at a single step, which is given in the second equation of (10.1). 

10.3 Linear Time-Invariant Models 

In the case of a time-invariant linear discrete-time system, the solutions can be simplifed 

considerably. We frst examine a direct time-domain solution, then compare this with a 

transform-domain solution, and fnally return to the time domain, but in modal coordinates. 

Direct Time-Domain Solution 

For a linear time-invariant system, observe that )
A(k)   A 

for all k � 0, (10.15)
B(k)   B 

where A and B are now constant matrices. Thus 

�(k, `)   A(k ; 1) : : : A(`)   Ak;` , k � ` (10.16) 



           

 

 

 

   

 

 

 

 

 

 

 

 

 

         


 



 


  
 

   

              

               

   

  

              

               

              

    

              

   

 

                  

  

                  

     

                    

               

               

        

 

 


 

      

    

   

 

           

so that, substituting this back into (10.10), we are left with 

k;1 

x(k)   Ak x(0) + Ak;`;1Bu(`) 

`=0 

X 

10 

ih 

Ak  x(0) + Ak;1B j Ak;2B j     j B 

BBBB@ 

u(0) 

u(1) 

. . . 

u(k ; 1) 

CCCCA 

(10.17) 

Note that the zero-state response in this case exactly corresponds to a convolution sum. 

X 

Similar expressions can be worked out for the outputs, by simplifying (10.14)� we leave the 

details to you. 

Transform-Domain Solution 

We know from earlier experience with dynamic linear time-invariant systems that the use of 

appropriate transform methods can reduce the solution of such a system to the solution of 

algebraic equations. This expectation does indeed hold up here. First recall the defnition of 

the one-sided Z-transform : 

De�nition 10.1 The one-sided Z-transform, F (z), of the sequence f(k) is given by 

1 

F (z)   z;kf(k) 

k=0 

for all z such that the result of the summation is well de�ned, denoted by the Region of 

Convergence (ROC). 

The sequence f(k) can be a vector or matrix sequence, in which case F (z) is respectively a 

vector or matrix as well. 

It is easy to show that the transform of a sum of two sequences is the sum of the individual 

transforms. Also, scaling a sequence by a constant simply scales the transform by the same 

constant. The following shift property of the one-sided transform is critical, and not hard to 

Z
establish. Suppose that f(k) �! F (z). Then 

1. 

g(k)  

(
0 � k  0 

f(k ; 1) � k � 1 

 ) G(z)   z;1F (z): 

2. 

g(k)   f(k + 1)  ) G(z)   z [F (z) ; f(0)] : 



               

 

      

 

                 

        

 

      

 

	  

 

 

 

 

   

 

 

	

 

    

 

 

	

 

	  

 

 

 

	

 

  

 

 

	   

               

          

       

     

     

   

 

    

	  

    

 

        

  

  

           

            

  

 

     

 

 	  

                  

                  

              


 

Convolution is an important operation that can be defned on two sequences f(k), g(k) as 

kX 

f * g(k)  g(k ; m)f(m), 

m=0 

whenever the dimensions of f and g are compatible so that the products are defned. The Z 

transform of a convolutions of two sequences satisfy 

1X 

Z(f * g)  z;kf * g(k) 

k=0  !1 kX X ;k z f(k ; m)g(m) 

k=0 

m=0 

1 1X X
 z;kf(k ; m)g(m) 

m=0 k=m 

1 1X X
 z;(k+m)f(k)g(m) 

m=0 k=0  !1 1X X ;m z z;kf(k) g(m) 

m=0 k=0

 F (z)G(z): 

Now, given the state-space model (10.1), we can take transforms on both sides of the 

equations there. Using the transform properties just described, we get 

zX(z) ; zx(0)  AX(z) + BU(z) (10.18) 

Y (z)  CX(z) + DU(z): (10.19) 

This is solved to yield 

X(z)  z(zI ; A);1 x(0) + (zI ; A);1BU(z)h i 

Y (z)  zC(zI ; A);1 x(0) + C(zI ; A);1B + D U(z) (10.20) | {z }
Transfer Function 

To correlate the transform-domain solutions in the above expressions with the time-
domain expressions in (10.10) and (10.14), it is helpful to note that 

(zI ; A);1  z;1I + z;2A + z;3A2 +    (10.21) 

as may be verifed by multiplying both sides by (zI ; A). The region of convergence for the 

series on the right is all values of z outside of some sufciently large circle in the complex 

plane. What this series establishes, on comparison with the defnition of the Z-transform, is 



       

 

          

 

                  

 

      

 

 

 

         

                 

             

 

 

 

 

 

     

 

 

 

 

           

             

        


 

that the inverse transform of z(zI ; A);1 is the matrix sequence whose value at time k is Ak 

for k � 0� the sequence is 0 for time instants k � 0. That is we can write � � Z
I, A, A2, A3, A4, : : : �! z(zI ; A);1 � � Z
0, I, A, A2, A3, : : : �! (zI ; A);1: 

Also since the inverse transform of a product such as (zI ; A);1BU(z) is the convolution of 

the sequences whose transforms are (zI ; A);1B and U(z) respectively, we get � � Z 

x(0), Ax(0), A2 x(0), A3 x(0), : : : �! z(zI ; A);1 x(0) � � Z
0, B, AB, A2B, A3B, : : : * (u(0), u(1), u(2), u(3), : : :) �! (zI ; A);1BU(z): 

Putting the above two pieces together, the parallel between the time-domain expressions and 

the transform-domain expressions in (10.20) should be clear. 



 

               

	   

 

                   

       

 

         

	              

 

 

 

       

      

 

  

	                   

 

                  

   

               

  

    

       

 

          

                    

                      

                 

  


 

Exercises 

Exercise 10.1 (a) Give an example of a nonzero matrix whose eigenvalues are all 0. 

(b) Show that Ak � 0 for some �nite positive power k if and only if all eigenvalues of A equal 0. Such 

a matrix is termed nilpotent. Argue that An � 0 for a nilpotent matrix of size n. 

(c) If the sizes of the Jordan blocks of the nilpotent matrix A are n1 

� n2 

� : : : � nq, what is the 

smallest value of k for which Ak � 0� 

(d) For an arbitrary square matrix A, what is the smallest value of k for which the range of Ak+1 

equals that of Ak� (Hint: Your answer can be stated in terms of the sizes of particular Jordan 

blocks of A.) 

Exercise 10.2 Consider the periodically varying system in Problem 7.4. Find the general form of 

the solution. 

Exercise 10.3 Gambler's Ruin 

Consider gambling against a bank of capital A1 

in the following way: a coin is �iped, if the 

outcome is heads, the bank pays one dollar to the player, and if the outcome is tails, the player payes 

one dollar to the bank. Suppose the probability of a head is equal to p, the capital of the player is A2, 

and the game continues until one party looses all of their capital. Calculate the probability of breaking 

the bank. 



  

  

  

  

               

    

    

       

  
 

    
 

               

                

              

              

      

                  

   

      

    

               

                 


 

Chapter 11 

Continuous-Time Linear 

State-Space Models 

11.1 Introduction 

In this chapter, we focus on the solution of CT state-space models. The development here 

follow the previous chapter. 

11.2 The Time-Varying Case 

Consider the nth-order continuous-time linear state-space description 

x_ (t) = A(t)x(t) + B(t)u(t) 

y(t) = C(t)x(t) + D(t)u(t) : (11.1) 

We shall always assume that the coefcient matrices in the above model are sufciently well 

behaved for there to exist a unique solution to the state-space model for any specifed initial 

condition x(t0) and any integrable input u(t). For instance, if these coefcient matrices are 

piecewise continuous, with a fnite number of discontinuities in any fnite interval, then the 

desired existence and uniqueness properties hold. 

We can describe the solution of (11.1) in terms of a matrix function <(t, T) that has the 

following two properties: 

_<(t, T) = A(t)<(t, T) , (11.2) 

<(T, T) = I : (11.3) 

This matrix function is referred to as the state transition matrix, and under our assumption 

on the nature of A(t) it turns out that the state transition matrix exists and is unique. 



        


 

 

        

 

               

                

  


 

 

           

 

    


 

 

         

 

               


 


 




 

          

 

     

                

        

     

                

       

              

  

                

             

               

               

             

 

   

        

 

 


 
 




  





 


 




  





 


 





 








 
   
 



 


 


 



 

 


 


 



 



 
 
 
 

 




We will show that, given x(t0) and u(t), Z t 

x(t) = <(t, t0)x(t0) + <(t, T)B(T)u(T)dT : (11.4) 

t0 

Observe again that, as in the DT case, the terms corresponding to the zero-input and zero-
state responses are evident in (11.4). In order to verify (11.4), we diferentiate it with respect 

to t: Z t 

_x_ (t) = <(t, t0)x(t0) + 

_<(t, T)B(T)u(T)dT + <(t, t)B(t)u(t) : (11.5) 

t0 

Using (11.2) and (11.3), Z t 

x_ (t) = A(t)<(t, t0)x(t0) + A(t)<(t, T)B(T)u(T)dT + B(t)u(t) : (11.6) 

t0 

Now, since the integral is taken with respect to T , A(t) can be factored out: � Z �t 

x_ (t) = A(t) <(t, t0)x(t0) + <(t, T)B(T)u(T)dT + B(t)u(t) , (11.7) 

t0 

= A(t)x(t) + B(t)u(t) , (11.8) 

so the expression in (11.4) does indeed satisfy the state evolution equation. To verify that it 

also matches the specifed initial condition, note that 

x(t0) = <(t0, t0)x(t0) = x(t0): (11.9) 

We have now shown that the matrix function <(t, T) satisfying (11.2) and (11.3) yields the 

solution to the continuous-time system equation (11.1). 

Exercise: Show that <(t, T) must be nonsingular. (Hint: Invoke our claim about uniqueness 

of solutions.) 

The question that remains is how to fnd the state transition matrix. For a general linear 

time-varying system, there is no analytical expression that expresses <(t, T) analytically as 

a function of A(t). Instead, we are essentially limited to numerical solution of the equation 

(11.2) with the boundary condition (11.3). This equation may be solved one column at a 

time, as follows. We numerically compute the respective solutions xi(t) of the homogeneous 

equation 

x_ (t) = A(t)x(t) (11.10) 

for each of the n initial conditions below: 3232 321 0 

0 

1(t0) = 

666666664 

0 

0 

777777775 

2(t0) = 

666666664 

1 

0 

777777775 

6666664 

7777775 

0 

0, : : : , x 

n(t0) = , xx :0 0 . .. . .. . . . 

1 

0 0 



 

 

       

             

               

               

        

     

     

  

   

  

 

    

               

            

         

 

 

 

 

  

 

  

 

  

 

  

 

 

 

  

 

 

 

  

 

  

 

    

  

              

             

 

 

  

 

 

 

 

       

 

 

  

 

 

   

 

           

 

 

      

 

 

 

 

    

 

Then h i 

<(t, t0) = x1(t) : : : xn(t) : (11.11) 

In summary, knowing n solutions of the homogeneous system for n independent initial 

conditions, we are able to construct the general solution of this linear time varying system. 

The underlying reason this construction works is that solutions of a linear system may be 

superposed, and our system is of order n. 

Example 11.1 A Special Case 

Consider the following time-varying system " # " # " # 

d x1(t) �(t) �(t) x1(t)= , 

dt 

x2(t) ;�(t) �(t) x2(t) 

where �(t) and �(t) are continuous functions of t. It turns out that the special 

structure of the matrix A(t) here permits an analytical solution. Specifcally, verify 

that the state transition matrix of the system is " R R R R # 

t t t texp( �(T)dT) cos( �(T)dT) exp( �(T)dT) sin( �(T)dT)tR0 

t0 Rt0 Rt0<(t, t0) = 

Rt t t t; exp( �(T)dT) sin( t0 

�(T)dT) exp( �(T)dT) cos( t0 

�(T)dT)t0 

t0 

The secret to solving the above system | or equivalently, to obtaining its state 

transition matrix | is to transform it to polar co-ordinates via the defnitions 

r 

2(t) = (x1)
2(t) + (x2)

2(t)� � 

;1 

x2
�(t) = tan : 

x1 

We leave you to deduce now that 

d 

r 

2 = 2�r2 

dt 

d 

� = ;� : 

dt 

The solution of this system of equations is then given by � Z 

�t 

r 

2(t) = exp 2 �(T)dT r 

2(t0) 

t0 

and Z t 

�(t) = �(t0) ; �(T)dT 

t0 



       

              

          

 

    

   

 

             

                     

       

      

 

   

 

 

     

     

  

 

              

     

 

  

 

           

      

               

              

 

 

 

       

 

              

                   

  

        

            

 

      

                  

                  

                    

              

              

            

        

 

   

      

         

 

          

 

      

Further Properties of the State Transition Matrix 

The frst property that we present involves the composition of the state transition matrix 

evaluated over diferent intervals. Suppose that at an arbitrary time t0 

the state vector is 

x(t0) = x0, with x0 

being an arbitrary vector. In the absence of an input the state vector 

at time t is given by x(t) = <(t, t0)x0. At any other time t1, the state vector is given by 

x(t1) = <(t1, t0)x0. We can also write 

x(t) = <(t, t1)x(t1) = <(t, t1)<(t1, t0)x0 

= <(t, t0)x0: 

Since x0 

is arbitrary, it follows that 

<(t, t1)<(t1, t0) = <(t, t0) 

for any t0 

and t1. (Note that since the state transition matrix in CT is alway invertible, 

there is no restriction that t1 

lie between t0 

and t | unlike in the DT case, where the state 

transition matrix may not be invertible). 

Another property of interest (but one whose derivation can be safely skipped on a frst 

reading) involves the determinant of the state transition matrix. We will now show that  Z t 

  

det(<(t, t0)) = exp trace[A(T)]dT , (11.12) 

t0 

a result known as the Jacobi-Liouville formula. Before we derive this important formula, we 

need the following fact from matrix theory. For an n � n matrix M and a real parameter }, 

we have 

det(I + }M) = 1 + } trace (M) + O(}2) , 

where O(}2) denotes the terms of order greater than or equal to }2 . In order to verify this 

fact, let U be a similarity transformation that brings M to an upper triangular matrix T , so 

M = U;1TU . Such a U can always be found, in many ways. (One way, for a diagonalizable 

matrix, is to pick U to be the modal matrix of M , in which case T is actually diagonal� there 

is a natural extension of this approach in the non-diagonalizable case.) Then the eigenvalues 

f�ig of M and T are identical, because similarity transformations do not change eigenvalues, 

and these numbers are precisely the diagonal elements of T . Hence 

det(I + }M) = det(I + }T ) 

= �i
n 

�1 

(1 + }�i) 

= 1 + } trace (M) + O(}2): 

Returning to the proof of (11.12), frst observe that 

<(t + }, t0) = <(t, t0) + }
d 

<(t, t0) + O(}2)
dt 

= <(t, t0) + }A(t)<(t, t0) + O(}2): 



           

  

          

 

 

 

 

        

 

 

 

         

 

 

     

         

    

               

                 

                  

       

 

 

        

 

  

 

 

 

   

 

 

                  

    

 

                

              

               

               

       

 

 

 

 

 

    

 

          

    


 

The derivative of the determinant of <(t, t0) is given by 

d 1
det[<(t, t0)] = lim (det[<(t + }, t0)] ; det[<(t, t0)])

dt 

E!0 } 

1  
= lim det[<(t, t0) + }A(t)<(t, t0)] ; det[<(t, t0)]

E!0 } 

1 

= det(<(t, t0)) lim (d  et[  I + }A(t)] ; 1)
E!0 } 

= trace [A(t)] det[<(t, t0)]: 

Integrating the above equation yields the desired result, (11.12). 

11.3 The LTI Case 

For linear time-invariant systems in continuous time, it is possible to give an explicit formula 

for the state transition matrix, <(t, T). In this case A(t) = A, a constant matrix. Let us 

defne the matrix exponential of A by an infnite series of the same form that is (or may 

be) used to defne the scalar exponential: 

(t;t0 

)A 

1 

e = I + (t ; t0)A + (t ; t0)
2A2 + : : : 

2! 

1X 1 

= (t ; t0)
kAk: (11.13)

k! 

k�0 

It turns out that this series is as nicely behaved as in the scalar case: it converges absolutely 

for all A 2 R
nxn and for all t 2 R, and it can be diferentiated or integrated term by term. 

There exist methods for computing it, although the task is fraught with numerical difculties. 

With the above defnition, it is easy to verify that the matrix exponential satisfes the 

defning conditions (11.2) and (11.3) for the state transition matrix. The solution of (11.1) in 

the LTI case is therefore given by Z t 

(t;t0 

)A x(t) = e x(t0) + e 

A(t;r)Bu(T)dT: (11.14) 

t0 

After determining x(t), the system output can be obtained by 

y(t) = Cx(t) + Du(t): (11.15) 



     

                

         

               

 

 

    

 

               

              

               

      

 

      

 

                

             

      

     

     

  

 

  

	  

    

 

       

  

  

        

            

  	    

  

 

   

               

          

 

 

           

 

 

 

   

 


 

Transform-Domain Solution of LTI Models 

We can now parallel our transform-domain treatment of the DT case, except that now we use 

the one-sided Laplace transform instead of the Z-transform : 

De�nition 11.1 The one-sided Laplace transform, F (s), of the signal f(t) is given by Z 1 

F (s) = e;stf(t) dt 

t �0; 

for all s where the integral is defned, denoted by the region of convergence (R.O.C.). 

The various properties of the Laplace transform follow. The shift property of Z transforms 

that we used in the DT case is replaced by the following diferentiation property: Suppose 

L
that f(t) �! F (s). Then 

df(t) 

g(t) = =) G(s) = sF (s) ; f(0;)
dt 

Now, given the state-space model (11.1) in the LTI case, we can take transforms on both 

sides of the equations there. Using the transform property just described, we get 

sX(s) ; x(0;) = AX(s) + BU(s) (11.16) 

Y (s) = CX(s) + DU(s): (11.17) 

This is solved to yield 

X(s) = (sI ; A);1 x(0;) + (sI ; A);1BU(s)h i 

Y (s) = C(sI ; A);1 x(0;) + C(sI ; A);1B + D U(s) (11.18) | {z }
Transfer Function 

which is very similar to the DT case. 

An important fact that emerges on comparing (11.18) with its time-domain version 

(11.14) is that 

AtL e = (sI ; A);1: 

Therefore one way to compute the state transition matrix (a good way for small examples!) 

is by evaluating the entry-by-entry inverse transform of (sI ; A);1 . 

Example 11.2 Find the state transition matrix associated with the (non-diagonalizable!) 

matrix " # 

1 2 

A = : 

0 1 



    

 

  

 

 

  

  

 

 

 

   

   

 

 

	  

	

 

 

 

 

 

            

 

 

	

  

	  

 

 

Using the above formula, " #;1 

s ; 1 ;2AtL e = (sI ; A);1 = 

0 s ; 1 " # 

1 2 

s;1 (s;1)2 

= :10 s;1 

By taking the inverse Laplace transform of the above matrix we get " # 

t 

At 

e 2tet 

e = : 

0 et 



 

    

	                

  

 

 

 

           

                

            

      


 

 

  

 

  





 

   

 

 




 


  





 

 




   

 

 

 
 

 
 

  
 




 

 


 

	   


 
 
 

 

 

   

   

 

 

	     

 

           

         

 

 

 

 

 

 

 

 

 

 
 

 
 


 

  


 

  

  

 

                 

       

         

   

              

         

                  


 

    
 

                   

                 

            


 

Exercises 

Exercise 11.1 Companion Matrices 

(a) The following two matrices and their transposes are said to be companion matrices of the poly-
n n;1nomial q(z) � z + qn;1z + : : : + q0. Determine the characteristic polynomials of these four 

matrices, and hence explain the origin of the name. (Hint: First �nd explanations for why all 

four matrices must have the same characteristic polynomial, then determine the characteristic 

polynomial of any one of them.) 0 101;qn;1 

1 0 : : : 0 0 1 0 : : : 0 BBBB@ 

;qn;2 

0 1 : : : 0 

. . . .. . . . . . .. . . . 

;q1 

0 0 : : : 1 

;q0 

0 0 : : : 0 

CCCCA 

A2 

� 

BBBB@ 

0 0 1 : : : 0 

. . . .. . . . . . .. . . . 

0 0 0 : : : 1 

CCCCA 

A1 

� 

;q0 

;q1 

;q2 

: : : ;qn;1 

(b) Show that the matrix A2 

above has only one (right) eigenvector for each distinct eigenvalue �i, 

;1]Tand that this eigenvector is of the form [1 �i 

�2 : : : �n .i i 

(c) If 0 1A 

0 1 0 

A � 

@ 0 0 1 

6 5 ;2 

what are Ak and eAt� (Your answers may be left as a product of three | or fewer | matrices� 

do not bother to multiply them out.) 

Exercise 11.2 Suppose you are given the state-space equation 

x_ (t) � Ax(t) + Bu(t) 

with an input u(t) that is piecewise constant over intervals of length T : 

u(t) � u[k] � kT � t � (k + 1)T 

(a) Show that the sampled state x[k] � x(kT ) is governed by a sampled-data state-space model of the 

form 

x[k + 1] � Fx[k] + Gu[k] 

for constant matrices F and G (i.e. matrices that do not depend on t or k), and determine these 

matrices in terms of A and B. (Hint: The result will involve the matrix exponential, eAt.) How 

are the eigenvalues and eigenvectors of F related to those of A� 



            

  

  

 	   

 

 

	                   

                 

                     

             

                     

           

      

 

           

 	 

 

  

 

   

 

  

	  

                      

     

 

       

         

                

   

 

        

	              

                 

                

                   

               

                  

                 

                  

                 

                

     

  

  

 

 

 

 

 

  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

            

   

  

 

 

    

   

 

(b) Compute F and G in the above discrete-time sampled-data model when � � � � 

0 1 0 

A � � B � ;!2 0 10 

(c) Suppose we implement a state feedback control law of the form u[k] � Hx[k], where H is a gain 

matrix. What choice of H will cause the state of the resulting closed-loop system, x[k + 1] � 

(F + GH)x[k], to go to 0 in at most two steps, from any initial condition (H is then said to 

produce \deadbeat" behavior)� To simplify the notation for your calculations, denote cos !0T 

by c and sin !0T by s. Assume now that !0T � ��6 , and check your result by substituting in 

your computed H and seeing if it does what you intended. 

(d) For !0T � ��6 and !0 

� 1, your matrices from (b) should work out to be � 
p � � 

p � 

3�2 1�2 1 ; ( 3�2)pF � � G � ;1�2 3�2 1�2 

Use Matlab to compute and plot the response of each of the state variables from k � 0 to k � 10, 

assuming x[0] � [4 � 0]T and with the following choices for u[k]: 

� (i) the open-loop system, with u[k] � 0� 

� (ii) the closed-loop system with u[k] � Hx[k], where H is the feedback gain you computed 

in (c), with !0 

� 1� also plot u[k] in this case. 

(e) Now suppose the controller is computer-based. The above control law u[k] � Hx[k] is imple-
mentable if the time taken to compute Hx[k] is negligible compared to T . Often, however, it 

takes a considerable fraction of the sampling interval to do this computation, so the control that 

is applied to the system at time k is forced to use the state measurement at the previous instant. 

Suppose therefore that u[k] � Hx[k ; 1]. Find a state-space model for the closed-loop system 

in this case, written in terms of F , G, and H . (Hint: The computer-based controller now has 

memory!) What are the eigenvalues of the closed-loop system now, with H as in (c)� Again use 

Matlab to plot the response of the system to the same initial condition as in (d), and compare 

with the results in (d)(ii). Is there another choice of H that could yield deadbeat behavior� If 

so, �nd it� if not, suggest how to modify the control law to obtain deadbeat behavior. 

Exercise 11.3 Given the matrix � � 

A � 

� 

;! 

! 

� 

� 

show that � � 

exp t 

� 

;! 

! 

� 

�� � 

� 

�t e cos(!t) 

�;e t sin(!t) 

�t e sin(!t) 

�t e cos(!t) 

� 

Exercise 11.4 Suppose A and B are constant square matrices. Show that � � �� � � 

tAA 0 e 0 

exp t � :tB0 B 0 e 



                

     

  

 

  

   

 

 

 

 

 

 

  

                  

         

  

   

 

 

 

    

 

       

  

                      

          

             
 




  

    

        	      
 




     

     

              

                

   

 

 

  

 

 

   

    

 

              

       

    

 

  

                

   

 

 

  

       

Exercise 11.5 Suppose A and B are constant square matrices. Show that the solution of the 

following system of di�erential equations, 

;tABetA x_ (t) � e x(t) � 

is given by 

;tA (t;t0 

)(A+B) t0 

A x(t) � e e e x(t0) : 

Exercise 11.6 Suppose A is a constant square matrix, and f(t) is a continuous scalar function of t. 

Show that the state transition matrix for the system 

x_ (t) � f(t)Ax(t) 

is given by � Z t 

� 

�(t� t0) � exp ( f(�)d�)A : 

t0 

Exercise 11.7 (Floquet Theory). Consider the system 

x_ (t) � A(t)x(t) 

where A(t) is a periodic matrix with period T , so A(t + T ) � A(t). We want to study the state 

transition matrix �(t� t0) associated with this periodically time-varying system. 

1. First let us start with the state transition matrix �(t� 0), which satis�es 

_� � A(t)� 

�(0� 0) � I: 

De�ne the matrix �(t� 0) � �(t + T� 0) and show that � satis�es 

_�(t� 0) � A(t)�(t� 0) 

�(0� 0) � �(T� 0): 

2. Show that this implies that �(t + T� 0) � �(t� 0)�(T� 0). 

3. Using Jacobi-Liouville formula, show that �(T� 0) is invertible and therefore can be written as 

TR �(T� 0) � e . 

4. De�ne 

;tR�P (t);1 � �(t� 0)e 

and show that P (t);1 , and consequently P (t), are periodic with period T . Also show that 

P (T ) � I . This means that 

tR�(t� 0) � P (t);1 e : 

5. Show that �(0� t0) � �;1(t0� 0). Using the fact that �(t� t0) � �(t� 0)�(0� t0), show that 

�(t� t0) � P (t);1 e(t;t0 

)RP (t0): 

What is the signi�cance of this result� 



  

   

  

  

             

              

              

                

 

     

                

               

       

               

                    

               

 

 

  

   

       

                

                 


 

Chapter 12 

Modal Decomposition of 

State-Space Models 

12.1 Introduction 

The solutions obtained in previous chapters, whether in time domain or transform domain, 

can be further decomposed to give a geometric understanding of the solution. The modal 

decomposition expresses the state equation as a linear combination of the various modes of 

the system and shows precisely how the initial conditions as well as the inputs impact these 

modes. 

12.2 The Transfer Function Matrix 

It is evident from (10.20) that the transfer function matrix for the system, which relates the 

input transform to the output transform when the initial condition is zero, is given by 

H(z) = C(zI ; A);1B + D: (12.1) 

For a multi-input, multi-output (MIMO) system with m inputs and p outputs, this results in 

a p�m matrix of rational functions of z. In order to get an idea of the nature of these rational 

functions, we express the matrix inverse as the adjoint matrix divided by the determinant, as 

follows: 

1 

H(z) = C [adj(zI ; A)]  B + D: 

det(zI ; A) 

nThe determinant det(zI ; A) in the denominator is an nth-order monic (i.e. coefcient of z 

is 1) polynomial in z, known as the characteristic polynomial of A and denoted by a(z). The 



                 

            

  

 

 

 

 

 

   

 

 

    

   

   

             

                 

               

             

 

  

                 

                 

             

          

 

    

               

                

             

                

                 

  

    

               

           

               

               

             

    

                

                

            

                 

           

 

   

    

 

 

    

                     

                          


 

entries of the adjoint matrix (the cofactors) are computed from minors of (zI ; A), which are 

polynomials of degree less than n. Hence the entries of the matrices 

1 

(zI ; A);1 = adj(zI ; A)
det(zI ; A) 

and 

1 

H(z) ; D = Cadj(zI ; A)B 

det(zI ; A) 

are strictly proper, i.e. have numerator degree strictly less than their denominator degree. 

With the D term added in, H(z) becomes proper that is all entries have numerator degree 

less than or equal to the degree of the denominator. For jzj % 1, H(z) ! D. 

The polynomial a(z) forms the denominators of all the entries of (zI ; A);1 and H(z), 

except that in some, or even all, of the entries there may be cancellations of common factors 

that occur between a(z) and the respective numerators. We shall have a lot more to say later 

about these cancellations and their relation to the concepts of reachability (or controllability) 

and observability. To compute the inverse transform of (zI ; A);1 (which is the sequence 

Ak;1) and the inverse transform of H(z) (which is a matrix sequence whose components are 

the zero-state unit sample responses from each input to each output), we need to fnd the 

inverse transform of rationals whose denominator is a(z) (apart from any cancellations). The 

roots of a(z) | also termed the characteristic roots or natural frequencies of the system, thus 

play a critical role in determining the nature of the solution. A fuller picture will emerge as 

we proceed. 

Multivariable Poles and Zeros 

You are familiar with the defnitions of poles, zeros, and their multiplicities for the scalar 

transfer functions associated with single-input, single-output (SISO) LTI systems. For the 

case of the p � m transfer function matrix H(z) that describes the zero-state input/output 

behavior of an m-input, p-output LTI system, the defnitions of poles and zeros are more 

subtle. We include some preliminary discussion here, but will leave further elaboration for 

later in the course. 

It is clear what we would want our eventual defnitions of MIMO poles and zeros to 

specialize to in the case where H(z) is nonzero only in its diagonal positions, because this 

corresponds to completely decoupled scalar transfer functions. For this diagonal case, we 

would evidently like to say that the poles of H(z) are the poles of the individual diagonal 

entries of H(z), and similarly for the zeros. For example, given � � 

z + 2 z 

H(z) = diagonal � 

(z + 0:5)2 (z + 2)(z + 0:5) 

we would say that H(z) has poles of multiplicity 2 and 1 at z = ;0:5, and a pole of multiplicity 

1 at z = ;2; and that it has zeros of multiplicity 1 at ;2, at z = 0, and at z = 1. Note that 



                   

                

               

                 

                     

           

               

	          

 

         

   

                 

               

         

	          

 

          

               

                

                    

          

   

            

               

                  

               

               

              

                

               

            

  

 

  

 

 

 

 

 

                

               

                

              

    

               

       

   

 

    	  

                 

              


 

in the MIMO case we can have poles and zeros at the same frequency (e.g. those at ;2 in 

the above example), without any cancellation! Also note that a pole or zero is not necessarily 

characterized by a single multiplicity; we may instead have a set of multiplicity indices (e.g. 

as needed to describe the pole at ;0:5 in the above example). The diagonal case makes clear 

that we do not want to defne a pole or zero location of H(z) in the general case to be a 

frequency where all entries of H(z) respectively have poles or zeros. 

For a variety of reasons, the appropriate defnition of a pole location is as follows: 

� Pole Location: H(z) has a pole at a frequency p0 

if some entry of H(z) has a pole at 

z = p0. 

The full defnition (which we will present later in the course) also shows us how to determine 

the set of multiplicities associated with each pole frequency. Similarly, it turns out that the 

appropriate defnition of a zero location is as follows: 

� Zero Location: H(z) has a zero at a frequency �0 

if the rank of H(z) drops at z = �0. 

Again, the full defnition also permits us to determine the set of multiplicities associated with 

each zero frequency. The determination of whether or not the rank of H(z) drops at some 

value of z is complicated by the fact that H(z) may also have a pole at that value of z; 

however, all of this can be sorted out very nicely. 

12.3 Similarity Transformations 

Suppose we have characterized a given dynamic system via a particular state-space represen-
tation, say with state variables x1� x2�     � xn. The evolution of the system then corresponds 

to a trajectory of points in the state space, described by the succession of values taken by the 

state variables. In other words, the state variables may be seen as constituting the coordinates 

in terms of which we have chosen to describe the motion in the state space. 

We are free, of course, to choose alternative coordinate bases | i.e., alternative state 

variables | to describe the evolution of the system. This evolution is not changed by the 

choice of coordinates; only the description of the evolution changes its form. For instance, in 

the LTI circuit example in the previous chapter, we could have used iL 

;vC 

and iL 

+vC 

instead 

of iL 

and vC 

. The information in one set is identical with that in the other, and the existence 

of a state-space description with one set implies the existence of a state-space description with 

the other, as we now show more concretely and more generally. The �exibility to choose an 

appropriate coordinate system can be very valuable, and we will fnd ourselves invoking such 

coordinate changes very often. 

Given that we have a state vector x, suppose we defne a constant invertible linear 

mapping from x to r, as follows: 

r = T 

;1 x � x = T r: (12.2) 

Since T is invertible, this maps each trajectory x(k) to a unique trajectory r(k), and vice versa. 

We refer to such a transformation as a similarity transformation. The matrix T embodies 



                  

                  

                

 

              

 

 

       

 

     

 

          

 

 

 

 

  

     

 

 

   

                  

             

                 

               

 

     

                

              

              

                  

      

                

              

                

      

     

     

            

       

the details of the transformation from x coordinates to r coordinates | it is easy to see from 

(12.2) that the columns of T are the representations of the standard unit vectors of r in the 

coordinate system of x, which is all that is needed to completely defne the new coordinate 

system. 

Substituting for x(k) in the standard (LTI version of the) state-space model (10.1), we 

have � � 

T r(k + 1) = A T r(k) + Bu(k) (12.3) � � 

y(k) = C T r(k) + Du(k): (12.4) 

or 

r(k + 1) = (T 

;1AT ) r(k) + (T 

;1B) u(k) (12.5) 

= Ab r(k) + Bb u(k) (12.6) 

y(k) = (CT ) r(k) + Du(k) (12.7) 

= Cb r(k) + Du(k) (12.8) 

We now have a new representation of the system dynamics; it is said to be similar to the 

original representation. It is critical to understand, however, that the dynamic properties of 

the model are not at all afected by this coordinate change in the state space. In particular, 

the mapping from u(k) to y(k), i.e. the input/output map, is unchanged by a similarity 

transformation. 

12.4 Solution in Modal Coordinates 

The proper choice of a similarity transformation may yield a new system model that will be 

more suitable for analytical purposes. One such transformation brings the system to what are 

known as modal coordinates. We shall describe this transformation now for the case where 

the matrix A in the state-space model can be diagonalized, in a sense to be defned below; we 

leave the general case for later. 

Modal coordinates are built around the eigenvectors of A. To get a sense for why the 

eigenvectors may be involved in obtaining a simple choice of coordinates for studying the 

dynamics of the system, let us examine the possibility of fnding a solution of the form 

x(k) = ,k v � v 6 (12.9)= 0 

for the undriven LTI system 

x(k + 1) = Ax(k) (12.10) 

Substituting (12.9) in (12.10), we fnd the requisite condition to be that 

(,I ; A) v = 0 (12.11) 



                 

             

                

                   

 

  

  

      

 

  

 

   

 

 

             

 

     

            

 

     

    

 

           

            

 

 

 

     

            

 

   

             

               

                

 

 

            

               

                 

              

               

                

        

             

   

 

 

 

 

 

             

 

  

 

 

 

    

 

         

                  

              

    

 

           

               

             

     

 

        

 

 

 

 

                   

     

 

 

  

 

     

 

 

 

 

  

 


 

i.e., that , be an eigenvalue of A, and v an associated eigenvector. Note from (12.11) that 

multiplying any eigenvector by a nonzero scalar again yields an eigenvector, so eigenvectors 

are only defned up to a nonzero scaling; any convenient scaling or normalization can be used. 

In other words, (12.9) is a solution of the undriven system if , is one of the n roots ,i 

of the 

characteristic polynomial 

n n;1 a(z) = det(zI ; A) = z + an;1z +    + a0 

(12.12) 

kand v is a corresponding eigenvector vi. A solution of the form x(k) = , vi 

is referred to as ai 

mode of the system, in this case the ith mode. The corresponding ,i 

is the ith modal frequency 

or natural frequency, and vi 

is the corresponding modal shape. Note that we can excite just 

the ith mode by ensuring that the initial condition is x(0) = ,0 

i 

vi 

= vi. The ensuing motion 

is then confned to the direction of vi, with a scaling by ,i 

at each step. 

It can be shown fairly easily that eigenvectors associated with distinct eigenvalues are 

(linearly) independent, i.e. none of them can be written as a weighted linear combination of 

the remaining ones. Thus, if the n eigenvalues of A are distinct, then the n corresponding 

eigenvectors vi 

are independent, and can actually form a basis for the state-space. Distinct 

eigenvalues are not necessary, however, to ensure that there exists a selection of n independent 

eigenvectors. In any case, we shall restrict ourselves for now to the case where | because of 

distinct eigenvalues or otherwise | the matrix A has n independent eigenvectors. Such an 

A is termed diagonalizable (for a reason that will become evident shortly), or non-defective. 

There do exist matrices that are not diagonalizable, as we shall see when we examine the 

Jordan form in detail later in this course. 

Because (12.10) is linear, a weighted linear combination of modal solutions will satisfy 

it too, so Xn 

x(k) = aivi,
k (12.13)i 

i=1 

will be a solution of (12.10) for arbitrary weights ai, with initial condition 

Xn 

x(0) = aivi 

(12.14) 

i=1 

Since the n eigenvectors vi 

are independent under our assumption of diagonalizable A, the 

right side of (12.14) can be made equal to any desired x(0) by proper choice of the coefcients 

ai, and these coefcients are unique. Hence specifying the initial condition of the undriven 

system (12.10) specifes the ai 

via (12.14) and thus, via (12.13), specifes the response of the 

undriven system. We refer to the expression in (12.13) as the modal decomposition of the 

undriven response. Note that the contribution to the modal decomposition from a conjugate 

k *,*kpair of eigenvalues , and ,* will be a real term of the form av, + a*v . 

From ( 12.14), it follows that a = V ;1x(0), where a is a vector with components ai. Let 

W = V ;1 , and w0 be the ith row of W , theni Xn 

k 0 x(k) = ,i 

viw x(0) (12.15)i 

i=1 



     

 

           

               

 

 

      

 

       

              

                

                

                 

              

                     

                 

                

              

                

                   

              

              

 

   

                

 

  

  

    

 

 

               

               

             

             

              

           

 

           




 

      

 

 

     

 

 

  




  
 


   
 

     

 

                  

                      

               

   

            

  

     


 

It easy to see that wi 

is a left eigenvector corresponding to the eigenvalue ,i. The above 

modal decomposition of the undriven system is the same as obtaining the diadic form of Ak . 

0The contribution of x(0) to the ith mode is captured in the term wix(0). 

Before proceeding to examine the full response of a linear time-invariant model in modal 

terms, it is worth noting that the preceding results already allow us to obtain a precise 

condition for asymptotic stability of the system, at least in the case of diagonalizable A (it 

turns out that the condition below is the right one even for the general case). Recalling the 

defnition in Example 10.1, we see immediately from the modal decomposition that the LTI 

system (12.10) is asymptotically stable if j,ij � 1 for all 1 � i � n, i.e. if all the natural 

frequencies of the system are within the unit circle. Since it is certainly possible to have this 

condition hold even when kAk is arbitrarily greater than 1, we see that the sufcient condition 

given in Example 1 is indeed rather weak, at least for the time-invariant case. 

Let us turn now to the LTI version of the full system in (10.1). Rather than approach-
ing its modal solution in the same style as was done for the undriven case, we shall (for a 

diferent point of view) approach it via a similarity transformation to modal coordinates, i.e., 

to coordinates defned by the eigenvectors fvig of the system. Consider using the similarity 

transformation 

x(k) = V r(k) (12.16) 

where the ith column of the n � n matrix V is the ith eigenvector, vi: �� 

V = v1 

v2 

vn 

(12.17) 

We refer to V as the modal matrix. Under our assumption of diagonalizable A, the eigenvec-
tors are independent, so V is guaranteed to be invertible, and (12.16) therefore does indeed 

constitute a similarity transformation. We refer to this similarity transformation as a modal 

transformation, and the variables ri(k) defned through (12.16) are termed modal variables or 

modal coordinates. What makes this transformation interesting and useful is the fact that the 

state evolution matrix A now transforms to a diagonal matrix �: 32 

V 

;1AV = diagonal f,1� � ,ng = 

66664 

,1 

0 0 

0 ,2 

0 

. . . 

. . . 

. . . 

. . . 

0 0 ,n 

77775 

= � (12.18) 

The easiest way to verify this is to establish the equivalent condition that AV = V �, which 

in turn is simply the equation (12.11), written for i = 1� � n and stacked up in matrix form. 

The reason for calling A \diagonalizable" when it has a full set of independent eigenvectors 

is now apparent. 

Under this modal transformation, the undriven system is transformed into n decoupled, 

scalar equations: 

ri(k + 1) = ,iri(k) (12.19) 



              

 

   

           

 

   

                

              

  

         

          

  

 

 

 

   


 
 

 

  




 

 

 

 



 

   

  

    

 

 


 
 

 

             

     

 

 

             

 

 

 

  

 

 


 

 

 

  

             

              

        

               

  

    

 

 

 

 

 

  

 

  

 

 

             

              

 

 

          

 

  

  

  

 

kfor i = 1� 2� : : : � n. Each of these is trivial to solve: we have ri(k) = ,i 

ri(0). Combining this 

with (12.16) yields (12.13) again, but with the additional insight that 

ai 

= ri(0) (12.20) 

Applying the modal transformation (12.16) to the full system, it is easy to see that the 

transformed system takes the following form, which is once again decoupled into n parallel 

scalar subsystems: 

ri(k + 1) = ,iri(k) + �iu(k) � i = 1� 2� : : : � n (12.21) 

y(k) = �1r1(k) + + �nrn(k) + Du(k) (12.22) 

where the �i 

and �i 

are defned via 32 

V 

;1B = 

66664 

�1 

�2 

. . . 

�n 

77775 

ih 

� CV = �1 

�2 

�n 

(12.23) 

The scalar equations above can be solved explicitly by elementary methods (compare also 

with the expression in (22.2): 

k 

ri(k) = , 

X
|} 

;1 

k k;`;1 

i 

ri(0) + ,i } 

�i 

u(`) (12.24)| {z
ZIR 

0 {z
ZSR 

where \ZIR" denotes the zero-input response, and \ZSR" the zero-state response. From the 

preceding expression, one can obtain an expression for y(k). Also, substituting (12.24) in 

(12.16), we can derive a corresponding modal representation for the original state vector x(k). 

We leave you to write out these details. 

Finally, the same concepts hold for CT systems. We leave the details as an exercise. 

Example 12.1 

Consider the following system: #"#"#"#" 

x_1 

0 1 x1 

1 

= + u (12.25)
x_2 

8 ;2 x2 

1 

We will consider the modal decomposition of this system for the zero input re-
sponse. The eigenvalues of A are -4 and 2 and the associated eigenvectors are 

[ 1 ;4 ]0 and [ 1 2 ]0: The modal matrix is constructed from the eigenvectors 

above: � ! 

1 1 

V = ;4 2 

(12.26) 



     


 
 

   

 

 

  

 

 

  

 

     

 

 

 

 

 

 

 

 

 

 

        

     

 


 

             
 

 

 

 

 

 

	

 

 

 

                

  

  

 


  

	

 

 

 

   

 

 

 

 

 

 

               

  

 

  

 

      


 
 

 

 

 

 

 

    

             

                 

               

              

             

           

             

  

 

  
  








 
 

	  
 



 
 




  
 

  
 


 
 
 
 

     


Its inverse is given by 

1 

#" 

2 ;1 

W = V 

;1 := 

6 4 1 

It follows that: #"#" 

,1 

0 ;4 0 

W AV = � = = : 

0 ,2 

0 2 

Now let's defne r in modal coordinate as 

x(t) = Tr ! r(t) = T 

;1 x(t): 

Then in terms of r, the original system can be transformed into the following: #"#"#" 

r_ ;4 0 r11 = : (12.27)
r_2 

0 2 r2 

The response of the system for a given initial state and zero input can now be 

expressed as: 

"#" 

V r(t) = V e�(t;t0 

)Wx(t0) 

;4(t;t0 

)1 1 e 0 

1 2 ;1 

= x(t0):2(t;t0 

);4 2 0 e 6 4 1 

For instance, if the initial vector is chosen in the direction of the frst eigenvector, 

i.e., x(t0) = v1 

= [ 1 ;4 ]0 then the response is given by: 

x(t) = #"# 

#" 

1 ;4(t;t0 

)x(t) = e : ;4 

Example 12.2 Inverted Pendulum 

Consider the linearized model of the inverted pendulum in Example 7.6 with the 

parameters given by: m = 1, M = 10, l = 1, and g = 9:8. The eigenvalues 

of the matrix A are 0, 0, 3:1424, and ;3:1424. In this case, the eigenvalue at 

0 is repeated, and hence the matrix A may not be diagonalizable. However, we 

can still construct the Jordan form of A by fnding the generalized eigenvectors 

corresponding to 0, and the eigenvectors corresponding to the other eigenvalues. 

The Jordan form of A, � = T 

;1AT and the corresponding transformation T are 

given by: 3232 

0 1 0 0 0:0909 0 ;0:0145 0:0145 

� = 

6664 

0 0 0 0 

0 0 3:1424 0 

7775 

� T = 

6664 

0 0:0909 ;0:0455 ;0:0455 

0 0 0:1591 ;0:1591 

7775 

0 0 0 ;3:1424 0 0 0:5000 0:5000 



              

       

 

   

 

     

             

             

                

    

 

         

              

      

 

       

               

              

    

 

  

     

 

        

                 

            

         

 

   

              

             

             

          


 

We can still get quite a bit of insight from this decomposition. Consider the 

zero input response, and let x(0) = v1 

= [1 0 0 0 ]0 . This is an eigenvector 

corresponding to the zero eigenvalue, and corresponds to a fxed distance s, zero 

velocity, zero angular position, and zero angular velocity. In that case, the system 

remains in the same position and the response is equal to x(0) for all future time. 

Now, let x(0) = v2 

= [0 1 0 0 ]0 , which corresponds to a non-zero velocity 

and zero position, angle and angular velocity. This is not an eigenvector but rather 

a generalized eigenvector, i.e., it satisfes Av2 

= v1. We can easily calculate the 

response to be x(t) = [t 1 0 0] implying that the cart will drift with constant 

velocity but will remain in the upright position. Notice that the response lies in 

the linear span of v1 

and v2. 

The case where x(0) = v3 

corresponds to the eigenvalue , = 3:1424. In this 

case, the cart is moving to the left while the pendulum is tilted to the right with 

clockwise angular velocity. Thus, the pendulum tilts more to the right, which 

corresponds to unstable behavior. The case where x(0) = v4 

corresponds to the 

eigenvalue , = ;3:1424. The cart again is moving to the left with clockwise 

angular velocity, but the pendulum is tilted to the left. With an appropriate 

combination of these variables (given by the eigenvector v4) the response of the 

system converges to the upright equilibrium position at the origin. 



 

                  

                

              

      

     

 

          

           	       

                  

 

 

 

 

 

      


 

Exercises 

Exercise 12.1 Use the expression in (12.1) to �nd the transfer functions of the DT versions of the 

controller canonical form and the observer canonical form de�ned in Chapter 8. Verify that the transfer 

functions are consistent with what you would compute from the input-output di�erence equation on 

which the canonical forms are based. 

0Exercise 12.2 Let v and w be the right and left eigenvectors associated with some non-repeated 

0eigenvalue � of a matrix A, with the normalization w v � 1. Suppose A is perturbed in�nitesimally to 

0 0A + dA, so that � is perturbed to � + d�, v to v + dv, and w to w + dw0 . Show that d� � w0(dA)v. 



  

  
 

  

               

              

                

          

    

     

     

       

            

 

        

           

 

        

                

 

        

            

               

               

                

                 

               

                

                  

      

Chapter 13 

Internal (Lyapunov) Stability 

13.1 Introduction 

We have already seen some examples of both stable and unstable systems. The objective of 

this chapter is to formalize the notion of internal stability for general nonlinear state-space 

models. Apart from defning the various notions of stability, we defne an entity known as a 

Lyapunov function and relate it to these various stability notions. 

13.2 Notions of Stability 

For a general undriven system 

x_ (t) = f(x(t), 0, t) (CT ) (13.1) 

x(k + 1) = f(x(k), 0, k) (DT ), (13.2) 

we say that a point x is an equilibrium point from time t0 

for the CT system above if f(x, 0, t) = 

0, 8t 2 t0, and is an equilibrium point from time k0 

for the DT system above if f(x, 0, k) = 

x,� 8k 2 k0. If the system is started in the state x� at time t0 

or k0, it will remain there for all 

time. Nonlinear systems can have multiple equilibrium points (or equilibria). (Another class 

of special solutions for nonlinear systems are periodic solutions, but we shall just focus on 

equilibria here.) We would like to characterize the stability of the equilibria in some fashion. 

For example, does the state tend to return to the equilibrium point after a small perturbation 

away from it� Does it remain close to the equilibrium point in some sense� Does it diverge� 

The most fruitful notion of stability for an equilibrium point of a nonlinear system is 

given by the defnition below. We shall assume that the equilibrium point of interest is at 

the origin, since if x 6= 0, a simple translation can always be applied to obtain an equivalent 

system with the equilibrium at 0. 



              

        

     

 

             

 

 

              

              

                

                 

                 

              

             

                

 

         

       

 

 

 

  

          

    

    

         

 

 

 

         

            

 

 

             

                    

          

              

              

                 

            

             

       

De�nition 13.1 A system is called asymptotically stable around its equilibrium point at the 

origin if it satisfes the following two conditions: 

1. Given any E > 0, 981 

> 0 such that if kx(t0)k < 81, then kx(t)k < E, 8 t > t0: 

2. 982 

> 0 such that if kx(t0)k < 82, then x(t) ! 0 as t !1. 

The frst condition requires that the state trajectory can be confned to an arbitrarily 

small \ball" centered at the equilibrium point and of radius E, when released from an arbitrary 

initial condition in a ball of su�ciently small (but positive) radius 81. This is called stability in 

the sense of Lyapunov (i.s.L.). It is possible to have stability in the sense of Lyapunov without 

having asymptotic stability, in which case we refer to the equilibrium point as marginally 

stable. Nonlinear systems also exist that satisfy the second requirement without being stable 

i.s.L., as the following example shows. An equilibrium point that is not stable i.s.L. is termed 

unstable. 

Example 13.1 (Unstable Equilibrium Point That Attracts All Trajectories) 

Consider the second-order system with state variables x1 

and x2 

whose dynamics 

are most easily described in polar coordinates via the equations 

r_ = r(1 ; r) 

_� = sin2(�¢2) (13.3) q
where the radius r is given by r = x21 

+ x22 

and the angle � by 0 < � = 

arctan (x2¢x1) < 2�. (You might try obtaining a state-space description directly 

involving x1 

and x2.) It is easy to see that there are precisely two equilibrium 

points: one at the origin, and the other at r = 1, � = 0. We leave you to verify 

with rough calculations (or computer simulation from various initial conditions) 

that the trajectories of the system have the form shown in the fgure below. 

Evidently all trajectories (except the trivial one that starts and stays at the origin) 

end up at r = 1, � = 0. However, this equilibrium point is not stable i.s.L., 

because these trajectories cannot be confned to an arbitrarily small ball around 

the equilibrium point when they are released from arbitrary points with any ball 

(no matter how small) around this equilibrium. 



    

     

                

               

                   

              

  

  

 

 


 

 

 


 

 

 
 

 








    





 

 

 

 

 


 
 

 

 

 
 

 








    





 

 

 

                

  

            

        

            

                  

   


 

unit circle 

x 

y 

Figure 13.1: System Trajectories 

13.3 Stability of Linear Systems 

We may apply the preceding defnitions to the LTI case by considering a system with a 

diagonalizable A matrix (in our standard notation) and u � 0. The unique equilibrium point 

is at x = 0, provided A has no eigenvalue at 0 (respectively 1) in the CT (respectively DT) 

case. (Otherwise every point in the entire eigenspace corresponding to this eigenvalue is an 

equilibrium.) Now 

x_ (t) = e 

At x(0) 

2 3�1 

te 

.64 

75= V Wx(0) (CT ) (13.4). . 

�nte 

x(k) = Ak x(0) 

2 3 

�k 

1 

.64 

75= V Wx(0) (DT ) (13.5). . 

�k 

n 

Hence, it is clear that in continuous time a system with a diagonalizable A is asymptotically 

stable if 

Re(�i) < 0, i 2 f1, : : : , ng, (13.6) 

while in discrete time the requirement is that 

j�ij < 1 i 2 f1, : : : , ng, (13.7) 

Note that if Re(�i) = 0 (CT) or j�ij = 1 (DT), the system is not asymptotically stable, but 

is marginally stable. 



              

               

                 

              

             

                  

            

            

     

            

    

              

               

 

             

 

       

    

  

    

   

                 

                 

                   

               

              

               

             

              

            

                

                    

                    

                  

Exercise: For the nondiagonalizable case, use your understanding of the Jordan form to show 

that the conditions for asymptotic stability are the same as in the diagonalizable case. For 

marginal stability, we require in the CT case that Re(�i) < 0, with equality holding for at 

least one eigenvalue; furthermore, every eigenvalue whose real part equals 0 should have its 

geometric multiplicity equal to its algebraic multiplicity, i.e., all its associated Jordan blocks 

should be of size 1. (Verify that the presence of Jordan blocks of size greater than one for 

these imaginary-axis eigenvalues would lead to the state variables growing polynomially with 

time.) A similar condition holds for marginal stability in the DT case. 

Stability of Linear Time-Varying Systems 

Recall that the general unforced solution to a linear time-varying system is 

x(t) = �(t, t0)x(t0), 

where �(t, T) is the state transition matrix. It follows that the system is 

1. stable i.s.L. at x = 0 if sup k�(t, t0)k = m(t0) < 1. 

t 

2. asymptotically stable at x = 0 if lim k�(t, t0)k ! 0, 8t0. 

t!1 

These conditions follow directly from Defnition 13.1. 

13.4 Lyapunov's Direct Method 

General Idea 

Consider the continuous-time system 

x_ (t) = f(x(t)) (13.8) 

with an equilibrium point at x = 0. This is a time-invariant (or \autonomous") system, since f 

does not depend explicitly on t. The stability analysis of the equilibrium point in such a system 

is a di�cult task in general. This is due to the fact that we cannot write a simple formula 

relating the trajectory to the initial state. The idea behind Lyapunov's \direct" method is to 

establish properties of the equilibrium point (or, more generally, of the nonlinear system) by 

studying how certain carefully selected scalar functions of the state evolve as the system state 

evolves. (The term \direct" is to contrast this approach with Lyapunov's \indirect" method, 

which attempts to establish properties of the equilibrium point by studying the behavior of 

the linearized system at that point. We shall study this next Chapter.) 

Consider, for instance, a continuous scalar function V (x) that is 0 at the origin and 

positive elsewhere in some ball enclosing the origin, i.e. V (0) = 0 and V (x) > 0 for x 6= 0 in 

_this ball. Such a V (x) may be thought of as an \energy" function. Let V (x) denote the time 

derivative of V (x) along any trajectory of the system, i.e. its rate of change as x(t) varies 



               

                

                 

              

  

         

 

        

       

     

            

              

                   

                 

                    

                  

                 

   

         

  

 

                

              

                 

               

    

    

  

 

 

 

                 

     

 

 

 

according to (13.8). If this derivative is negative throughout the region (except at the origin), 

then this implies that the energy is strictly decreasing over time. In this case, because the 

energy is lower bounded by 0, the energy must go to 0, which implies that all trajectories 

converge to the zero state. We will formalize this idea in the following sections. 

Lyapunov Functions 

De�nition 13.2 Let V be a continuous map from R
n to R. We call V (x) a locally positive 

de�nite (lpd) function around x = 0 if 

1. V (0) = 0. 

2. V (x) > 0, 0 < kxk < r for some r. 

Similarly, the function is called locally positive semide�nite (lpsd) if the strict inequality on 

the function in the second condition is replaced by V (x) 2 0. The function V (x) is locally 

negative de�nite (lnd) if ;V (x) is lpd, and locally negative semide�nite (lnsd) if ;V (x) is 

lpsd. What may be useful in forming a mental picture of an lpd function V (x) is to think of 

it as having \contours" of constant V that form (at least in a small region around the origin) 

a nested set of closed surfaces surrounding the origin. The situation for n = 2 is illustrated 

in Figure 13.2. 

V(x)=c 1 

V(x)=c 2 

V(x)=c 3 

Figure 13.2: Level lines for a Lyapunov function, where c1 

< c2 

< c3. 

Throughout our treatment of the CT case, we shall restrict ourselves to V (x) that have 

continuous frst partial derivatives. (Diferentiability will not be needed in the DT case | 

continuity will su�ce there.) We shall denote the derivative of such a V with respect to time 

_along a trajectory of the system (13.8) by V (x(t)). This derivative is given by 

dV (x) dV (x) _V (x(t)) = x_ = f(x)
dx dx 

dV (x)where dx 

is a row vector | the gradient vector or Jacobian of V with respect to x | 

containing the component-wise partial derivatives 

@V .@xi 



                

                 

     

     

                  

                 

 

  

                

                 

                    

              

 

    

          

     

 

                

 

 

                

                  

                 

                

 

 

                

    

 

           

      

_De�nition 13.3 Let V be an lpd function (a \candidate Lyapunov function"), and let V be 

_its derivative along trajectories of system (13.8). If V is lnsd, then V is called a Lyapunov 

function of the system (13.8). 

Lyapunov Theorem for Local Stability 

Theorem 13.1 If there exists a Lyapunov function of system (13.8), then x = 0 is a stable 

_equilibrium point in the sense of Lyapunov. If in addition V (x) < 0, 0 < kxk < r1 

for some 

_r1, i.e. if V is lnd, then x = 0 is an asymptotically stable equilibrium point. 

Proof: First, we prove stability in the sense of Lyapunov. Suppose E > 0 is given. We need 

to fnd a 8 > 0 such that for all kx(0)k < 8, it follows that kx(t)k < E, 8t > 0. The Figure 

19.6 illustrates the constructions of the proof for the case n = 2. Let E1 

= min(E, r). Defne 

r δ 

ε1 

Figure 13.3: Illustration of the neighborhoods used in the proof 

m = min V (x): 

kxk�e1 

Since V (x) is continuous, the above m is well defned and positive. Choose 8 satisfying 

0 < 8 < E1 

such that for all kxk < 8, V (x) < m. Such a choice is always possible, again 

because of the continuity of V (x). Now, consider any x(0) such that kx(0)k < 8, V (x(0)) < m, 

_and let x(t) be the resulting trajectory. V (x(t)) is non-increasing (i.e. V (x(t)) < 0) which 

results in V (x(t)) < m. We will show that this implies that kx(t)k < E1. Suppose there 

exists t1 

such that kx(t1)k > E1, then by continuity we must have that at an earlier time t2, 

kx(t2)k = E1, and minkxk�e1 

kV (x)k = m > V (x(t2)), which is a contradiction. Thus stability 

in the sense of Lyapunov holds. 



                   

                    

                        

              

         

  

 

        

 

      

                  

                

 

          

 

           

                 

     

     

 

          

 

 

       

 

     

               

       

           

  

  

               

      

 

 

   

 

             

  

 

               

   

_To prove asymptotic stability when V is lnd, we need to show that as t !1, V (x(t)) ! 

0; then, by continuity of V , kx(t)k ! 0. Since V (x(t)) is strictly decreasing, and V (x(t)) 2 0 

we know that V (x(t)) ! c, with c 2 0. We want to show that c is in fact zero. We can argue 

by contradiction and suppose that c > 0. Let the set S be defned as 

S = fx 2 R
njV (x) < cg , 

and let Ba 

be a ball inside S of radius a, 

Ba 

= fx 2 Sjkxk < ag : 

Suppose x(t) is a trajectory of the system that starts at x(0), we know that V (x(t)) is 

decreasing monotonically to c and V (x(t)) > c for all t. Therefore, x(t) 2¢ Ba; recall that 

Ba 

C S which is defned as all the elements in R
n for which V (x) < c. In the frst part of 

the proof, we have established that if kx(0)k < 8 then kx(t)k < E. We can defne the largest 

derivative of V (x) as 

_;1 = max V (x): 

askxkse 

_Clearly ;1 < 0 since V (x) is lnd. Observe that, Z t 

_V (x(t) = V (x(0)) + V (x(T))dT 

0 

< V (x(0)) ; 1t, 

which implies that V (x(t)) will be negative which will result in a contradiction establishing 

the fact that c must be zero. 

Example 13.2 Consider the dynamical system which is governed by the difer-
ential equation 

x_ = ;g(x) 

where g(x) has the form given in Figure 13.4. Clearly the origin is an equilibrium 

point. If we defne a function Z x 

V (x) = g(y)dy 

0 

then it is clear that V (x) is locally positive defnite (lpd) and 

_V (x) = ;g(x)2 

which is locally negative defnite (lnd). This implies that x = 0 is an asymptotically 

stable equilibrium point. 



      

      

                 

                 

              

            

               

      

                 

                

              

                  

 

  

    

  

                

              

  

   

 

 

           

       

 

 

         

       

1-1 

g(x) 

x 

Figure 13.4: Graphical Description of g(x) 

Lyapunov Theorem for Global Asymptotic Stability 

The region in the state space for which our earlier results hold is determined by the region 

over which V (x) serves as a Lyapunov function. It is of special interest to determine the 

\basin of attraction" of an asymptotically stable equilibrium point, i.e. the set of initial 

conditions whose subsequent trajectories end up at this equilibrium point. An equilibrium 

point is globally asymptotically stable (or asymptotically stable \in the large") if its basin of 

attraction is the entire state space. 

If a function V (x) is positive defnite on the entire state space, and has the additional 

_property that jV (x)j % 1 as kxk % 1, and if its derivative V is negative defnite on the 

entire state space, then the equilibrium point at the origin is globally asymptotically stable. 

We omit the proof of this result. Other versions of such results can be stated, but are also 

omitted. 

Example 13.3 

Consider the nth-order system 

x_ = ;C(x) 

with the property that C(0) = 0 and x0C(x) > 0 if x =6 0. Convince yourself that 

the unique equilibrium point of the system is at 0. Now consider the candidate 

Lyapunov function 

V (x) = x 

0 x 

which satisfes all the desired properties, including jV (x)j % 1 as kxk % 1. 

Evaluating its derivative along trajectories, we get 

_ 

0V (x) = 2x x_ = ;2x 

0C(x) < 0 for x 6= 0 

Hence, the system is globally asymptotically stable. 



       

 

 

 

 

	

 

 

 

 

 

  

                

             

 

  

                

      

 

        

              

      

 

 

 

  

  

 

 

 

  

 

   

 

 

 

                 

   

 

 

  

             

             

             

              

 

     

    

      

    

              

             

            

           

            

                

         

  

     

 

              

 

 

             

    

 

 

  

 

 	   


 

     


 

   

Example 13.4 Consider the following dynamical system 

x_ 1 

= ;x1 

+ 4x2 

3 x_ 2 

= ;x1 

; x2: 

The only equlibrium point for this system is the origin x = 0. To investigate the 

stability of the origin let us propose a quadratic Lyapunov function V = x1
2 + ax22, 

where a is a positive constant to be determined. It is clear that V is positive 

defnite on the entire state space R
2 . In addition, V is radially unbounded, that 

is it satisfes jV (x)j % 1 as kxk % 1. The derivative of V along the trajectories 

of the system is given by " # h i ;x1 

+ 4x2 _V = 2x1 

2ax2 3;x1 

; x2 

= ;2x 

2 + (8 ; 2a)x1x2 

; 2ax 

4 

1 2: 

If we choose a = 4 then we can eliminate the cross term x1x2, and the derivative 

of V becomes 

_ 

2 4V = ;2x1 

; 8x2, 

which is clearly a negative defnite function on the entire state space. Therefore 

we conclude that x = 0 is a globally asymptotically stable equilibrium point. 

Example 13.5 A highly studied example in the area of dynamical systems and 

chaos is the famous Lorenz system, which is a nonlinear system that evolves in R
3 

whose equations are given by 

x_ = �(y ; x) 

y_ = rx ; y ; xz 

z_ = xy ; bz, 

where �, r and b are positive constants. This system of equations provides an 

approximate model of a horizontal �uid layer that is heated from below. The 

warmer �uid from the bottom rises and thus causes convection currents. This 

approximates what happens in the atmosphere. Under intense heating this model 

exhibits complex dynamical behaviour. However, in this example we would like to 

analyze the stability of the origin under the condition r < 1, which is known not to 

2 2 2lead to complex behaviour. Le us defne V = a1x +a2y +a3z , where a1, a2, and 

a3 

are positive constants to be determined. It is clear that V is positive defnite 

on R
3 and is radially unbounded. The derivative of V along the trajectories of the 

system is given by 2 3 h i 

�(y ; x)6 7 _V = 2a1x 2a2y 2a3z 4 

rx ; y ; xz 5 

xy ; bz 



	

 

  

 

 

 

   

 

  

    

 

 

 

   

 

 

 

 

  

 

 

	  

   

 

  

  

    

 

 

 

 

         

   

 

 

 

 

 

 

	  

         

 

         

 

    

 

         

 

   

                

       

     

               

           

 

   

 

  

 

 

 

 

 

  

 

 

 

             

  

 

  

         

 

 

	

 

 

  

 

  

 

  

 

 

 

 

	  

               

    
 

            
 

  
 

 

 

 

 

 

 

 

 

 

 

= ;2a1�x2 ; 2a2y 

2 ; 2a3bz
2 

+xy(2a1� + 2ra2) + (2a3 

; 2a2)xyz: 

1 _If we choose a2 

= a3 

= 1 and a1 

= � 

then the V becomes � � 

_ 

2V = ;2 x + y 

2 + 2bz2 ; (1 + r)xy "� 

#�2 

� � 

1 1 + r 

= ;2 x ; (1 + r)y + 1 ; ( )2 y 

2 + bz2 : 

2 2 

1+r _Since 0 < r < 1 it follows that 0 < 2 

< 1 and therefore V is negative defnite on 

the entire state space R
3 . This implies that the origin is globally asymptotically 

stable. 

Example 13.6 (Pendulum) 

The dynamic equation of a pendulum comprising a mass M at the end of a rigid 

but massless rod of length R is 

MR��+ Mg sin � = 0 

where � is the angle made with the downward direction, and g is the acceleration 

_due to gravity. To put the system in state-space form, let x1 

= �, and x2 

= �; 

then 

x_ x21 

= 

x_2 

= ; 

g 

sin x1
R 

Take as a candidate Lyapunov function the total energy in the system. Then 

1 

V (x) = MR2 x2
2 + MgR(1 ; cos x1) = kinetic + potential 

2 " # 

dV x2 _ 

2V = f(x) = [MgR sin x1 

MR x2] g
dx 

; sin x1R 

= 0 

Hence, V is a Lyapunov function and the system is stable i.s.L. We cannot conclude 

asymptotic stability with this analysis. 

Consider now adding a damping torque proportional to the velocity, so that the 

state-space description becomes 

x_ x21 

= 

x_2 

= ;Dx2 

; 

g 

sin x1
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_ 
_ 

With this change, but the same V as before, we fnd 

_ 

2V = ;DMR2 x2 

< 0: 

From this we can conclude stability i.s.L. We still cannot directly conclude asymp-
totic stability. Notice however that V = 0 ) � = 0. Under this condition, 

��� = ;(g¢R) sin �: Hence, � 6= 0 if � 6= k� for integer k, i.e. if the pendulum is not 

vertically down or vertically up. This implies that, unless we are at the bottom or 

_top with zero velocity, we shall have �� =6 0 when V = 0, so �_ will not remain at 

0, and hence the Lyapunov function will begin to decrease again. The only place 

the system can end up, therefore, is with zero velocity, hanging vertically down or 

standing vertically up, i.e. at one of the two equilibria. The formal proof of this 

result in the general case (\LaSalle's invariant set theorem") is beyond the scope 

of this course. 

The conclusion of local asymptotic stability can also be obtained directly through 

an alternative choice of Lyapunov function. Consider the Lyapunov function can-
didate 

1 1 

V (x) = x2
2 + (x1 

+ x2)
2 + 2(1 ; cos x1): 

2 2 

It follows that 

_ 

2 _ 

2V = ;(x2 

+ x1 

sin x1) = ;; (� + � sin �) < 0: 

_ 

2 _ 

2 _ _Also, � + � sin � = 0 ) � = 0, � sin � = 0 ) � = 0, � = 0: Hence, V is strictly 

negative in a small neighborhood around 0. This proves asymptotic stability. 

Discrete-Time Systems 

Essentially identical results hold for the system 

x(k + 1) = f(x(k)) (13.9) 

_provided we interpret V as 

4 _V (x) = V (f(x)) ; V (x) , 

i.e. as 

V (next state) ; V (present state) 

Example 13.7 (DT System) 

Consider the system 

x2(k) 

x1(k + 1) = 21 + x2(k) 

x1(k) 

x2(k + 1) = 

1 + x2
2(k) 



              

 

     

 

  

 

 

    

  

 

   


              

               

             

    

 

                

       

which has its only equilibrium at the origin. If we choose the quadratic Lyapunov 

function 

V (x) = x 

2
1 + x 

2
2 

we fnd � � 

1 _V (x(k)) = V (x(k)) 

[1 + x22(k)]
2 

; 1 < 0 

from which we can conclude that the equilibrium point is stable i.s.L. In fact, 

examining the above relations more carefully (in the same style as we did for the 

pendulum with damping), it is possible to conclude that the equilibrium point is 

actually globally asymptotically stable. 

Notes 

The system in Example 2 is taken from the eminently readable text by F. Verhulst, Nonlinear 

Di�erential Equations and Dynamical Systems, Springer-Verlag, 1990. 



 

                

                       

             

  

 

   

 

  

 

 

 

 

          

 

           

 

 

                      


 

   
 

	               

              

        

     

 

    

          

             

  

  

             

	                  

                 

    

     

  

  

 

                  

                    

                  

            

Exercises 

Exercise 13.1 Consider the horizontal motion of a particle of unit mass sliding under the in�uence 

of gravity on a frictionless wire. It can be shown that, if the wire is bent so that its height h is given 

by h(x) � V�(x), then a state-space model for the motion is given by 

x_ � z 

d 

z_ � ; V�(x)� 

dx 

Suppose V�(x) � x4 ; �x2 . 

� ;1 � � � 1, and it also has (z� x) � 0� � as equilibrium points when � is in the interval 

2 

0 � � � 1. 

(b) Verify that the linearized model about any of the equilibrium points is neither asymptotically 

stable nor unstable for any � in the interval ;1 � � � 1. 

Exercise 13.2 Consider the dynamic system described below: 

y�+ a1y_ + a2y + cy 

2 � u + u�_ 

where y is the output and u is the input. 

(a) Obtain a state-space realization of dimension 2 that describes the above system. 

(b) If a1 

� 3� a2 

� 2� c � 2, show that the system is asymptotically stable at the origin. 

(c) Find a region (a disc of non-zero radius) around the origin such that every trajectory, with an 

initial state starting in this region, converges to zero as t approaches in�nity. This is known as 

a region of attraction. 

Exercise 13.3 Consider the system 

dP (x) 

x_ (t) � ; 

dx 

where P (x) has continuous �rst partial derivatives. The function P (x) is referred to as the potential 

function of the system, and the system is said to be a gradient system. Let x� be an isolated local 

minimum of P (x), i.e. P (x�) � P (x) for 0 � kx ; x�k � r, some r. 

(a) Show that x� is an equilibrium point of the gradient system. 

(a) Verify that the above model has (z� x ) � (0� 0) equilibrium point for � in the interval as any r �� 



      

       

            

                

           

 

     

 

     

           

 

       

 

 

   

 

     

 

  

  

 

 

 

  

 

         

                   

 	  

    

 

     

    

 

	                 

 

           

 	       

      

 

            

              

           

      

 

         

 

  

 

     

 

                 

              

                

             

 

   

 

  

                 

            

(b) Use the candidate Lyapunov function 

V (x) � P (x) ; P (x�) 

to try and establish that x� is an asymptotically stable equilibrium point. 

Exercise 13.4 The objective of this problem is to analyze the convergence of the gradient algorithm 

for �nding a local minimum of a function. Let f : R
n ! R and assume that x� is a local minimum� i.e., 

�f(x�) � f(x) for all x close enough but not equal to x . Assume that f is continuously di�erentiable. 

TLet g : R ! R
n be the gradient of f : 

T 

@g @g g � ( : : : ) :@x @xn1 

It follows from elementary Calculus that g(x�) � 0. 

�If one has a good estimate of x , then it is argued that the solution to the dynamic system: 

x_ � ;g(x) (13.10) 

with x(0) close to x� will give x(t) such that 

�lim x(t) � x : 

t!1 

(a) Use Lyapunov stability analysis methods to give a precise statement and a proof of the above 

argument. 

(b) System 13.10 is usually solved numerically by the discrete-time system 

x(k + 1) � x(k) ; �(xk)g(xk)� (13.11) 

where �(xk) is some function from R
n ! R. In certain situations, � can be chosen as a constant 

function, but this choice is not always good. Use Lyapunov stability analysis methods for 

discrete-time systems to give a possible choice for �(xk) so that 

�lim x(k + 1) � x : 

k!1 

(c) Analyze directly the gradient algorithm for the function 

f(x) � 

1 

x 

T Qx� Q Symmetric, Positive De�nite: 

2 

Show directly that system 13.10 converges to zero (� x�). Also, show that � in system 13.11 

can be chosen as a real constant, and give tight bounds on this choice. 

Exercise 13.5 (a) Show that any (possibly complex) square matrix M can be written uniquely as 

the sum of a Hermitian matrix H and a skew-Hermitian matrix S, i.e. H 0 � H and S0 � ;S. 

(Hint: Work with combinations of M and M 0.) Note that if M is real, then this decomposition 

expresses the matrix as the sum of a symmetric and skew-symmetric matrix. 



	                    

                    

 

	                    

                

 

   

  

  

 

             

	               

        

          

      

    	  

                  

                 

  

                  

                

                  

    

                 

               

                   

                   

                 

             

           

 

 

 

 

    	  

 

                 

                  

           

 

 

     

 

(b) With M , H , and S as above, show that the real part of the quadratic form x0Mx equals x0Hx, 

and the imaginary part of x0Mx equals x0Sx. (It follows that if M and x are real, then x0Mx � 

x0Hx.) 

(c) Let V (x) � x0Mx for real M and x. Using the standard de�nition of dV (x)�dx as a Jacobian 

matrix | actually just a row vector in this case | whose jth entry is @V (x)�@xj 

, show that 

dV (x) 0H 

dx 

� 2x 

where H is the symmetric part of M , as de�ned in part (a). 

(d) Show that a Hermitian matrix always has real eigenvalues, and that the eigenvectors associated 

with distinct eigenvalues are orthogonal to each other. 

Exercise 13.6 Consider the (real) continuous-time LTI system x_ (t) � Ax(t). 

(a) Suppose the (continuous-time) Lyapunov equation 

PA + A0P � ;I (3:1) 

has a symmetric, positive de�nite solution P . Note that (3.1) can be written as a linear system 

of equations in the entries of P , so solving it is in principle straightforward� good numerical 

algorithms exist. 

Show that the function V (x) � x0Px serves as a Lyapunov function, and use it to deduce the 

global asymptotic stability of the equilibrium point of the LTI system above, i.e. to deduce that 

the eigenvalues of A are in the open left-half plane. (The result of Exercise 13.5 will be helpful 

_in computing V (x).) 

What part (a) shows is that the existence of a symmetric, positive de�nite solution of (3.1) is 

su�cient to conclude that the given LTI system is asymptotically stable. The existence of such 

a solution turns out to also be necessary, as we show in what follows. [Instead of ;I on the 

right side of (3.1), we could have had ;Q for any positive de�nite matrix Q. It would still be 

true that the system is asymptotically stable if and only if the solution P is symmetric, positive 

de�nite. We leave you to modify the arguments here to handle this case.] 

(b) Suppose the LTI system above is asymptotically stable. Now de�ne Z 1 

A0 t AtP � R(t)dt � R(t) � e e (3:2) 

0 

The reason the integral exists is that the system is asymptotically stable | explain this in more 

detail! Show that P is symmetric and positive de�nite, and that it is the unique solution of the 

Lyapunov equation (3.1). You will �nd it helpful to note that Z 1 dR(t)
R(1) ; R(0) � dt 

dt0 



                  

                  

                

                

               

               

                 

   

        

  	  

                 

        

	                   

      

                   

               

                   

    

	                   

                   

                 

 

                

           

                   

               

                

              

The results of this problem show that one can decide whether a matrix A has all its eigenvalues 

in the open left-half plane without solving for all its eigenvalues. We only need to test for the 

positive de�niteness of the solution of the linear system of equations (3.1). This can be simpler. 

Exercise 13.7 This problem uses Lyapunov's direct method to justify a key claim of his indirect 

method: if the linearized model at an equilibrium point is asymptotically stable, then this equilibrium 

point of the nonlinear system is asymptotically stable. (We shall actually only consider an equilibrium 

point at the origin, but the approach can be applied to any equilibrium point, after an appropriate 

change of variables.) 

Consider the time-invariant continuous-time nonlinear system given by 

x_ (t) � Ax(t) + h(x(t)) (4:1) 

where A has all its eigenvalues in the open left-half plane, and h(:) represents \higher-order terms", in 

the sense that kh(x)k�kxk ! 0 as kxk ! 0. 

(a) Show that the origin is an equilibrium point of the system (4.1), and that the linearized model at 

the origin is just x_ (t) � Ax(t). 

(b) Let P be the positive de�nite solution of the Lyapunov equation in (3.1). Show that V (x) � x0Px 

quali�es as a candidate Lyapunov function for testing the stability of the equilibrium point at 

_the origin in the system (4.1). Determine an expression for V (x), the rate of change of V (x) 

along trajectories of (4.1) 

0(c) Using the fact that x x � kxk2 , and that kPh(x)k � kP kkh(x)k, how small a value (in terms of 

kP k) of the ratio kh(x)k�kxk will allow you to conclude that V_ (x(t)) � 0 for x(t) �6 0� Now 

argue that you can indeed limit kh(x)k�kxk to this small a value by choosing a small enough 

_neighborhood of the equilibrium. In this neighborhood, therefore, V (x(t)) � 0 for x(t) � 0.6 By 

Lyapunov's direct method, this implies asymptotic stability of the equilibrium point. 

Exercise 13.8 For the discrete-time LTI system x(k + 1) � Ax(k), let V (x) � x0Px, where P is a 

symmetric, positive de�nite matrix. What condition will guarantee that V (x) is a Lyapunov function 

for this system� What condition involving A and P will guarantee asymptotic stability of the system� 

(Express your answers in terms of the positive semide�niteness and de�niteness of a matrix.) 



  

    
 

  

              

                

                

              

             

       

    

    

                

                    

              

               

          

                

        

   

   

   

 

   

 

Chapter 14 

Internal Stability for LTI Systems 

14.1 Introduction 

Constructing a Lyapunov function for an arbitrary nonlinear system is not a trivial exercise. 

The complication arises from the fact that we cannot restrict the class of functions to search 

from in order to prove stability. The situation is di�erent for LTI systems. In this chapter, 

we address the question of constructing Lyapunov functions for linear systems and then we 

present and verify Lyapunov indirect method for proving stability of a nonlinear system. 

14.2 Quadratic Lyapunov Functions for LTI Systems 

Consider the continuous-time system 

x_ (t) = Ax(t) : (14.1) 

We have already established that the system (14.1) is asymptotically stable if and only if all 

the eigenvalues of A are in the open left half plane. In this section we will show that this result 

can be inferred from Lyapunov theory. Moreover, it will be shown that quadratic Lyapunov 

functions su�ce. A consequence of this is that stability can be assessed by methods that 

may be computationally simpler than eigenanalysis. More importantly, quadratic Lyapunov 

functions and the associated mathematics turn up in a variety of other problems, so they are 

worth mastering in the context of stability evaluation. 

Quadratic Positive-De�nite Functions 

Consider the function 

V (x) = x 

T Px� x 2 R
n 



                

 

   

             

 

 

 

  

 

 

    

 

  

 

      

 

    

                 
 

 
 

             
 

  

 

  

 

      

     

 

   

  

   

 

   

 

 

       

 

   

       

 

 

     

                

              

 

  

                    

         

 

 

      

          

               

     

           

 

       

 

             

 

        

                     

              

  

 

         


 

where P is a symmetric matrix. This is the general form of a quadratic function in R
n . It is 

su�cient to consider symmetric matrices� if P is not symmetric, we can defne P1 

= 

1
2 

(P +P 

T ). 

It follows immediately that xT Px = xT P1x (verify, using the fact that xT Px is a scalar). 

Proposition 14.1 V (x) is a positive defnite function if and only if all the eigenvalues of P 

are positive. 

Proof: Since P is symmetric, it can be diagonalized by an orthogonal matrix, i.e., 

P = UT DU with UT U = I and D diagonal. 

Then, if y = Ux X 

V (x) = x 

T UT DUx = y 

T Dy = �ijyij2: 

i 

Thus, 

V (x) > 0 8x = 06 , �i 

> 0� 8i: 

De�nition 14.1 A matrix P that satisfes 

x 

T Px > 0 8x 6= 0 (14.2) 

is called positive de�nite. When P is symmetric (which is usually the case of interest, for 

the reason mentioned above), we will denote its positive defniteness by P > 0. If xT Px 2 

0 8x = 0,6 then P is positive semi-defnite, which we denote in the symmetric case by P 2 0. 

For a symmetric positive defnite matrix, it follows that 

�min(P )kxk2 � V (x) � �max(P )kxk2: 

This inequality follows directly from the proof of Proposition 14.1. 

It is also evident from the above discussion that the singular values and eigenvalues of 

any positive defnite matrix coincide. 

Exercise: Show that P > 0 if and only if P = GT G where G is nonsingular. The matrix 

1 

G is called a square root of P and is denoted by P 

2 . Show that H is another square root 

of P if and only if G = WH for some orthogonal matrix W . Can you see how to construct 

a symmetric square root� (You may fnd it helpful to begin with the eigen-decomposition 

P = UT DU , where U is orthogonal and D is diagonal.) 



       

         

   

 

    

     

  

 

   

 

 

  

  

   

 

  

  

  

   

  

 

  

        

 

         

                

                    

                

                 

           

             

                

 

      

                   

                    

                

     

 

          

                

              

                  

  

               

       

 

     

                    

     

            

 

      

 

                  


          


Quadratic Lyapunov Functions for CT LTI Systems 

Consider defning a Lyapunov function candidate of the form 

V (x) = x 

T Px� P > 0, (14.3) 

for the system (14.1). Then 

V_ (x) = x_ 

T Px + x 

T Px_ 

= x 

T AT Px + x 

T P Ax 

= x 

T (AT P + PA)x 

= ;x 

T Qx � 

where we have introduced the notation Q = ;(AT P + PA)� note that Q is symmetric. Now 

invoking the Lyapunov stability results from Lecture 5, we see that V is a Lyapunov function 

if Q 2 0, in which case the equilibrium point at the origin of the system (14.1) is stable i.s.L. 

If Q > 0, then the equilibrium point at the origin is globally asymptotically stable. In this 

latter case, the origin must be the only equilibrium point of the system, so we typically say 

the system (rather than just the equilibrium point) is asymptotically stable. 

The preceding relationships show that in order to fnd a quadratic Lyapunov function 

for the system (14.1), we can pick Q > 0 and then try to solve the equation 

AT P + PA = ;Q (14.4) 

for P . This equation is referred to as a Lyapunov equation, and is a linear system of equations 

in the entries of P . If it has a solution, then it has a symmetric solution (show this!), so 

we only consider symmetric solutions. If it has a positive defnite solution P > 0, then we 

evidently have a Lyapunov function xT Px that will allow us to prove the asymptotic stability 

of the system (14.1). The interesting thing about LTI systems is that the converse also holds: 

If the system is asymptotically stable, then the Lyapunov equation (14.4) has positive defnite 

solution P > 0 (which, as we shall show, is unique). This result is stated and proved in the 

following theorem. 

Theorem 14.1 Given the dynamic system (14.1) and any Q > 0, there exists a positive 

defnite solution P of the Lyapunov equation 

AT P + PA = ;Q 

if and only if all the eigenvalues of A are in the open left half plane (OLHP). The solution P 

in this case is unique. 

Proof: If P > 0 is a solution of (14.4), then V (x) = xT Px is a Lyapunov function of 

_system (14.1) with V (x) � 0 for any x = 0.6 Hence, system (14.1) is (globally) asymptotically 

stable and thus the eigenvalues of A are in the OLHP. 



                 

      

 

 

   

 

 

   

 

              

         

 

 

 

 

 

    

 

 

 

   

 

 

 

 

 

 

  

 

 

 

 

 

  

      

         

 

 

 

 

   

 

 

 

 

 

 

 

 

 

 

 

   

 

 

 

 

    

 

 

 

      

 

 

 

           

                  

      

 

    

 

  

 

 

 

 

 

 

 

 

 

    

 

 

   

 

 

 

   

 

 

 

  

 

   

 

       

         

       

   

 

      

 

   

 

  

To prove the converse, suppose A has all eigenvalues in the OLHP, and Q > 0 is given. 

Defne the symmetric matrix P by Z 1 

tAT 

QetA dt :P = e (14.5) 

0 

This integral is well defned because the integrand decays exponentially to the origin, since 

the eigenvalues of A are in the OLHP. Now Z 1 

Z 1 

AT tAT tAT 

AT P + PA = e QetAdt + e QetAAdt Z0 

1 d 

h i 

0 

tAT 

QetA= e dt 

0 

dt 

= ;Q 

so P satisfes the Lyapunov equation. 

To prove that P is positive defnite, note that Z 1 

T tAT 

x 

T Px = x e QetAxdt Z0 

1 

kQ 2 e 

tA= 

1 

xk2dt 2 0 

0 

and 

T 

1 tA x Px = 0 ) Q 2 e x = 0 ) x = 0 � 

1 

where Q 2 denotes a square root of Q. Hence P is positive defnite. 

To prove that the P defned in (14.5) is the unique solution to (14.4) when A has all 

eigenvalues in the OLHP, suppose that P2 

is another solution. Then Z 1 d 

h i 

tAT tAP2 

= ; e P2e dt (verify this identity) 

dtZ0 

1   
tAT tAdt= ; e AT P2 

+ P2A e Z 1 

0 

= e 

tAT 

QetAdt = P 

0 

This completes the proof of the theorem. 

A variety of generalizations of this theorem are known. 

Quadratic Lyapunov Functions for DT LTI Systems 

Consider the system   
x(t + 1) = Ax(t) = f x(t) (14.6) 

If 

V (x) = x 

T P x� 
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then 

V_ (x) = 

4 

V (f(x)) ; V (x) = x 

T AT P Ax ; x 

T P x: 

Thus the resulting Lyapunov equation to study is 

AT PA ; P = ;Q : (14.7) 

The following theorem is analogous to what we proved in the CT case, and we leave its proof 

as an exercise. 

Theorem 14.2 Given the dynamic system (14.6) and any Q > 0, there exists a positive 

defnite solution P of the Lyapunov equation 

AT PA + P = ;Q 

if and only if all the eigenvalues of A have magnitude less than 1 (i.e. are in the open unit 

disc). The solution P in this case is unique. 

Example 14.1 Di�erential Inclusion 

In many situations, the evolution of a dynamic system can be uncertain. One way 

of modeling this uncertainty is by di�erential (di�erence) inclusion which can be 

described as follows: 

x_ (t) � fAx(t) j A � Ag 

where A is a set of matrices. Consider the case where A is a fnite set of matrices 

and their convex combinations: 

m XmX 

A = fA = �iAi 

j �i 

= 1g
i�1 i�1 

One way to guarantee the stability of this system is to fnd one Lyapunov function 

for all systems defned by A. If we look for a quadratic Lyapunov function, then 

it su�ces to fnd a P that satisfes: 

Ai
T P + PAi 

� ;Q� i = 1 2 : : : m 

for some positive defnite Q. Then V (x) = xT Px satisfes V_ (x) � ;xT Qx (verify) 

showing that the system is asymptotically stable. 

Example 14.2 Set of Bounded Norm 

In this problem, we are interested in studying the stability of linear time-invariant 

systems of the form x_ (t) = (A + �)x(t) where � is a real matrix perturbation 

with bounded norm. In particular, we are interested in calculating a good bound 

on the size of the smallest perturbation that will destabilize a stable matrix A. 
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This problem can be cast as a di�erntial inclusion problem as in the previous 

example with 

A = fA +� k k�k � � � is a real matrixg 

Since A is stable, we can calculate a quadratic Lyapunov function with a matrix 

P satisfying AT P + PA � ;Q and Q is positive defnite. Applying the same 

Lyapunov function to the perturbed system we get: 

TV_ (x) = x AT P + PA +�T P + P � x 

It is evident that all perturbations satisfying 

�T P + P � � Q 

will result in a stable system. This can be guaranteed if 

2�max(P )�max(�) � �min(Q) 

This provides a bound on the perturbation although it is potentially conservative. 

Example 14.3 Bounded Perturbation 

Casting the perturbation in the previous example in terms of di�erential inclusion 

introduces a degree of conservatism in that the value � takes can change as a 

function of time. Consider the system: 

x_ (t) = (A + �)x(t) 

where A is a known fxed stable matrix and � is an unknown fxed real perturba-
tion matrix. The stability margin of this system is defned as 

�(A) = min fk�k j A + � is unstable g: 

�2Rn�n 

We desire to compute a good lower bound on �(A). The previous example gave 

one such bound. 

First, it is easy to argue that the minimizing solution �o 

of the above problem 

results in A + �0 

having eigenvalues at the imaginary axis (either at the origin, 

or in two complex conjugate locations). This is a consequence of the fact that 

the eigenvalues of A + p�0 

will move continuously in the complex plane as the 

parameter p varies from 0 to 1. The intersection with the imaginary axis will 

happen at p = 1� if not, a perturbation of smaller size can be found. 

We can get a lower bound on � by dropping the condition that � is a real matrix, 

and allowing complex matrices (is it clear why this gives a lower bound�). We can 

show: 

min fk�k j A + � is unstable g = min �min(A ; j!I): 

�2Cn�n !2R 



              

   

 

       

 

  

           

    

 

          

    

	      

 

   

   

                  

                

 

    

 

 

  

 
 

                

             

    

  	  

               

                

     

              

         

                 

 

 

     

   

 

              

      

   

  

    

 

 

 

  

	  

     

 

 

 

To verify this, notice that if the minimizing solution has an eigenvalue at the 

imaginary axis, then j!0I;A;�0 

should be singular while we know that j!0 

;A is 

not. The smallest possible perturbation that achieves this has size �min(A;j!0I). 

We can then choose !0 

that gives the smallest possible size. In the exercises, we 

further improve this bound. 

14.3 Lyapunov's Indirect Method: Analyzing the Lineariza-
tion 

Suppose the system 

x_ = f(x) (14.8) 

has an equilibrium point at x = 0 (an equilibrium at any other location can be dealt with 

by a preliminary change of variables to move that equilibrium to the origin). Assume we can 

write 

f(x) = Ax + h(x) 

where kh(x)k 

lim = 0 

kxk!0 
kxk 

i.e. h(x) denotes terms that are higher order than linear, and A is the Jacobian matrix 

associated with the linearization of (14.8) about the equilibrium point. The linearized system 

is thus given by 

x_ = Ax : (14.9) 

We might expect that if (14.9) is asymptotically stable, then in a small neighborhood around 

the equilibrium point, the system (14.8) behaves like (14.9) and will be stable. This is made 

precise in the following theorem. 

Theorem 14.3 If the system (14.9) is asymptotically stable, then the equilibrium point of 

system (14.8) at the origin is (locally) asymptotically stable. 

Proof: If system (14.9) is asymptotically stable, then for any Q > 0, there exists P > 0 such 

that 

AT P + PA = ;Q 

and V (x) = xT Px is a Lyapunov function for system (14.9). Consider V (x) as a Lyapunov 

function candidate for system (14.8). Then 

_V (x) = x 

T (AT P + PA)x + 2x 

T Ph(x) 

� ;�min(Q)kxk2 + 2kxk � kh(x)k � �max(P )� � kh(x)k � ; �min(Q) ; 2�max(P ) � kxk2 

kxk 
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From the assumption on h, for every � > 0, there exists r > 0 such that 

kh(x)k � �kxk 8 kxk � r: 

_This implies that V is strictly negative for all kxk � r, where r is chosen for 

�min(Q)
� � : 

2�max(P ) 

This concludes the proof. 

Notice that asymptotic stability of the equilibrium point of the system (14.8) can be 

concluded from the asymptotic stability of the linearized system (14.9) only when the eigen-
values of A have negative real parts. It can also be shown that if there is any eigenvalue of A 

in the right half plane, i.e. if the linearization is exponentially unstable, then the equilibrium 

point of the nonlinear system is unstable. The above theorem is inconclusive if there are 

eigenvalues on the imaginary axis, but none in the right half plane. The higher-order terms of 

the nonlinear model can in this case play a decisive role in determining stability� for instance, 

if the linearization is polynomially (rather than exponentially) unstable, due to the presence 

of one or more Jordan blocks of size greater than 1 for eigenvalues on the imaginary axis (and 

the absence of eigenvalues in the right half plane), then the higher-order terms can still cause 

the equilibrium point to be stable. 

It turns out that stronger versions of the preceding theorem hold if A has no eigenvalues 

on the imaginary axis: not only the stability properties of the equilibrium point, but also the 

local behavior of (14.8) can be related to the behavior of (14.9). We will not discuss these 

results further here. 

Similar results hold for discrete-time systems. 

Example 14.4 

The equations of motion for a pendulum with friction are 

x_ =1 

x2 

x_2 

= ;x2 

; sin x1 

The two equilibrium points of the system are at (0 0) and (� 0). The linearized 

system at the origin is given by 

x_ x21 

= 

x_2 

= ;x1 

; x2 

or " # 

0 1 

x_ = x = Ax : ;1 ;1 
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This A has all its eigenvalues in the OLHP. Hence the equilibrium point at the 

origin is asymptotically stable. Note, however, that if there were no damping, then 

the linearized system would be " # 

0 1 

x_ = x ;1 0 

and the resulting matrix A has eigenvalues on the imaginary axis. No conclusions 

can be drawn from this situation using Lyapunov linearization methods. Lya-
punov's direct method, by contrast, allowed us to conclude stability even in the 

case of zero damping, and also permitted some detailed global conclusions in the 

case with damping. 

The linearization around the equilibrium point at (� 0) is 

z_ z21 

= 

z_2 

= +z1 

; z2 

where z1 

= x1 

; � and z2 

= x2, so these variables denote the (small) deviations of 

x1 

and x2 

from their respective equilibrium values. Hence " # 

0 1 

A = x = Ax 

1 ;1 

which has one eigenvalues in the RHP, indicating that this equilibrium point is 

unstable. 



 

              

     

	                    

   


 
 

  

 

  

  

  

    

 

	                   

     

    

 

 

 

          

         

 

   
 

   
 

  
 

  


 


    


 

   

  

   

 

	         

            

  
 

    
 

 

   
 

   
 

  



 
   


 


 





 

  


 

   

  

   

 

	               

                 

 

	                 

              

     

              

 

  

Exercises 

Exercise 14.1 Bounded Perturbation Recall Example 14.3. In this problem we want to improve 

the lower bound on �(A). 

(a) To improve the lower bound, we use the information that if � is real, then poles appear in complex 

conjugate pair. De�ne �� 

Aw 

� 

A 

;wI 

wI 

A 

: 

Show that 

�(A) � min �min[Aw]: 

w2R 

(b) If you think harder about your proof above, you will be able to further improve the lower bound. 

In fact, it follows that 

�(A) � min �2n;1[Aw] 

w2R 

where �2n;1 

is the next to last singular value. Show this result. 

Exercise 14.2 Consider the LTI unforced system given below: 10 BB@ 

0 1 0 0 : : : 0 

0 0 1 0 : : : 0 

. . . . . . . . . . . . . . . . . . 

;aN;1 

;aN;2 

: : : : : : : : : ;a0 

CCAxx � Ax �_ 

(a) Under what conditions is this system asymptotically stable� 

Assume the system above is asymptotically stable. Now, consider the perturbed system 

x_ � Ax +�x� 

where � is given by 10 

� � 

BB@ 

0 0 0 0 : : : 0 

0 0 0 0 : : : 0 

. . . . . . . . . . . . . . . . . . 

;�N;1 

;�N;2 

: : : : : : : : : ;�0 

CCA � �i 

2 R: 

(b) Argue that the perturbation with the smallest Frobenius norm that destabilizes the system (makes 

the system not asymptotically stable) will result in A + � having an eigenvalue at the imaginary 

axis. 

(c) Derive an exact expression for the smallest Frobenius norm of � necessary to destabilize the above 

system (i.e., x_ � (A+�)x is not asymptotically stable). Give an expression for the perturbation 

� that attains the minimum. 

(d) Evaluate your answer in part 3 for the case N � 2, and a0 

� a1. 



    

	                 

            

     

 

  

 	       

  

            

        

                  

           

                     

                  

                

  

    

              

                

             

      

           

 

          

                 

      

	                   

            

	                  

                   

                       

                  

         

 

 
 




   
 

   
 

  



 
   



 

   

  

   

 

    

             

       

Exercise 14.3 Periodic Controllers 

(a) Show that the periodically varying system in Exercise 7.4 is asymptotically stable if and only if 

all the eigenvalues of the matrix [AN;1:::A0] have magnitude less than 1. 

(b) (i) Given the system ���� 

0 1 0 

x(k + 1) � x(k) + u(k) � y(k) � ( 1 1 ) x(k)
1 ;1 1 

write down a linear state-space representation of the closed-loop system obtained by implement-
ing the linear output feedback control u(k) � g(k)y(k). 

(ii) It turns out that there is no constant gain g(k) � g for which the above system is asymp-
totically stable. (Optional: Show this.) However, consider the periodically varying system 

obtained by making the gain take the value ;1 for even k and the value 3 for odd k. Show that 

any nonzero initial condition in the resulting system will be brought to the origin in at most 4 

steps. (The moral of this is that periodically varying output feedback can do more than constant 

output feedback.) 

Exercise 14.4 Delay Systems 

The material we covered in class has focused on �nite-dimensional systems, i.e., systems that 

have state-space descriptions with a �nite number of state variables. One class of systems that does 

not belong to the class of �nite-dimensional systems is continuous-time systems with delays. 

Consider the following forced continuous-time system: 

y(t) + a1y(t ; 1) + a2y(t ; 2) + : : : + aN 

y(t ; N) � u(t) t � N� t 2 R: 

This is known as a delay system with commensurate delays (multiple of the same delay unit). We 

assume that u(t) � 0 for all t � N . 

(a) Show that we can compute the solution y(t)� t � N , if y(t) is completely known in the interval 

[0,N). Explain why this system cannot have a �nite-dimensional state space description. 

(b) To compute the solution y(t) given the initial values (denote those by the function f(t)� t 2 [0� N), 

which we will call the initial function) and the input u, it is useful to think of every non-negative 

real number as t � � + k with � 2 [0� 1) and k being a non-negative integer. Show that for every 

�xed � , the solution evaluated at � + k (y(� + k)) can be computed using discrete-time methods 

and can be expressed in terms of the matrix 10 

A � 

BB@ 

0 1 0 0 : : : 0 

0 0 1 0 : : : 0 

. . . . . . . . . . . . . . . . . . 

;aN 

;aN;1 

: : : : : : : : : ;a1 

CCA 

and the initial vector 

T( f(�) f(� + 1) : : : f(� + N ; 1) ) : 

Write down the general solution for y(t). 



                

 

    

	                     

                  

 

   

              

  

	                

   

    

	                 

            

 

   

        

     

                     

    

             
 

           
  

     

 

      

  

 

  

 

   

 

 

     

          

 

     

 

 

 

           

 

    

 

 

 

              

    

	                   

                

                

                    

                  

                    

      

 

  

(c) Compute the solution for N � 2, f(t) � 1 for t 2 [0� 2), and u(t) � e;(t;2) for t � 2. 

(d) This system is asymptotically stable if for every � � 0, there exists a � � 0 such that for all initial 

functions with jf(t)j � �� t 2 [0� N), and u � 0, it follows that jy(t)j � �, and limt!1 

y(t) � 0. 

Give a necessary and su�cient condition for the asymptotic stability of this system. Explain 

your answer. 

(e) Give a necessary and su�cient condition for the above system to be BIBO stable (1-stable). 

Verify your answer. 

Exercise 14.5 Local Stabilization 

(a) One method for stabilizing a nonlinear system is to linearize it around an equilibrium point and 

then stabilize the resulting linear system. More formally, consider a nonlinear time-invariant 

system 

x_ � f(x� u) 

and its linearization around an equilibrium point (x�~ u~) 

_�x � A�x + B�u: 

As usual, �x � x ; x~ and �u � u ; u~. Suppose that the feedback �u � K�x asymptotically 

stabilizes the linearized system. 

1. What can you say about the eigenvalues of the matrix A + BK. 

2. Show that x_ � f(x� Kx) is (locally) asymptotically stable around x~. 

(b) Consider the dynamic system S1 

governed by the following di�erential equation: 

y�+ y_ 

4 + y_ 

2 u + y 

3 � 0 

where u is the input. 

1. Write down a state space representation for the system S1 

and �nd its unique equilibrium 

�point x . 

�2. Now try to apply the above method to the system S1 

at the equilibrium point x and 

u� � 0. Does the linearized system provide information about the stability of S1. Explain 

why the method fails. 

(c) To �nd a stabilizing controller for S1, we need to follow approaches that are not based on local 

linearization. One approach is to pick a positive de�nite function of the states and then construct 

the control such that this function becomes a Lyapunov function. This can be a very frustrating 

exercise. A trick that is commonly used is to �nd an input as a function of the states so that 

the resulting system belongs to a class of systems that are known to be stable (e.g. a nonlinear 

circuit or a mechanical system that are known to be stable). Use this idea to �nd an input u as 

function of the states such that S1 

is stable. 



     

   

  

 

  

            

        

                

               

 

 

 

 

  

 

 

 

 

 

  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  

 

 

 

    

 

     

 

      

  

 

    

               

                 

               

                 

                 

               

                  

            

 

       

         

Exercise 14.6 For the system 

x_ (t) � sin[x(t) + y(t)] 

x(t)y_(t) � e ; 1 

determine all equilibrium points, and using Lyapunov's indirect method (i.e. linearization), classify 

each equilibrium point as asymptotically stable or unstable. 

Exercise 14.7 For each of the following parts, all of them optional, use Lyapunov's indirect method 

to determine, if possible, whether the origin is an asymptotically stable or unstable equilibrium point. 

(a) 

x_1 

� ;x1 

+ x 

2 

2 

x_2 

� ;x2(x1 

+ 1) 

(b) 

x_ 1 

� x1
3 + x2 

x_ 2 

� x1 

; x2 

(c) 

x_1 

� ;x1 

+ x2 

2 x_2 

� ;x2 

+ x1 

(d) 

x1(k + 1) � 2x1(k) + x2(k)
2 

x2(k + 1) � x1(k) + x2(k) 

(e) 

x1 

(k)x2 

(k)x1(k + 1) � 1 ; e 

x2(k + 1) � x1(k) + 2x2(k) 

Exercise 14.8 For each of the nonlinear systems below, construct a linearization for the equilibrium 

point at the origin, assess the stability of the linearization, and decide (using the results of Lyapunov's 

indirect method) whether you can infer something about the stability of the equilibrium of the nonlin-
ear system at the origin. Then use Lyapunov's direct method prove that the origin is actually stable 

in each case� if you can make further arguments to actually deduce asymptotic stability or even global 

asymptotic stability, do so. [Hints: In part (a), �nd a suitable Lyapunov (energy) function by inter-
preting the model as the dynamic equation for a mass attached to a nonlinear (cubic) spring. In parts 

(b) and (c), try a simple quadratic Lyapunov function of the form px2 + qy2 , then choose p and q 

appropriately. In part (d), use the indicated Lyapunov function.] 



 

  

  

 

 

  

 

  

 

    

 

 

 

   

  

 

   

  

 

    

    

              

(a)
x_ � y

y_ � ;x3

(b)
x_ � ;x3 ; y2

y_ � xy ; y3

(c)
x2(k)

x1(k + 1) � 21 + x2(k)

x1(k)
x2(k + 1) � 21 + x2(k)

(d)
x_ � y(1; x)

y_ � ;x(1; y)

V (x� y) � ;x; ln(1; x) ; y ; ln(1; y)



  

  
 

  

              

              

                 

                

              

   

               

 

   

                  

 

     

               

              

                  

          


 
 

 


 
 

 

 

 

 





 


 


 
 


 
 

 


 
 




 

 

 

              

            

            

                   

             

Chapter 15 

External Input-Output Stability 

15.1 Introduction 

In this lecture, we introduce the notion of external, or input-output, stability for systems. 

There are many connections between this notion of stability and that of Lyapunov stability 

which we discussed in the previous two chapters. We will only make the connection in the LTI 

case. In addition, we will point out the fact that the notion of input-output stability depends 

in a non-trivial fashion on the way we measure the inputs and the outputs. 

15.2 Signal Measures 

The signals of interest to us are defned as maps from a time set into R
n . A continuous-time 

signal is a map from R ! R
n , and a discrete-time signal is a map from Z ! R

n . If n = 1 we 

have a scalar signal, otherwise we have a vector-valued signal. It is helpful, in understanding 

the various signal measures defned below, to visualize a discrete-time signal w(k) as just 

a vector of infnite (or, if our signal is defned only for non-negative time, then a vector of 

semi-infnite) length or dimension, concretely representing it as the array 10 

. . . 

w(0) 

w(1) 

10BBBBB@ 

CCCCCA 

or 

w(0) B@ w(1) CA : (15.1) 

. . .. . . 

Three of the most commonly used DT signal measures are then natural generalizations of 

the fnite-dimensional vector norms (1-, 2- and 1-norms) that we have already encountered 

in earlier chapters, generalized to such infnite-dimensional vectors. We shall examine these 

three measures, and a fourth that is related to the 2-norm, but is not quite a norm. We shall 

also defne CT signal measures that are natural counterparts of the DT measures. 



        

     

        

              

    

    

  

 

            

    

 

 

     

 

      

 

    

 

 

 

      

 

     

 

 

             

 

                  

             

 

              

               

                

                

        

 

  

  

 

             

              

                

                

            

     

         
 

 

 
 

     
 

 

      

 

  
 

The signal measures that we study below are: 

1. peak magnitude (or 1-norm)� 

2. energy (whose square root is the 2-norm)� 

3. power (or mean energy, whose square root is the \rms" or root-mean-square value)� 

4. \action" (or 1-norm). 

Peak Magnitude: The 1-Norm 

The 1-norm kwk1 

of a signal is its peak magnitude, evaluated over all signal components 

and all times : 

4 kwk1 

= max magnitude of w 

4 

= sup max jwi(k)j = sup kw(k)k1 

(for DT systems) (15.2)
ik k 

4 

= sup max jwi(t)j = sup kw(t)k1 

(for CT systems)   (15.3)
it t 

where wi(k) indicates the i-th component of the signal vector w(k). Note that kw(k)k1 

denotes the 1-norm of the signal value at time k, i.e. the familiar 1 norm of an n-vector, 

namely the maximum magnitude among its components. On the other hand, the notation 

kwk1 

denotes the 1-norm of the entire signal. The \sup" denotes the supremum or least 

upper bound, the value that is approached arbitrarily closely but never (i.e., at any fnite 

time) exceeded. We use \sup" instead of \max" because over an infnite time set the signal 

magnitude may not have a maximum, i.e. a peak value that is actually attained | consider, 

for instance, the simple case of the signal 

1 

1 ;   

1 + jkj 

which does not attain its supremum value of 1 for any fnite k. 

Note that the DT defnition is the natural generalization of the standard 1-norm for 

fnite-dimensional vectors to the case of our infnite vector in (15.1), while the CT defnition is 

the natural counterpart of the DT defnition. This pattern is typical for all the signal norms 

we deal with, and we shall not comment on it explicitly again. 

Example 15.1 Some bounded signals: 

(a) For w(t) = 1, t 2 R t 2 0: 

kwk1 

= 1. 

(b) For w(t) = at t 2 Z: 

kwk1 

= 1 if jaj 6= 1 and kwk1 

= 1 otherwise. 



             

 

 

 

             

         

 

   





    

                    

                 

 

 

      

  

 

 

 

 

 

 

 

 

   

 

    

 

 

 

 

  

 

   

 

      

 

    

   

 

        
 

 

 

 

 
 

 

          
 

 

 
 

           
 

 

 
 

             

       

 

          

             

                

           

              

                

          

 

      

                

               

                 

                  

     

 

          

               

 

 

    

 

     

 

The space of all signals with fnite 1-norm are generally denoted by ` 1 

and L1 

for DT and CT signals respectively. For vector-valued signals, the size of the 

vector may be explicitly added to the symbol, e.g., `n 1. These form normed-vector 

spaces. 

Energy and the 2-Norm 

The 2-norm of a signal is the square root of its \energy", which is in turn defned as the sum 

(in DT) or integral (in CT) of the squares of all components over the entire time set: 

4 kwk2 

= square-root of energy in w " # 1 " # 1 

4 

= 

X 

T w (k)w(k) 

2 

= 

X 

kw(k)k2 

2 

2 

(for DT systems) (15.4) 

k Z 

4 

= w 

T (t)w(t) dt 

2 

= kw(t)k2 

2 

dt 

2 

(for CT systems) : (15.5) 

t 

k 1  Z  1 

Example 15.2 Some examples: 

;at(a) For w(t) = e and time set t 2 0, with a > 0: 

kwk2 

= 

p1 < 1 

2a 

(b) For w(t) = 1 and time set t 2 0: 

kwk2 

= 1 

(c) For w(t) = cos !ot and time set t 2 0: 

kwk2 

= 1. 

These examples suggest that bounded-energy signals go to zero as time progresses. For 

discrete-time signals, this expectation holds up: if kwk2 

< 1, then kw(k)k ;! 0 as k ;! 1. 

However, for continuous-time signals, the property of having bounded energy does not imply 

that kw(t)k ;! 0 as t ;! 1, unless additional assumptions are made. This is because 

continuous-time bounded energy signals can still have arbitrarily large excursions in ampli-
tude, provided these excursions occur over sufciently narrow intervals of time that the integral 

of the square remains fnite | consider, for instance, a CT signal that is zero everywhere, 

except for a triangular pulse of height k and base 1/k4 centered at every nonzero integer value 

k. If the continuous-time signal w(t) is diferentiable and both w and its derivative w_ have 

bounded energy (which is not the case for the preceding triangular-pulse example), then it is 

true that kw(t)k ;! 0 as t ;! 1. The reader may wish to verify this fact. 

It is not hard to show that DT or CT signals with fnite 2-norms form a vector space. 

On the vector space ` 2 

(respectively L2) of DT (respectively CT) signals with fnite 2-norm, 

one can defne a natural inner product as follows, between signals x and y : " # X4 hx  yi = x 

T (k)y(k) (for DT systems) (15.6) 
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Z 

4 

= x 

T (t)y(t) dt (for CT systems) : (15.7) 

(The 2-norm is then just the square root of the inner product of a signal with itself.) These 

particular infnite-dimensional inner-product vector spaces are of great importance in appli-
cations, and are the prime examples of what are known as Hilbert spaces. 

Power and RMS Value 

Another signal measure of interest is the \power" or mean energy of the signal. One also often 

deals with the square root of the power, which is commonly termed the \root-mean-square" 

(or \rms") value. For a signal w for which the following limits exist, we defne the power by 2 3 X4 

1 

Pw 

= lim 

4 

N;1 

w 

T (k)w(k)5 (for discrete ; time systems) (15.8)
N!1 2N 

k�;(N;1)" Z L 

# 

4 

1 

= lim w 

T (t)w(t)dt (for continuous ; time systems) : (15.9)
L!1 2L ;L 

(The above defnitions assume that the time set is the entire time axis, but the necessary 

modifcations for other choices of time set should be obvious.) We shall use the symbol �wp
to denote the rms value, namely Pw. The reason that �w 

is not a norm, according to the 

technical defnition of a norm, is that �w 

= 0 does not imply that w = 0. 

Example 15.3 Some fnite-power signals: 

(a) For w(t) = 1 : 

�w 

= 1 

(b) For w(t) such that kwk2 

< 1: 

�w 

= 0 

(c) For w(t) = cos !0t (with t 2 R or t 2 Z): 

�w 

= 

p1 . 

2 

Example c) points out an important diference between bounded power and bounded energy 

signals: unlike bounded energy signals, if �w 

< 1, the signal doesn't necessarily decay to 

zero. 

As a fnal comment on the defnition of the power of a signal, we elaborate on the hint 

in the preamble to our defnition that the limit required by the defnition may not exist for 

certain signals. The limit of a sequence or function (in our case, the sequence or function is the 

set of fnite-interval rms values, considered over intervals of increasing length) may not exist 

even if the sequence or function stays bounded, as when it oscillates between two diferent 

fnite values. The following signal is an example of a CT signal that is bounded but does not 

have a well-defned power, because the required limit does not exist: ( 

1 if t 2 [22k 22k+1], for k = 0 1 2 : : : 

w(t) = 

0 otherwise 



                  

                

       

   

                  

                    

      

 

 

    

 

 

 

 

       
 

  

 

 

 

        

               

             

 

 

 

  

        

              

 

    

        

 

  

 

   

 

 

   

 

   

        

 

  

 

   

 

 

   

 

   

  

 

    

 

 

 

 

Also note that the desired limit may exist, but not be fnite. For instance, the limit of a 

sequence is +1 if the values of the sequence remain above any chosen fnite positive number 

for sufciently large values of the index. 

Action: The 1-Norm 

The 1-norm of a signal is also sometimes termed the \action" of the signal, which is in turn 

defned as the sum (in DT) or integral (in CT) of the 1-norm of the signal value at each time, 

taken over the entire time set: 

kwk1 

4 

= action of w " # 

4 

= 

X 

kw(k)k1 

(for discrete ; time systems) (15.10) 

k Z 

4 

= kw(t)k1 

dt (for continuous ; time systems) : (15.11) 

Recall that kw(k)k for the n-vector w(k) denotes the sum of magnitudes of its components. 

The space of all signals with fnite 1-norm are generally denoted by ` 1 

and L1 

for DT 

and CT signals respectively. These form normed-vector spaces. 

We leave you to construct examples that show familiar signals of fnite and infnite 1-
norm. 

Relationships Among Signal Measures 

a) If w is a discrete-time sequence, then 

kwk2 

< 1 =) kwk1 

< 1 (15.12) 

but 

kwk2 

< 1 (6 = kwk1 

< 1 (15.13) 

b) If w is a continuous-time signal, then 

kwk2 

< 1 =6 ) kwk1 

< 1: (15.14) 

and 

kwk2 

< 1 (6 = kwk1 

< 1: (15.15) 

c) If kwk1 

< 1, then (when �w 

exists) 

�w 

� kwk1 



              

                  

               

               

         

          

   

                  

            

                 

                   

               

 

 

 

 

    

              

                   

            

            

  

        

  

                 

             

      

               

                    

        

 

     

               

        

 

     

 

 

Item a) is true because of the relationship between energy and magnitude for discrete-time 

signals. Since the energy of a DT signal is the sum of squared magnitudes, if the energy is 

bounded, then the magnitude must be bounded. However, the converse is not true |take for 

example, the signal w(k) = 1. As item b) indicates, though, bounded energy implies nothing 

about the boundedness of magnitude for continuous time signals. 

(Many more relationships of the above form can be stated.) 

15.3 Input-Output Stability 

At this point, it is important to make a connection between the stability of a system and its 

input-output behavior. The most important notion is that of ` p-stability (p-stability). 

De�nition 15.1 A system with input signal u and output signal y that is obtained from u 

through the action of an arbitrary operator H, so y = H(u), is ` p-stable or p-stable (p = 

1 2 1) if there exists a fnite C 2 R such that 

kykp 

� Ckukp 

(15.16) 

for every input u. 

A p-stable system is therefore characterized by the requirement that every input of fnite 

p-norm gives rise to an output of fnite p-norm. For the case p = 1, this notion is known 

as Bounded-Input Bounded-Output (BIBO) stability. We will see that BIBO stability is 

equivalent to p-stability for fnite-dimensional LTI state-space systems, but not necessarily in 

other cases. 

Example 15.4 The system described by one integrator: 

y_ = u 

is not BIBO stable. A step input is mapped to a ramp which is unbounded. It is 

not hard to see that this system is not p-stable for any p. 

15.3.1 BIBO Stability of LTI Systems 

A continuous-time LTI system may be characterized by its impulse response matrix, H( � ), 

whose (i j)th entry hij( � ) is the impulse response from the jth input to the ith output. In 

other words the input-output relation is given by Z 

y(t) = H(t ; �)u(�)d� : 

Theorem 15.1 A CT LTI system with m inputs, p outputs, and impulse response matrix 

H(t) is BIBO stable if and only if 

mXZ 

max jhij(t)j dt < 1: 

1�i�p 

j�1 



               

    

 

         

 

     

 

	 
 

 

	

 

	

 

    

 

   


 

	 


 


	 


 

	  

 

 




    


 

   

	

 

   

	  

 

 

    




 


 

 

  

  

 

                 

                

                   

                

          


 

  

                

 

 

    

 

     

 

  


 

 

	

     

  

   

    

 

   

 

 

 

 

 

 

    

 

  

 
 

 

     

 

  

Proof: The proof of sufciency involves a straightforward computation of bounds. If u is an 

input signal that satisfes kuk1 

< 1, i.e. a bounded signal, then we have Z 

y(t) = H(t ; �)u(�)d� 

and � � ��Z m� X � 

max jyi(t)j = max 

� hij(t ; �)uj(�) d� � � �1�i�p i � �j�1 2 3 Z X 

� 

4max jhij(t ; �)j d�5 max sup juj(t)j: 

i j
j t 

It follows that 2 3 XZ 

kyk1 

= sup max jyi(t)j � 

4max jhij(t)jdt5 kuk1 

< 1: 

i it j 

In order to prove the converse of the theorem, we show that if the above integral is 

infnite then there exists a bounded input that will be mapped to an unbounded output. Let 

us consider the case when p = m = 1, for notational simplicity (in the general case, we can 

still narrow the focus to a single entry of the impulse response matrix). Denote the impulse 

response by h(t) for this scalar case. If the integral Z 

jh(t)j dt 

is unbounded then given any (large) M there exists an interval of length 2T such that Z T 

jh(t)j dt > M: 

;T 

Now by taking the input uM 

(t) as ( 

sgn(h(;t)) ;T � t � T 

uM 

(t) = 

0 jtj > T 

we obtain an output yM 

(t) that satisfes Z T 

sup jyM 

(t)j 2 yM 

(0) = h(0 ; �)uM 

(�) d� 

t ;T Z T 

= jh(0 ; �)j d� 

;T 

> M: 



                  

               

     

            

 

  

 

 

   

 

 

                 

                     

    

              

                     

         

 

     

 

                

       

 

    

 

 

 

    

 

  

 

 

  

 

 

 

                  

      

     

               

     

     

      

         

        

In other words, for any M > 0, we can have an input whose maximum magnitude is 1 and 

whose corresponding output is larger than M . Therefore, there is no fnite constant C such 

that the inequality (24.3) holds. 

Further re�ection on the proof of Theorem 15.1 reveals that the constant kHk1 

defned by 

XZ 

kHk1 

= max jhij(t)jdt 

i 

j 

is the smallest constant C that satisfes the inequalty (24.3) when p = 1. This number is 

called the ` 1-norm of H(t). In the scalar case, this number is just the ` 1;norm of h( � ), 

regarded as a signal. 

The discrete-time case is quite similar to continuous-time where we start with a pulse 

response matrix, H( � ), whose (i j)th entry hij( � ) is the pulse response from the jth input to 

the ith output. The input-output relation is given by X 

y(t) = H(t ; �)u(�) : 

� 

Theorem 15.2 A DT LTI system with m inputs, p outputs, and pulse response matrix H(t) 

is BIBO stable if and only if 

mXX 

max jhij(t)j < 1: 

1�i�p 

j�1 

t 

In addition, the constant kHk1 

defned by XX 

kHk1 

= max jhij 

(t)j
i 

j t 

is the smallest constant C that satisfes the inequalty (24.3) when p = 1. We leave the proof 

of these facts to the reader. 

Application to �nite-dimensional State-Space Models 

Now consider the application to the following causal CT LTI system in state-space form (and 

hence of fnite order) : 

x_ = Ax + Bu (15.17) 

y = Cx + Du (15.18) 

The impulse response of this system is given by 

H(t) = CeAtB + D�(t) for t 2 0 



    

      

                    

                 

              

        

              

  

  

  

    

  

     

              

                

               

           

   

               

             

       

    

            

               

                

         

     

      


  
 

             
 

     

      

        

              

               

 

 

              

       

which has Laplace transform 

H(s) = C(sI ; A);1B + D 

The system (15.18) is BIBO stable if and only if the poles of H(s) are in the open left half 

plane. (We leave the proof to you.) This is in turn guaranteed if the system is asymptotically 

stable, i.e. if A has all its eigenvalues in the open left half plane. 

Example 15.5 BIBO Stability Doesn't Imply Asymptotic Stability 

It is possible that a system be BIBO stable and not asymptotically stable. Consider 

the system � � � � 

0 1 0 

x_ = x + u 

1 0 1 

y = ( 1 ;1 ) x 

This system is not stable since A has an eigenvalue at 1. Nevertheless, thanks 

to a pole-zero cancellation, the only pole that H(s) has is at ;1, so the system 

is BIBO stable. We shall have much more to say about such cancellations in the 

context of reachability, observability, and minimality (the example here turns out 

to be unobservable). 

Marginal stability of an LTI system, i.e., stability in the sense of Lyapunov but without 

asymptotic stability, is not sufcient to guarantee BIBO stability. For instance, consider a 

simple integrator, whose transfer function is 1/s. 

Time-Varying and Nonlinear Systems 

Although there are results connecting Lyapunov stability with I/O stability for general time-
varying and nonlinear systems, they are not as powerful as the linear time-invariant case. In 

particular, systems may be I/O stable with respect to one norm and not stable with respect 

to another. Below are some examples illustrating these facts. 

Example 15.6 A Time-Varying System 

Consider the time-varying DT system given by: 

y(t) = H(u)(t) = u(0): 

H is obviously 1-stable with gain less than 1. However, it is not 2-stable. 

Example 15.7 A Nonlinear System 

Consider the nonlinear system given by: 

x x_ = ;x + e u y = x: 

The unforced system is linear and is asymptotically stable. On the other hand the 

xsystem is not I/O stable. To see this, consider the input u(t) = 1. Since e > x, 

x_ is always strictly positive, indicating that x is strictly increasing. Hence, for a 

bounded input, the output is not bounded. 



      

               

             

            

 

    

                

      

   

 

   

 

   

 

    

  

 

                 

        

 

 

 

 

 

 

 

 

   

 

 

 

 

   

 

 

 

   

 

 

 

 

 

 

 

 

 

  

 

 

 

  

 

  

  

     

 

      

 

 

 

 

       

 

  

 

  

 

 

 

 

 

 

 

 

 

    

 

  

 

 

         

 

 

 

 

 

   

 

 

 

 

 

 

 

 

  

 

 

  

    

 

  

 

 

 

 

 

 

 

 

 

 

 

 

  

 

  

 

 

 

 

 

 

  

 

  

 

 

 

 

 

 

 

 

 

 

    

 

 

 

 

 

 

 

 

 

 

 

 

15.3.2 p-Stability of LTI Systems (optional) 

In this section we will continue our analysis of the p-stability of systems described through 

input-output relations. Let us start with the continuous-time case, and restrict ourselves to 

single-input single-output. The input u(t) is related to the output y(t) by Z 

y(t) = h(t ; �)u(�)d� 

where h(t) is the impulse response. The following theorem shows that the constant C in 24.3 

is always bounded above by khk1. 

Theorem 15.3 If khk1 

< 1 and kukp 

< 1 then kykp 

< 1 and furthermore 

kykp 

� khk1kukp 

: 

Proof: In Theorem 15.1 we have already established this result for p = 1. In what follows 

p = 1 2. The output y(t) satisfes �Z 1 

� p 

�Z 1 

�p� � jy(t)jp = j(h � u)(t)jp = 

� h(t ; �)u(�) d� � � jh(t ; �)j ju(�)j d�� � ;1 ;1 

therefore, Z 1 

Z 1 

�Z 1 

�p 

kh � ukp = j(h � u)(t)jp dt � jh(t ; �)j ju(�)j d� dt :p ;1 ;1 ;1 

Next we analyze the inner integral 

Z 1 

Z 1 

jh(t ; �)j ju(�)j d� = jh(t ; �)j1�q jh(t ; �)j1�p ju(�)j d� 

;1 ;1�Z 1 

�1�q 

�Z 1 

�1�p 

� jh(t ; �)j d� jh(t ; �)j ju(�)jp d� 

;1 ;1 

where the last inequality follows from Minkowski's inequalities, and 

1 + 

1 = 1. Hence,p q 

Z 1 

�Z 1 

�p�q 

�Z 1 

� 

kh � ukp � jh(t ; �)j d� jh(t ; �)j ju(�)jp d� dtp ;1 ;1 ;1Z 1 

�Z 1 

� 

(khk1)p�q= jh(t ; �)j ju(�)jp d� dt 

;1 ;1Z 1 

Z 1 

p�q
= khk jh(t ; �)j ju(�)jp d� dt1 ;1 ;1Z 1 

�Z 1 

� 

p�q
= khk ju(�)jp jh(t ; �)j dt d�1 ;1 ;1Z 1 

p�q+1 

= khk 

;1 

ju(�)jp d�1 

p= khk1 

kukpp 



 

  

   

 

      

 

        

 

 

 

                     

                 

           

            

                  

 

Therefore 

kh � ukp 

� khk1 

kukp 

: 

Recall that when p = 1, khk1 

was the smallest constant for which the inequality kykp 

� 

Ckukp 

for all u. This is not the case for p = 2, and we will see later that a smaller constant 

can be found. We will elaborate on these issues when we discuss systems' norms later on in 

the course. The discrete-time case follows in exactly the same fashion. 

Example 15.8 For a fnite-dimensional state-space model, a system H is p-stable 

if and only if all the poles of of H(s) are in the LHP. This coincides with BIBO 

stability. 



 

              

                 

   

 

	  

   

             

       

 

          

    

   

 

       

    

 

      

	                     

         

 

       

 

                

          

 

     

 

  

   

   

    

   

               

      

     

     

    	 

 

 

   

   

Exercises 

Exercise 15.1 Non-causal Systems In this chapter, we only focused on causal operators, although 

the results derived were more general. As an example, consider a particular CT LTI system with a 

bi-lateral Laplace transform: 

s+ 2 

G(s) � : 

(s; 2)(s+ 1) 

(a) Check the p-stability and causality of the system in the following cases: 

(i) the ROC (Region of Convergence) is R1 

� fs 2 C j Re(s) � ;1g where Re(s) denotes the 

real part of s� 

(ii)the ROC is R2 

� fs 2 C j ; 1 � Re(s) � 2g� 

(iii) the ROC is R3 

� fs 2 C j Re(s) � 2g. 

(b) In the cases where the system is not p-stable for p � 2 and p � 1, �nd a bounded input that 

makes the output unbounded, i.e., �nd an input u 2 Lp 

that produces an output y 62 Lp, for 

p � 2� 1. 

Exercise 15.2 In nonlinear systems, p-stability may be satis�ed in only a local region around zero. 

In that case, a system will be locally p-stable if: 

kGukp 

� Ckukp� for all u with kukp 

� � 

Consider the system: 

x_ � Ax+ Bu 

z � Cx+ Du 

y � g(y) 

Where g is a continuous function on [;T� T ]. Which of the following systems is p-stable, locally 

p-stable or unstable for p � 1: 

(a) g(x) � cos x. 

(b) g(x) � sin x. 

(c) g(x) � Sat(x) where � 

x jxj � 1 

Sat(x) � 

1 jxj � 1 



  

   

  

   

  

               

         

             

            

                

                

   

   

               

                

                

              

               

            

 

              

                  

Chapter 17 

Interconnected Systems and 

Feedback: Well-Posedness, 

Stability, and Performance 

17.1 Introduction 

Feedback control is a powerful approach to obtaining systems that are stable and that meet 

performance specifcations, despite system disturbances and model uncertainties. To under-
stand the fundamentals of feedback design, we will study system interconnections and some 

associated notions such as well-posedness and external stability. Unless otherwise noted, our 

standing assumption for the rest of the course | and a natural assumption in the control 

setting | will be that all our models for physical systems have outputs that depend causally 

on their inputs. 

17.2 System Interconnections 

Interconnections are very common in control systems. The system or process that is to be 

controlled | commonly referred to as the plant | may itself be the result of interconnecting 

various sorts of subsystems in series, in parallel, and in feedback. In addition, the plant is 

interfaced with sensors, actuators and the control system. Our model for the overall system 

represents all of these components in some idealized or nominal form, and will also include 

components introduced to represent uncertainties in, or neglected aspects of the nominal 

description. 

We will start with the simplest feedback inteconnection of a plant with a controller, 

where the outputs from the plant are fed into a controller whose own outputs are in turn fed 



               

    

	

	

 

 

 

 

 

          

             

           

            

            

                

                

        

           

                     

                

              

             

               

    

 

 

 	

 

  

 

            

           

                

            

              

	       

back as inputs to the plant. A diagram of this prototype feedback control confguration is 

shown in Figure 17.1. 

r -+ 

u yl - P 

-

6 

f 

�K 

Figure 17.1: Block diagram of the prototype feedback control confguration. 

The plant P and controller K could in general be nonlinear, time-varying, and infnite-
dimensional, but we shall restrict attention almost entirely to interconnections of �nite-

order LTI components, whether described in state-space form or simply via their input-
output transfer functions. Recall that the transfer functions of such fnite-order state-space 

models are proper rationals, and are in fact strictly proper if there is no direct feedthrough 

from input to output. We shall use the notation of CT systems in the development that 

follows, although everything applies equally to DT systems. 

The plant and controller should evidently have compatible input/output dimensions� if 

not, then they cannot be tied together in a feedback loop. For example, if P (s) is the p � m 

transfer function matrix of the (nominal LTI model of the) plant in Figure 17.1, then the 

transfer function K(s) of the (LTI) controller should be an m � p matrix. 

All sorts of other feedback confgurations exist� two alternatives can be found in Fig-
ures 17.2 and 17.3. For our purposes in this chapter, the diferences among these various 

confgurations are not important. 

r -+i 

e - u -yK(s) P (s) ;6 

Figure 17.2: A (\servo") feedback confguration where the tracking error between the com-
mand r and output y is directly applied to the controller. 

Our discussion for now will focus on the arrangement shown in Figure 17.4, which is an 

elaboration of Figure 17.1 that represents some additional signals of interest. Interpretations 

for the various (vector) signals depicted in the preceding fgures are normally as follows: 

� u | control inputs to plant 



 

 

 

  
 


 

 

 

 

      

 

 

  

 

 

 

 

 

 

 

 

          

       

           

             

       

        

       

  

                

               

             

               

               

                 

                

r - i 

u - y
K2(s) 

-+ P (s) 

-

6 

f 

K1(s) 

� 

Figure 17.3: A two-parameter-compensator feedback scheme. 

d 

� -+lu - - l 

-P (s) + 

r y6 

�� l�K(s) + nf q 

Figure 17.4: Including plant disturbances d and measurement noise n. 

� y | measured outputs of plant 

� d | plant disturbances, represented as acting at the output 

� n | noise in the output measurements used by the feedback controller 

� r | reference or command inputs 

� e | tracking error r ; y. 

� f | output of feedback compensator 

Transfer Functions 

We now show how to obtain the transfer functions of the mappings relating the various signals 

found in Figure 17.4� the transform argument, s, is omitted for notational simplicity. We also 

depart temporarily from our convention of denoting transforms by capitals, and mark the 

transforms of all signals by lower case, saving upper case for transfer function matrices (i.e. 

transforms of impulse responses)� this distinction will help the eye make its way through the 

expressions below, and should cause no confusion if it is kept in mind that all quantities below 

are transforms. To begin by relating the plant output to the various input signals, we can 



 

     

         

         

          

           

       

        

          

    

 

         

                       

           

               

 

  

 

    

   

                       

   

               

 

   

 

    

   

                      

  

                   

                

 

  

        

         

               

 

 

             

               

   

 

  

write 

y � Pu + d 

� P [r + K(y + n)] + d 

(I ; PK)y � Pr + PKn + d 

y � (I ; PK);1Pr + (I ; PK);1PKn + (I ; PK);1d 

Similarly, the control input to the plant can be written as 

u � r + K(y + n) 

� r + K(Pu + d + n) 

(I ; KP )u � r + Kn + Kd 

u � (I ; KP );1 r + (I ; KP );1Kn + (I ; KP );1Kd 

The map u ;! f (with the feedback loop open and r � 0, n � 0, d � 0) is given by 

L � KP , and is called the loop transfer function. 

The map d ;! y (with n � 0, r � 0) is given by So 

� (I ; PK);1 and is called the 

output sensitivity function. 

The map n ;! y (with d � 0, r � 0) is given by T � (I ; PK);1PK and is called the 

complementary sensitivity function. 

The map r ;! u (with d � 0, n � 0) is given by Si 

� (I ; KP );1 and is called the 

input sensitivity function. 

The map r ;! y (d � 0, n � 0) is given by (I ; PK);1P is called the system response 

function . 

The map d ;! u (with n � 0, r � 0) is given by (I ; KP );1K. 

Note that the transfer function (I ; KP );1K can also be written as K(I ; PK);1 , as 

may be proved by rearranging the following identity: 

(I ; KP )K � K(I ; PK) � 

Similarly the transfer function (I ; PK);1P can be written as P (I ; KP );1 . 

Note also that the output sensitivity and input sensitivity functions are diferent, because, 

except for the case when P and K are both single-input, single-output (SISO), we have 

(I ; KP );1 6� (I ; PK);1: 
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17.3 Well-Posedness 

We will restrict attention to the feedback structure in Figure 17.5. Our assumption is that 

H1 

and H2 

have some underlying state-space descriptions with inputs u1, u2 

and outputs y1, 

y2, so their transfer functions H1(s) and H2(s) are proper, i.e. H1(1), H2(1) are fnite. It 

is possible (and in fact typical for models of physical systems, since their response falls of to 

zero as one goes higher in frequency) that the transfer function is in fact strictly proper. 

lu1 

y1 

+ H1(s)r1 6 

�
� +l�H2(s) r2y2 

u2 

Figure 17.5: Feedback Interconnection. 

The closed-loop system in Figure 17.5 can now be described in state-space form by 

writing down state-space descriptions for H1(s) (with input u1 

and output y1) and H2(s) (with 

input u2 

and output y2), and combining them according to the interconnection constraints 

represented in Figure 17.5. Suppose our state-space models for H1 

and H2 

are " # " # 

A1 

B1 

A2 

B2H1 

� � H2 

� 

C1 

D1 

C2 

D2 

with respective state vectors, inputs, and outputs (x1� u1� y1) and (x2� u2� y2), so 

x_ 1 

� A1x1 

+ B1u1 

y1 

� C1x1 

+ D1u1 

x_ 2 

� A2x2 

+ B2u2 

y2 

� C2x2 

+ D2u2 

: (17.1) 

Note that D1 

� H1(1) and D2 

� H2(1). The interconnection constraints are embodied in 

the following set of equations: 

u1 

� r1 

+ y2 

� r1 

+ C2x2 

+ D2u2 

u2 

� r2 

+ y1 

� r2 

+ C1x1 

+ D1u1� 

which can be rewritten compactly as " # " # " # " # " # " # 

I ;D2 

u1 

0 C2 

x1 

I 0 r1� + : (17.2);D1 

I u2 

C1 

0 x2 

0 I r2 



             

   

 

             

 

 

           

 

    

         

 

 

 

       

                 

 

  

 

 

 

 

  

        

  

 

    

 

   

                    

     

 

 

 

      

 

          

 

 

 

     

   

 

  

 

  

             

 

 

 

     

 

     

 

 

 

      

         

 

 

  

 

           

 

 

 

        

 

         

           

         

  

             

             

 

               

            

 

 

 

    

  

 

    

 

  

            

 

     

        

We shall label the interconnected system well-posed if the internal signals of the feed-
back loop, namely u1 

and u2, are uniquely defned for every choice of the system state variables 

x1, x2 

and external inputs r1, r2. (Note that the other internal signals, y1 

and y2, will be 

uniquely defned under these conditions if and only if u1 

and u2 

are, so we just focus on the 

latter pair.) It is evident from (17.2) that the condition for this is the invertibility of the 

matrix " # 

I 

;D1 

;D2 

I 

: (17.3) 

This matrix is invertible if and only if 

I ; D1D2 

or equivalently I ; D2D1 

is invertible. (17.4) 

This result follows from the fact that if X, Y , W , and Z are matrices of compatible dimensions, 

and X is invertible then " # 

X Y 

det � det(X) det(W ; ZX;1Y ) (17.5)
Z W 

A su�cient condition for (17.4) to hold is that either H1 

or H2 

(or both) be strictly proper� 

that is, either D1 

� 0 or D2 

� 0. 

The signifcance of well-posedness is that once we have solved (17.2) to determine u1 

and u2 

in terms of x1, x2, r1 

and r2, we can eliminate u1 

and u2 

from (17.1) and arrive at a 

state-space description of the closed-loop system, with state vector � ! 

x1 x � 

x2 

We leave you to write down this description explicitly. Without well-posedness, u1 

and u2 

would not be well-defned for arbitrary x1, x2, r1 

and r2, which would in turn mean that there 

could not be a well-defned state-space representation of the closed-loop system. 

The condition in (17.4) is equivalent to requiring that � �;1 

� �;1 

I ; H1(s)H2(s) or equivalently I ; H2(s)H1(s) exists and is proper. (17.6) 

Example 17.1 Consider a discrete-time system with H1(z) � 1 and H2(z) � 1 ; 

z;1 in (the DT version of) Figure 17.5. In this case (1;H1(1)H2(1)) � 1;1 � 0, 

and thus the system is ill-posed. Note that the transfer function from r1 

to y1 

for this system is 

(1 ; H1H2)
;1H1 

� (1 ; 1 + z;1);1 � z 

which is not proper | it actually corresponds to the noncausal input-output re-
lation 

y1(k) � r1(k + 1) � 

which cannot be modeled by a state-space description. 



        

 

  

 

 

 

             

      

  	    

      

              

         

   

            

 

  

 

 

 

  

 

 

 

  

     

   

 

  

 

 

 

	 

  

 

  

                

   

  

 

    

	  

              

	  

  

 

  

  

  

 

  

 

             

                 

     

	  

  

 

  

  

  

 

  

 

          

        

 

   

              

             

              

            

Example 17.2 Again consider Figure 17.4, with H1(s) � 

s+1 s+2 

s+2 

and H2(s) � s+1 

. 

The expression (1 ; H1(1)H2(1)) � 0, which implies that the interconnection is 

ill-posed. In this case notice that, 

(1 ; H1(s)H2(s)) � 1 ; 1 

� 0 8 s 2 C ! 

Since the inverse of (1 ; H1H2) does not exist, the transfer functions relating 

external signals to internal signals cannot be written down. 

17.4 External Stability 

The inputs in Figure 17.5 are related to the signals y1, and y2 

as follows: 

y1 

� H1(y2 

+ r1) 

y2 

� H2(y1 

+ r2)� 

which can be written as " # " # " # " # 

I ;H1 

y1 

H1 

0 r1� (17.7);H2 

I y2 

0 H2 

r2 

We assume that the interconnection in Figure 17.5 is well-posed. Let the map T (H1�H2) be 

defned as follows: � ! � ! 

y1 

r1� T (H1�H2) : 

y2 

r2 

From the relations 17.7 the form of the map T (H1�H2) is given by " # 

(I ; H1H2)
;1H1 

(I ; H1H2)
;1H1H2T (H1�H2) � 

(I ; H2H1)
;1H2H1 

(I ; H2H1)
;1H2 

We term the interconnected system externally p-stable if the map T (H1�H2) is p-
stable. In our fnite-order LTI case, what this requires is precisely that the poles of all the 

entries of the rational matrix " # 

(I ; H1H2)
;1H1 

(I ; H1H2)
;1H1H2T (H1�H2) � 

(I ; H2H1)
;1H2H1 

(I ; H2H1)
;1H2 

be in the open left half of the complex plane. 

External stability guarantees that bounded inputs r1, and r2 

will produce bounded re-
sponses y1, y2, u1, and u2. External stability is guaranteed by asymptotic stability (or inter-
nal stability) of the state-space description obtained through the process described in our 

discussion of well-posedness. However, as noted in earlier chapters, it is possible to have exter-
nal stability of the interconnection without asymptotic stability of the state-space description 



                 

             

      

 

 

 

        

          

           

 

 

 

 

 

 

 

 

     

 

 

 

 

 

 

   

 

  

  

 

    

   

     

 

    

   

  

  

                

 

 

 

 

        

 

 

   

 

 

 

 

  

 

   

 

 

 

  

  

     

            

  

     

                 

                

             

               

              

   

 

               

               

               

       

           

  

              

    

(because of hidden unstable modes in the system | an issue that will be discussed much more 

in later chapters). On the other hand, external stability is stronger than input/output stabil-
ity of the mapping (I ; H1H2)

;1H1 

between r1 

and y1, because this mapping only involves a 

subset of the exposed or external variables of the interconnection. 

Example 17.3 Assume we have the confguration in Figure 17.5, with H1 

� 

s;1 

s+1 

and H2 

� ;s; 

1
1 

. The transfer function relating r1 

to y1 

is � �;1H1 

s ; 1 1 

� 1 + 

1 ; H1H2 

s + 1 s + 1 � �� � 

s ; 1 s + 1 

� 

s + 1 s + 2 

s ; 1 

� : 

s + 2 

Since the only pole of this transfer function is at s � ;2, the input/output relation 

between r1 

and y1 

is stable. However, consider the transfer function from r2 

to 

u1, which is � ! 

H2 

1 1 

� 

1 ; H1H2 

s ; 1 1 + 

1 

s+1 

s + 1 

� : 

(s ; 1)(s + 2) 

This transfer function is unstable, which implies that the closed-loop system is 

externally unstable. 

17.5 A More General Description 

There are at least two reasons for going to a more general system description than those shown 

up to now. First, our assessment of the performance of the system may involve variables that 

are not among the measured/fed-back output signals of the plant. Second, the disturbances 

afecting the system may enter in more general ways than indicated previously. We do still 

want our system representation to separate out the controller portions of the system (the 

K's or K1, K2 

of the earlier fgures), as these are the portions that we will be designing. In 

this section we will introduce a general plant description that organizes the diferent types of 

inputs and outputs, and their interaction with a controller. A block diagram for a general 

plant description is shown in Figure 17.6. 

The diferent signals in Figure 17.6 can be classifed as follows. 

� Inputs: 

1. Control input vector u, which contains the actuator signals driving the plant and 

generated by a controller. 
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Figure 17.6: General plant description. 

2. Exogeneous input vector w, which contains all other external signals, such as ref-
erences and disturbances. 

� Outputs: 

1. Measured output vector y, which contains the signals that are available to the 

controller. These are based on the outputs of the sensor devices, and form the 

input to the controller. 

2. Regulated output vector z, which contains the signals that are important for the 

specifc application. The regulated outputs usually include the actuator signals, 

the tracking error signals, and the state variables that must be manipulated. 

Let the transfer function matrix " # 

Gzw 

Gzu G � � 

Gyw 

Gyu 

have the state-space realization 

x_ � Ax + B1w + B2u 

z � C1x + D11w + D12u 

y � C2x + D21w + D22u 

Example 17.4 Consider the unity feedback system in Figure 17.7, where P is a 

SISO plant, K is a scalar controller, y0 is the output, u is the control input, v is 

a reference signal, and d is an external disturbance that is \shaped" by the flter 

H before it is injected into the measured output. The controller is driven by the 

diference e � v ; y0 (the \tracking error"). The signals v and d can be taken to 

constitute the exogeneous input, so " # 

v 

w � : 

d 

In such a confguration we typically want to keep the tracking error e small, and 

to put a cost on the control action. We can therefore take the regulated output z 

to be " # 

e 

z � : 
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H 

v e u   y-+h - K 

- P 

-+h 
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-
; 6 

Figure 17.7: Example of a unity feedback system. 

The input to the controller is e, therefore we set the measured output y to be 

equal to e. With these choices, the generalized plant transfer function G, which 

relates z and y to w and u, can be obtained from " # " # " # 

;Pu ; Hd + v ;P 1 ;H 

z � � u + w 

u 1 0 0 h i 

y � ;Pu + 1 ;H w: 

Let us suppose that P � 

1 and H � 

1 Then a state-space realization of G s;1 s+1 

. 

is easily obtained: " # " # " # " # " # 

d x1 

1 0 x1 

0 0 1 

� + w + u 

dt 

x2 

0 ;1 x2 

0 1 0 " # " # " # " # 

;1 ;1 x1 

1 0 0 

z � + w + u 

0 0 x2 

0 0 1 " # h i h i x1 y � ;1 ;1 + 1 0 w + 0u : 

x2 

If we close the loop, the general plant/controller structure takes the form shown in 

Figure 17.8. 

The plant transfer matrix G is a 2 � 2 block matrix mapping the inputs w� u to the 

outputs z� y, where the part of the plant that interacts directly with the controller is just 

Gyu. The map (or transfer function) of interest in performance specifcations is the map from 

w to z, denoted by <, and easily seen to be given by the following expression: 

< � Gzw 

+ Gzu(I ; KGyu)
;1KGyw 

(17.8) 
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Figure 17.8: A general feedback confguration. 

In this new settup we would like to determine under what conditions the closed-loop 

system in Figure 17.9 is well-posed and externally stable. For these purposes we inject 

signals r and v as shown in Figure 17.9, which is similar to what we did in the previous 

sections. Note that by defning the signals � ! � ! 

w 0 

r1 

� r2 

� 

r v � ! � ! 

z 0 

y1 

� y2 

� 

y f 

this structure is equivalent to the structure in Figure 17.5. This is illustrated in Figure 17.10, 

with " # 

Gzw 

Gzu H1 

� 

Gyw 

Gyu " # " # h i0 0 0 

H2 

� K 0 I � 

I 0 K 

This interconnection is well-posed if and only if � � !� !! 

Gzw(1) Gzu(1) 0 0 

I ; 

Gyw(1) Gyu(1) 0 K(1) 

is invertible. This is the same as requiring that 

(I ; K(s)Gyu(s))
;1 or equivalently (I ; Gyu(s)K(s));1 exists and is proper 

The inputs in Figure 17.9 are related to the signals z, u and y as follows: 2 32 3 2 32 3 

I ;Gzu 

0 z Gzw 

0 0 w 6 76 7 6 76 7 4 

0 I ;K 54 

u 5 

� 4 

0 I K 54 

r 5 

(17.9) 

0 ;Gyu 

I y Gyw 

0 0 v 
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Figure 17.9: A more general feedback confguration. 

Let the map T (P� K) be defned as follows: 1010 

z w B@ u 

y 

CA � T (P� K)
B@ 

CAr 

v 

The interconnected system is externally p-stable if the map from r1� r2 

to y1� y2 

is p-stable, 

see Figure 17.10. This is equivalent to requiring that the map T (P� K) is p-stable. 

17.6 Obtaining Stability and Performance: A Preview 

In the lectures ahead we will be concerned with developing analysis and synthesis tools for 

studying stability and performance in the presence of plant uncertainty and system distur-
bances. 

Stabilization 

Stabilization is the frst requirement in control design | without stability, one has nothing! 

There are two relevant notions of stability: 

(a) nominal stability (stability in the absence of modeling errors), and 

(b) robust stability (stability in the presence of some modeling errors). 

In the previous sections, we have shown that stability analysis of an interconnected feedback 

system requires checking the stability of the closed-loop operator, T (P� K). In the case where 
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Figure 17.10: A more general feedback confguration. 

modeling errors are present, such a check has to be done for every possible perturbation of the 

system. Efcient methods for performing this check for specifed classes of modeling errors 

are necessary. 

Meeting Performance Specifcations 

Performance specifcations (once stability has been ensured) include disturbance rejection, 

command following (i.e., tracking), and noise rejection. Again, we consider two notions of 

performance: 

(a) nominal performance (performance in the absence of modeling errors), and 

(b) robust performance (performance in the presence of modeling errors). 

Many of the performance specifcations that one may want to impose on a feedback 

system can be classifed under the following two types of specifcations: 

1. Disturbance Rejection. This corresponds to minimizing the efect of the exogenous 

inputs w on the regulated variables z in the general 2-input 2-output description, when the 

exogenous inputs are only partially known. To address this problem, it is necessary to provide 

a model for the exogenous variables. One possibility is to assume that w has fnite energy but 

is otherwise unknown. If we desire to minimize the energy in the z produced by this w, we 

can pose the performance task as involving the minimization of 

k<wk2 

sup 

w 6�0 

kwk2 

where < is the map relating w to z. This is just the square root of the energy-energy gain, 

and is measured by the H1-norm of <. 



                

                

                

       

                

                

       

            

              

                

             

             

               

     

Alternatively, if w is assumed to have fnite peak magnitude, and we are interesed in the 

peak magnitude of the regulated output z, then the measure of performance is given by the 

peak-peak gain of the system, which is measured by the ` 1�L1-norm of <. Other alternatives 

such as power-power amplifcation can be considered. 

A rather diferent approach, and one that is quite powerful in the linear setting, is to 

model w as a stochastic process (e.g, white noise process). By measuring the variance of z, 

we obtain a peformance measure on <. 

2. Fixed-Input Speci�cations. These specifcations are based on a specifc command or 

nominal trajectory. One can, for instance, specify a template in the time-domain within which 

the output is required to remain for a given class of inputs. Familiar specifcations such as 

overshoot, undershoot, and settling time for a step input fall in this category. 

Finally, conditions for checking whether a system meets a given performance measure in 

the presence of prescribed modeling errors have to be developed. These topics will be revisited 

later on in this course. 



 

     

 

            

 

    

 

        

 

  

 

 

 

 

  

 

 

   

  

 

  

 

  

 

 

 

 

 

 

 

  

  

 

 

           

           

        

 

    

  

                 

	       

	                    

           

    

 

 

 

         

 

    

       

 

      

 

     

      

                  

                 

 

Exercises 

Exercise 17.1 Let P (s) � e;2s ; 1 be connected in a unity feedback con�guration. Is this system 

well-posed� 

Exercise 17.2 Assume that P� 

and K in the diagram are given by: � s ;� 

� � s+1 

� 

0 

s+1 s+1 

s(s+5)P�(s) � � � 2 R� K(s) � :1 1 s+1 s+1;(s+1) s+1 s(s+5) s+5 

u yw1 - m - P� 

-
+ 6 ; 

+ 

w2 _ m_
K + 

1. Is the closed loop system stable for all � � 0� 

2. Is the closed loop system stable for � � 0� 

Exercise 17.3 Consider the standard servo loop, with 

1 

P (s) � � K(s) � k 

10s + 1 

but with no measurement noise. Find the least positive gain such that the following are all true: 

� The feedback system is internally stable. 

� With no disturbance at the plant output (d(t) � 0), and with a unit step on the command signal 

r(t), the error e(t) � r(t) ; y(t) settles to je(1)j � 0:1. 

� Show that the L2 

to L1 

induced norm of a SISO system is given by H2 

norm of the system. 

� With zero command (r(t) � 0), kyk1 

� 0:1 for all d(t) such kdk2 

� 1. [ADD NEW Problem] 

Exercise 17.4 Parametrization of Stabilizing Controllers 

Consider the diagram shown below where P is a given stable plant. We will show a simple way 

of parametrizing all stabilizing controllers for this plant. The plant as well as the controllers are �nite 

dimensional. 



 

 

	 

	 

 

 

 

 

 
  

 

	 

 

      

    

 

   


             


             

 

     

        

     

 

    

 

           

                

           

 

 

 

   

 

 
 

 

                   

      

       

	                  

          

w1 - m 

u - P 

y -
+ 6 ; 

K 

_ 

+ 

w2m_ 

+ 

1. Show that the feedback controller 

K � Q(I ; PQ);1 � (I ; QP );1Q 

for any stable rational Q is a stabilizing controller for the closed loop system. 

2. Show that every stabilizing controller is given by K � Q(I ; PQ);1 for some stable Q. (Hint: 

Express Q in terms of P and K). 

3. Suppose P is SISO, w1 

is a step, and w2 

� 0. What conditions does Q have to satisfy for the 

steady state value of u to be zero. Is it always possible to satisfy this condition� 

Exercise 17.5 Consider the block diagram shown in the �gure below. 

r - - - -

- -

�� 

y 

�� 

Q(s) P (s) 

6; 

����+ 

P0(s) 

;
���� 

2 1 

(a) Suppose P (s) � , P0(s) � and Q � 2. Calculate the transfer function from r to y. 

s ; 1 s ; 1 

(b) Is the above system internally stable� 

(c) Now suppose that P (s) � P0(s) � H(s) for some H(s). Under what conditions on H(s) is the 

system internally stable for any stable (but otherwise arbitrary) Q(s)� 



          

 

 

 

   

 

          

 

  

   

 

  


 

  



 

 

  

                

 

 




 

 

  


 

 



 

 

  

   

                

          

         

                 

                 

                

           

 

 

 

 

      

Exercise 17.6 Consider the system shown in the �gure below. 

r -
�� 

- -
y
-�� 

K(s) P (s) 

6; 

The plant transfer function is known to be given by: 32 

s
6

P ( ) � 4 

s ; 1 

1 

s + 1 

s + 1 

0 

s + 2 

75 

A control engineer designed the controller K(s) such that the closed-loop transfer function from r to 

y is: 32 

H(s) � 

64 

1 

0 

s + 4 

1 

0 

s + 4 

75 

(a) Compute K(s). 

(b) Compute the poles and zeros (with associated input zero directions) of P (s) and K(s). 

(c) Are there pole/zero cancellations between P (s) and K(s) � 

(d) Is the system internally stable� Verify your answer. 

Exercise 17.7 An engineer wanted to estimate the peak-to-peak gain of a closed loop system h (the 

input-output map). The controller was designed so that the system tracks a step input in the steady 

state. The designer simulated the step response of the system and computed the amount of overshoot 

(e1) and undershoot (e2) of the response. He/She immediately concluded that 

khk1 

� 1 + 2e1 

+ 2e2: 

Is this a correct conclusion� Verify. 



  

   
 

  

                

            

              

              

                

            

            

             

               

           

    

   

             

                  

                 

                   

              

                 

            

      

Chapter 18 

Performance of Feedback Systems 

18.1 Introduction 

It is now time to turn to issues of performance. As noted in earlier chapters, performance 

speci�cations typically involve the closed-loop relations between the exogenous inputs w and 

the regulated outputs z. These relationships are typically captured through the use of the 

signal and system norms. The analysis of a given controlled system usually involves evaluating 

the appropriate norms. The synthesis of a controller is a harder problem, as it involves picking 

a feedback compensator K for which the closed-loop performance speci�cations are attained. 

We begin our discussions with the single-input, single-output (SISO) case, and then 

move on to study multi-input, multi-output (MIMO) extensions. Much of what we present 

for the SISO case actually echoes what is done in \classical feedback control", although our 

perspective is somewhat more modern (or neo-classical or post-modern or ...!). 

18.2 SISO Loop Shaping 

The Classical Viewpoint 

The standard \servo" or tracking con�guration of classical feedback control is shown in Fig-
ure 18.1. In this arrangement, the controller K is fed by an error signal e, which is the 

diference between a reference r and the measured output y of the plant P . The measurement 

is perhaps corrupted by noise n. The output of the controller is the input u to the plant. In 

addition, external disturbances may drive the plant, and are represented here via the signal 

d added in at the output of the plant. In a typical classical control design, the compensator 

K would be picked as the lowest-order system that ensures the following: 

1. the closed-loop system is stable� 
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�� e - K(j!) 

u - P (j!) 

-
��� 

+ + 

r 

-�� �� 

-
y

6; 

��� 

+ 

� ��n 

Figure 18.1: Standard feedback con�guration with noise, disturbance, and reference inputs. 

2. the loop gain P (j!)K(j!) has large magnitude at frequencies (low frequencies, typi-
cally) where the power of the plant disturbance d or reference input r is concentrated� 

3. the loop gain has small magnitude at frequencies (high frequencies, typically) where the 

power of the measurement noise n is concentrated. 

The need for the �rst requirement is clear. The origins of the second and third requirements 

will be explained below. In order to simultaneously attain all three objectives, it is most 

convenient to have a criterion for closed-loop stability that is stated in terms of the (open-
loop) loop gain, and this is provided by the Nyquist stability criterion. 

The reasons for the second and third requirements above lie in the sensitivities of the 

closed-loop system to plant disturbances, reference signals, and measurement noise. Let S 

denote the transfer function that maps a disturbance d to the output y in the closed-loop 

system. This S is termed the (output) sensitivity function, and for the arrangement in 

Figure 18.1 it is given by 

S = (1 + P K);1 : (18.1) 

Speaking informally for the moment, if jP (j!)K(j!)j is large at frequencies where (in some 

sense) the power of d is concentrated, then jS(j!)j will be small there, so the efect of the 

disturbance on the output will be attenuated. Since plant disturbances are typically con-
centrated around the low end of the frequency spectrum, one would want jP (j!)K(j!)j to 

be large at low frequencies. Thus, disturbance rejection is a key motivation behind classical 

control's low-frequency speci�cation on the loop gain. 

Note that (in the SISO case) S is also the transfer function from r to e. If we want 

y to track r with good accuracy, then we want a small response of the error signal e to 

the driving signal r. This again leads us to ask for jS(j!)j to be small | or equivalently 

for jP (j!)K(j!)j to be large | at frequencies where the power of the reference signal r is 

concentrated. Fortunately, in many (if not most) control applications, the reference signal 

is slowly varying, so this requirement again reduces to asking for jP (j!)K(j!)j to be large 

at low frequencies. Thus, tracking accuracy is another motivatoin behind classical control's 

low-frequency speci�cation on the loop gain. 



            

                 

      

      

 

  

         

       

                   

                    

               

                 

           

                 

            

               

                   

                 

                

              

                

                 

               

               

     

 

       

 

              

              

        

   

              

               

                 

     

        

               

      

     

In contrast, the motivation behind classical control's high frequency speci�cation is noise 

rejection. Let T denote the transfer function that maps the noise input n to the output y. 

Given the arrangement in Figure 18.1, 

T = P K(1 + P K);1 : (18.2) 

This T is termed the complementary sensitivity function, because 

T + S = 1 : (18.3) 

Note that T is also the transfer function from r to y. If jP (j!)K(j!)j is small at frequencies 

where the power in n is concentrated, then jT (j!)j will be small there, so the efect of the noise 

on the output will be attenuated. Measurement noise tends to occur at higher frequencies, so 

to minimize its efects on the output, we typically specify that jP (j!)K(j!)j be small at high 

frequencies. This constraint fortunately does not con�ict with the low-frequency constraints 

imposed above by typical d and r. Also, the constraint is well matched to the inevitable fact 

that the gain of physical systems will eventually fall of with frequency. 

The picture of the control design task that emerges from the above discussion is the 

following: Given the plant P , one typically needs to pick the compensator K so as to obtain a 

loop gain magnitude jP (j!)K(j!)j that is large at low frequencies, \rolls of" to low values at 

high frequencies, and varies in such a way that the Nyquist stability criterion is satis�ed. [For 

the special case of open-loop stable plants and compensators, the stability condition can be 

stated in alternative forms that are easy to check using Bode plots rather than Nyquist plots, 

and this can be more convenient. The standard rule of thumb focuses on the roll-of around the 

crossover frequency !c, de�ned as the frequency where the loop gain magnitude is unity� this 

frequency is a crude measure of closed-loop bandwidth. The speci�cation is that the roll-of of 

the loop gain magnitude around !c 

should be no steeper than ;20dB/decade. Furthermore, 

!c 

should be picked below frequencies where the loop gain is signi�cantly afected by any 

right-half-plane zeros of the loop transfer function P K� this provides an initial indication that 

right-half-plane zeros can limit the attainable closed-loop performance.] 

A Modern Viewpoint 

The challenge now is to translate the above classical control design approach into something 

more precise and systematic, and more likely to have a natural MIMO extension. The following 

example points the way, and makes free use of the signal and system norms that we de�ned 

in Lectures 11 and 12. 

Example 18.1 (SISO Disturbance Rejection and Weighted Sensitivity) 

We have already seen that the expression relating y to d in the SISO feedback 

con�guration depicted in Figure 18.1 is 

y = (1 + P K);1d : (18.4) 
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Figure 18.2: Representing the plant disturbance d as the output of a shaping �lter W whose 

input e is an arbitrary bounded energy or bounded power signal, or possibly white noise. 

Typically, d has frequency content concentrated in the low-frequency range. In 

order to get the requisite frequency characteristic, one might model d as the output 

of a shaping �lter with transfer function W , as shown in Figure 18.2, with the input 

e of the �lter being an arbitrary bounded energy or bounded power disturbance 

(or, in the stochastic setting, white noise). Thus e has no spectral \coloring", and 

all the coloring of d is embodied in the frequency response of W . 

For the rest of this example, let us focus on the bounded energy or bounded power 

models for e. Suppose our goal now is to choose K to minimize the efect of the 

disturbance d on the output y. From Lectures 11 and 12, and given our model 

for d, we know that this is equivalent to minimizing the H1-gain of the transfer 

function from e to y, because in the case of a bounded power e this gain is the 

attainable or \tight" bound on the ratio of rms values at the output and input, 

�y � k(1  +  P (j!)K(j!));1W (j!)k1 

  

�e 

while in the case of a bounded energy e we again have the tight bound 

kyk2 � k(1  +  P (j!)K(j!));1W (j!)k1 

: kek2 

In terms of the sensitivity function, 

S(j!) = (1 + P (j!)K(j!));1   

the task is to pick K to minimize the H1 

norm kS(j!)W (j!)k1. 

If 

kS(j!)W (j!)k1 

� �   (18.5) 
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Figure 18.3: Graphical interpretation of the sensitivity function being bounded by a scaled 

reciprocal of the weighting �lter frequency response. 

then 

jS(j!)j jW (j!)j � �   8! : (18.6) 

This implies that 

1 jS(j!)j � � jW (j!)j 

  (18.7) 

which tells us that the sensitivity function is bounded by a scaled reciprocal of the 

weighting �lter. A graphical representation of this bound is shown in Figure 18.3. 

From Figure 18.3 we can see that the value � and the �lter W (j!) give us a clear 

picture of the constraint on the sensitivity function. This allows one to more sys-
tematically design a controller, since we directly get the closed loop characteristics. 

Note also that with the Q-parametrization of K, the sensitivity function S is a�ne 

in Q, and this form is much easier to work with than the fractional form that S 

takes as a function of K. 

The major bene�t of the formulation in the above example is that a MIMO version of it 

is quite immediate, as we see in the next section. 

18.3 MIMO Loop Shaping 

Let us now revisit the above example in the MIMO setting. The example will require the 

following facts about singular values, so we ask you to con�rm these facts for yourself before 

proceeding: 



     

 

           
 


 

        

 

      

                

        

               

           

             

            

 

 

 

   

 

  

 

  

                

          

         

               

           

                

                

                    

       

1. Cmax(AB) � Cmax(A)Cmax(B), and 

1 

2. If Cmax(CD) � 1 then Cmax(C) � assuming D is invertible. 

Cmin(D) 

The �rst statement follows from the fact that Cmax 

is the induced 2-norm, and therefore 

submultiplicative. To prove the second, apply the �rst with A = CD and B = D;1.) 

Example 18.2 (MIMO Disturbance Rejection and Weighted Sensitivity) 

The set-up and formulation for the MIMO case are the same as in the SISO 

example, with the obvious replacements of SISO subsystems by MIMO subsystems. 

One again arrives at the equation (18.5). However, the inference from this equation 

in the MIMO case is no longer (18.6) and (18.7), but rather h i 

Cmax 

(I + P (j!)K(j!));1 � � 

1 

: 

Cmin 

[W (j!)] 

This leads us to the singular value plot shown in Figure 18.4, which is the natural 

extension of the plot we had in the SISO example. 

log 
1 

ω 

σ 
max 

[ I + P ( j ω ) Κ ( j ω ) ] 
-1 

(W)σ 
min 

Figure 18.4: Singular value plot for a MIMO system. 

With the insight provided by the above example, we can formulate a variety of MIMO 

performance problems in terms of appropriate weighting operators. Alternatively, having seen 

what sorts of modi�cations of the SISO statements are needed for the MIMO case, we can 

actually describe various MIMO control tasks in a language that is closer to that of classical 

SISO control, and this is what we do in the rest of this lecture. We shall return to the explicit 

use of weighting functions in later lectures. 



    

             

              

               

                   

             

                  

                  

               

                     

           

    

    

         

                

             

             

              

 

 

   

 

 

            

           

      

   

 

   

 

 

    

    

 

  

 

 

   

 

  

 

    

  

 

   

 

 

   

 

  

 

    

 

     

 

      

 

    

 

   

 

 

 

    

    

 

    

              

              

Typical Closed-Loop Perfomance Constraints 

Typically in control systems the disturbances d have frequency content that is concentrated 

in the low-frequency range. Therefore, in order to attenuate the efects of disturbances on 

the output, we require that Cmax(S(j!)) be small in the range of frequencies where the 

disturbances are active, say 0 � ! � !sy. On the other hand, typically the noise input n has 

frequency content that is concentrated in the high-frequency range. Therefore, in order to 

attenuate the efect of n on the output we require that Cmax(T (j!)) be small over a frequency 

range of the form ! : !ty. The controller K should also enable the closed-loop system to track 

reference inputs r that are typically concentrated in the low frequency range, for example in 

the interval 0 � ! � !r. This objective requires that T (j!) � I for all ! in the interval 

0 � ! � !r. This requirement can be restated as 

Cmax(T (j!)) � 1 

Cmin(T (j!)) � 1  

in the frequency range 0 � ! � !r. 

The control signals must also generally be kept as small as possible in the presence of 

both disturbances d and measurement noise n. It is easy to see that 

u = (I + KP );1Kr ; (I + KP );1K(d + n) : 

Therefore, in order to keep the control signal small, we must make sure that � � 

Cmax 

(I + K(j!)P (j!));1 K(j!) 

remains small in the frequency range where disturbances and/or measurement errors are 

efective. We can summarize these design requirements in the following table: 

Design Requirement Closed-Loop Condition � 

Frequency Range 

Sensitivity to Disturbances 

;
Cmax 

(I + P (j!)K(j!));1 � 0 Low frequency 

0 � ! � !sy 

Noise Propagation 

Attenuation 

; � 

Cmax 

(I + P (j!)K(j!));1 P (j!)K(j!) � 0 High Frequency 

! : !ty 

Tracking of Reference 

Signals 

; � 

Cmax 

(I + P (j!)K(j!));1 P (j!)K(j!) � 1 ; � 

Cmin 

(I + P (j!)K(j!));1P (j!)K(j!) � 1� 

Low frequency 

0 � ! � !r 

Low Control Energy 

;
Cmax 

(I + K(j!)P (j!));1 K(j!) � 0 Frequencies where 

d and n are 

dominant 

Translation to Open-Loop Constraints 

Now let us relate the closed-loop requirements that are summarized in the preceding table 

to open-loop conditions, i.e., conditions on the singular values of the loop gain operator 



       

 

  

 

      

       

 

 

 

   

 

 

    

        

 

 

   

 

 

 

 

  

              

 

   

 

 

      

    

 

 

   

 

     

 

 

 

 

 

  

 

 

 

  

 

  

 

 

       

 

    

 

  

 

 

 

 

           

 

 

 

   

     

 

      

          

 

 

   

 

    

 

 

   

 

    

      

     

 

   

 

  

            

 

     

       

 

   

 

      

    

 

             

         

 

        

    

           

 

   

 

 

 

         

  

 

     

 

   

 

 

  

 

    

; � 

P K. The �rst design requirement is that Cmax 

(I + P K);1 be small in the frequency range 

0 � ! � !sy. The relation � � 

Cmax 

(I + P (j!)K(j!));1 =
1 

Cmin(I + P (j!)K(j!)) 

implies that if Cmin(P (j!)K(j!)) �� 1 then � � 

Cmax 

(I + P (j!)K(j!));1 � 

1 

: (18.8)
Cmin(P (j!)K(j!)) ; � 

Therefore, if Cmin(P (j!)K(j!)) �� 1 for all ! in the interval [0 !sy], then Cmax 

(I + P (j!)K(j!));1 

will be small in that interval. 

For noise attenuation, consider � � 

Cmax 

(T (j!)) = Cmax 

I ; (I + P (j!)K(j!));1 �� � � ;1 

= Cmax 

I + (P (j!)K(j!));1 

1 

= : 

Cmin 

(I + (P (j!)K(j!));1 ) ; � 

Therefore, for the frequency range ! : !ty 

we require that C ;min 

I + (P (j!)K�(j!));1 be 

as large as possible. This can be guaranteed if we make Cmin 

(P (j!)K(j!));1 as large as 

possible or equivalently by making Cmax 

(P (j!)K(j!)) as small as possible. 

The tracking objective can be achieved if we ensure that � � 

Cmax 

(I + P (j!)K(j!));1 P (j!)K(j!) � 1 � � 

Cmin 

(I + P (j!)K(j!));1 P (j!)K(j!) � 1 

over the frequency interval [0 !r]. Since 

I ; (I + P (j!)K(j!));1 = (I + P (j!)K(j!));1 P (j!)K(j!) 

the tracking objective can be achieved if we require (I + P (j!)K(j!));1 to be close to zero ; � 

on the frequency range [0 !r], that is Cmax 

(I + P (j!)K(j!));1 to be small in that interval. 

Equivalently, we may require Cmin 

(I + P (j!)K(j!)) to be as large as possible on the interval 

[0 !r]. This can be ensured if we require that Cmin 

(P (j!)K(j!)) be as large as possible over 

the frequency range [0 !r]. ; � 

The constraint of small control energy leads to the condition that Cmax 

(I + K(j!))P (j!));1 K(j!) 

be made as small as possible. However, we have � � � � 

Cmax 

(I + K(j!)P (j!));1K(j!) � Cmax 

(I + K(j!)P (j!));1 Cmax(K(j!)) 

Cmax(K(j!))
= : (18.9)

Cmin 

(I + K(j!)P (j!)) 



  

 

   	  

 

    

    

 

	 

 

 

       

 

	 

 

  

 

               

 

  

 

                 

                

              

	  

 

   

 

 

	  

         

 

   

 

     

 

 

 

    

            

          

      

   

 

      

    

 

 

         

  

 

    

 

      

    

 

    

 

     

 

    

   

             

          

 

    

       

 

  

Note that 

Cmin 

(I + K(j!)P (j!)) � Cmax 

(I + K(j!)P (j!)) 

� 1 + Cmax(P (j!))Cmax(K(j!)) 

so 

Cmax(K(j!)) Cmax(K(j!)): 

Cmin 

(I + K(j!)P (j!)) 1 + Cmax(P (j!))Cmax(K(j!)) 

1 

= 1 + Cmax(P (j!)) 

: 

�max(K(j!)) 

Therefore, we can minimize the right hand side of equation 18.9 only if we make 

1 

+ Cmax(P (j!))
Cmax(K(j!)) 

large in the ranges of frequencies where d and/or n are dominant. For example, if Cmax(P (j!)) 

is small at a certain set of frequencies of interest then necessarily Cmax(K(j!)) must also be 

small on that set. Clearly this condition is not necessary or su�cient to make � � 

Cmax 

(I + K(j!)P (j!));1 K(j!) 

; � 

small. It only applies to the upper bound of Cmax 

(I + K(j!)P (j!));1 K(j!) , which is given 

by 

Cmax(K(j!)) 

Cmin 

(I + K(j!)P (j!)) 

and it is only necessary for the upper bound to be small. 

The following table summarizes our discussion above on open-loop requirements 

Design Requirement Open-Loop Condition Frequency Range 

Sensitivity to Disturbances Cmin 

(P (j!)K(j!)) large Low frequency 

0 � ! � !sy 

Noise Propagation Attenuation Cmax 

(P (j!)K(j!)) small High Frequency 

! : !ty 

Tracking of Reference Signals Cmin 

(P (j!)K(j!)) large Low frequency 

0 � ! � !r 

Low Control Energy Cmax 

(K(j!)) small Frequencies where 

Cmax 

(P (j!)) is 

not large enough 

Figure 18.6 illustrates the open-loop conditions that we have formulated. Note that in 

this plot the minimum passband open-loop gain is bounded by Cmin 

[P (j!)K(j!)], and the 

maximum stopband open loop gain bounded by Cmax 

[P (j!)K(j!)]. 



            

   

              

              

               

        

             

             

         

    

 

         

     

 

         

                   

             

       

  

                 

     

 

    

 

    

 

  

min 

log 

σ 

ω 

σ 
max 

(P K) 

(P K) 

Figure 18.5: Singular value bounds for the open loop gain, P (j!)K(j!). 

18.4 Algebraic Constraints 

In general we would like to design feedback controllers to attenuate both noise and distur-
bances at the output. We have examined SISO and MIMO conditions that guarantee rejection 

of low frequency disturbances as well as similar conditions for the rejection of high frequency 

noise. However, one might wonder if we can 

1. minimize the in�uence of either noise or disturbances over all frequencies, and/or 

2. minimize the in�uence of both noise and disturbances at the same frequency. 

Let us begin this discussion by recalling the following: 

� S = (I + P K);1 is the transfer function mapping disturbances to the output� 

� T = P K(I + P K);1 is the transfer function mapping noise to the output. 

As we mentioned earlier, in a control design it is usually desirable to make both S and T small. 

However, because of algebraic constraints, both goals are not simultaneously achievable at the 

same frequency. These constraints are as follows. 

General Limitations 

S + T = I for all complex (Laplace domain) frequencies s. This is easily veri�ed, since 

S + T = (I + P K);1 + P K(I + P K);1 

= (I + P K) (I + P K);1 

= I : 



     

 

       

 

    

     

               

 

       

             

           

     

 

   

 

  

 

     

 

                

         

                

             

    

        

 

     

 

    

 

      

 

  

    

 

      

 

  

  

 

          

 

 

 

             

       

    

                

 

  

                  

                

   

This result implies that if Cmax 

[S(j!)] is small in some frequency range, Cmax 

[T (j!)] � 1. 

The converse is also true. 

Fortunately, we rarely need to make both of these functions small in the same frequency 

region. 

Limitations Due to RHP Zeros and Poles 

Before we discuss these limitations, we quote the following fact from complex analysis: 

Let H(s) be a stable, causal, linear time-invariant continuous-time system. The 

maximum modulus principle implies that 

Cmax 

[H(s)] � sup Cmax 

[H(j!)] = kHk1 

8 s 2 RHP : 

! 

In other words, a stable function, which is analytic in the RHP, achieves its maximum value 

over the RHP when evaluated on the imaginary axis. 

Using this result, we can arrive at relationships between poles and zeros of the plant P 

located in the RHP and limitations on performance (e.g., disturbance and noise rejection). 

SISO Systems: Disturbance Rejection 

Consider the stable sensitivity function S = (1  + P K);1 for any stabilizing controller, K� 

then, 

S(zi) = (1 +  P (zi)K(zi))
;1 = 1 for all RHP zeros zi 

of P 

S(pi) = (1 +  P (pi)K(pi))
;1 = 0 for all RHP poles pi 

of P : 

Since the H1 

norm bounds the gain of a system over all frequencies, 

1 = jS(zi)j � kSk1 

: 

This means that we cannot uniformly attenuate disturbances over the entire frequency range 

if there are zeros in the RHP. 

SISO Systems: Noise Rejection 

Since the transfer function relating a noise input to the output is T = P K(1 + P K);1 , an 

argument for T similar to S can be made, but with the roles of poles and zeros interchanged. 

In this case, RHP poles of the plant restrict us from uniformly attenuating noise over the 

entire frequency range. 



    

               

 

  

      

   

 

 

 

 

  

  

 

  

        

    

          

   

      

 

  

 

      

 

     

                

 

  

 

  

 

 

 

 

 

 

              

            

    

      

            

              

               

               

              

                 

     

 

  

 

      

MIMO Systems: Disturbance Rejection 

Suppose P has a transmission zero at z~ 2 RHP with left input zero direction r*. Then 

r*P (z~)K(z~) = 0, and thus 

r*(I + P (z~)K(z~));1 = r* : 

Stated equivalently, 

r*S(z~) = r* : (18.10) 

Also, taking the conjugate transpose of both sides, 

S*(z~)r = r : (18.11) 

We then multiply the expressions in (18.10) and (18.11), obtaining 

r*S(z~)S*(z~)r = r*r  

which can be alternately written as 

r*S(z~)S*(z~)r 

= 1 : (18.12)
r*r 

Applying the maximum modulus principle (i.e., maxs2RHP 

Cmax[S(s)] occurs on the imaginary 

axis) and observing that the left hand side of (18.12) is less than or equal to C2 [S(z~)], we max 

conclude that 

r*S(z~)S*(z~)rkSk2 

1 

: = 1 : 

r*r 

Thus, the conclusion regarding disturbance rejection for MIMO systems is the same as the 

conclusion we reached for SISO systems. Namely, RHP zeros make disturbance attenuation 

over all frequencies impossible. 

18.5 Analytic Constraints: The \Waterbed Efect" 

One performance limitation of LTI SISO Feedback systems (these systems have rational sensi-
tivity transfer functions), is known as the waterbed efect. Loosely speaking, when one designs 

a controller to \push" the sensitivity function in a particular direction, another part of the 

sensitivity function necessarily \pulls" back in the opposite direction. This efect is due to a 

property of analytic functions f(s) as stated by Cauchy's theroem. In words, this theorem 

says that the line integral of an analytic function around any simple closed contour C in a 

region R is zero, i.e., Z 

f(s)ds = 0: 

C 

for every contour C in R. 



                  

             

         

 

 

 

    

 

 

 

 

 

               

                

              

              

             

            

             

   

    

     

                 

              

        

      

 

         

        

 

         

         

         

A proof of this theorem will not be shown here but can be found in standard complex analysis 

textbooks. One consequence of this theorem is the following integral constraint (known as 

Bode's Integral) on the rational sensitivity transfer function S(jw): Z 1 X 

lnjS(jwjdw = �Re(pi) 

0 i P 

where i 

�Re(pi) is the sum over the unstable open-loop poles (poles of P (jw)K(jw)). This 

result holds for all closed-loop systems as long as the product P K has relative degree two. 

The result implies that making S(jw) small at almost all frequencies (a common performance 

objective) is impossible since the integrated value of lnjS(jw)j over all frequencies must be 

constant. This constant is zero for open-loop stable systems (P K stable) and positive oth-
erwise. Therefore, lowering the sensitivity function in one range of frequencies, increases 

the same function in another range-hence the name \waterbed efect." Figure 18.5 below 

illustrates this phenomenon. 

Figure 18.6: Water-bed Efect 

Constraints on Singular Value Plots 

From what we have seen already, it is clear that singular value plots over all frequencies are 

the MIMO system analogs of Bode plots. The following fact establishes some simple bounds 

involving singular values of S and T : 

Fact 18.5.1 If S = (I + P K);1 and T = (I + P K);1P K then the following hold 

j1 ; Cmax(S)j � Cmax(T ) � 1 + Cmax(S) 

and 

j1 ; Cmax(T )j � Cmax(S) � 1 + Cmax(T ): 

Proof: Since S + T = I then clearly 

Cmax(T ) = Cmax(I ; S) � Cmax(I) + Cmax(S) 



             

 

 

 

    

     

 

  

 

 

 

    

     

           

        

         

and therefore Cmax(T ) � 1 + Cmax(S). For any element x 2 C 

n with kxk2 

= 1 we have 

x ; Sx = T x 

jkxk2 

; kSxk2j � kx ; Sxk2 

= kT xk2 

j1 ; kSxk2j � Cmax(T ) 

j1 ; Cmax(S)j � Cmax(T ): 

Combining this relation with Cmax(T ) � 1 + Cmax(S), we obtain 

j1 ; Cmax(S)j � Cmax(T ) � 1 + Cmax(S): 

The other relation follows in exactly the same manner. 



 

         


 
 

 

 

  

 

 

 

 

                 

   

 

   

        


	

 

 


 

 

  

 

 

 

                 

    

 

 

 

           

                

     	      

 

 

 

 

 

 

 

 

            

             

                 

                  

 

             

 

  

  

   







  




 






 


 




 


 
 
 
 

    

 

	 

  

   

	                    

             

	                    

          

Exercises 

Exercise 18.1 Suppose a discrete-time plant is given by !� 

1;2z 

;1 

1;:5z;1

P � 

1;z 

;1 

1;:5z;1 

Does there exist a controller that uniformly attenuates the input sensitivity function (I + KP );1 , i.e., 

k(I + KP );1k1 

� 1. Explain. 

Exercise 18.2 Let a plant be given by � s;1 ;5 s+1 

s+2 s;1 

� 

G(s) � : 

(s+1)2 s+1 

We are interested in verifying whether or not there exists a controller K such that the output 

sensitivity S � (I + PK);1 satis�es kSk1 

� 1 (i.e., the maximum singular value is strictly less than 

1 for all frequencies). If this is possible, we would like to �nd such a controller. 

1. One engineer argued as follows: Since the transfer functions from u1 

to y1 

and u2 

to y2 

have 

nonminimum-phase zeros, then the sensitivity cannot be uniformly attenuated. Do you accept 

this argument. If so, explain her/his rationale, and if not explain why not. 

2. Another engineer suggested that the controller can invert the plant and add a scaling factor, so 

that the sensitivity is uniformly less than 1. Again discuss this option and argue for it or against 

it. 

Exercise 18.3 Consider the following MIMO plant P (s) whose state-space description is 3232 

x_ (t) � 

664 

;1:5 1 0 1 

2 ;3 2 0 

0 :5 ;2 1 

775 x(t) + 

664 

1 0 

0 0 

1 1 

775u(t) 

1 ;1:5 0 ;5 0 1:8 �� 

0 2:4 ;3:1 1 

y(t) � x(t)
1 6 ;:5 ;2:8 

(a) Use Matlab to compute the poles and the zeros of the plant, as well as the associated input zero 

directions. (The transmission zeros should turn out to be around ;:544 � j2:43.) 

(b) Plot the singular values of P (j!) for ! 2 [;10;2� 102] rad/sec. Relate the shapes of the singular 

values to the pole and zero frequencies of P (s). 



	   

 

            

  

	               

                 

               

               

                

        

 

 

   
 

      
 

	              

           

     

	                 

          

 

 

   	 

 

               

             

              

	               

                  

 

(c) Compute kP k1 

using the Hamiltonian matrix and \gamma iteration", and compare the result to 

part b). 

(d) Consider the standard MIMO servo feedback loop with a compensator of transfer matrix K(s) 

preceding P (s) in the forward loop. The input to the compensator is the error signal e(t) � 

r(t);y(t), where r(t) is an external reference signal. Design K(s) to have the following properties: 

(i) K(s) should be strictly proper, second-order (i.e. a minimal realization of it is second-order), 

with no transmission zeros, and with poles that exactly cancel the transmission zeros of P (s) | 

so P (s)K(s) does not have these zeros. 

(ii) lims!0 

P (s)K(s) � 40I 

Also obtain a state-space description of K(s). 

(e) Plot the singular values of the open-loop frequency response P (j!)K(j!), the sensitivity func-
tion S(j!), and the closed-loop frequency response (or complementary sensitivity function) 

T (j!) � I ; S(j!). 

(f) Predict the steady-state value of the output vector y(t) when the reference input to the closed-loop 

system (which is assumed initially at rest) is the step � � 

7 

r(t) � � t � 0 (18.13);3 

and verify by computing (with Matlab!) the transient response for the above step input. By 

carefully examining the transients of the control input and output signals, discuss the implica-
tions of having oscillatory poles in the compensator that cancel the plant transmissions zeros. 

(g) Predict the steady-state maximum and minimum value of the tracking error e(t) when the com-
mand input vector comprises unit sinusoids at a frequency of ! � 1 rad/sec. Repeat for ! � 2:5 

rad/sec. 



  

    
 

  

                  

             

               

               

               

               

                

    

              

               

              

                

     

     

                

           

            

              

                

               

             

               


 

Chapter 19 

Robust Stability in SISO Systems 

19.1 Introduction 

There are many reasons to use feedback control. As we have seen earlier, with the help of an 

appropriately designed feedback controller we can reduce the e�ect of noise and disturbances, 

and we can improve the tracking of command signals. Another very important use for feedback 

control is the reduction of the e�ects of plant uncertainty. The mathematical models that we 

use to describe the plant dynamics are almost never perfect. A feedback controller can be 

designed so as to maintain stability of the closed-loop and an acceptable level of performance 

in the presence of uncertainties in the plant description, i.e., so as to achieve robust stability 

and robust performance respectively. 

For the study of robust stability and robust performance, we assume that the dynamics 

of the actual plant are represented by a transfer function that belongs to some uncertainty 

set �. We begin by giving mathematical descriptions of two possible uncertainty sets. Many 

other descriptions exist, and may be treated by methods similar to those we present for these 

particular types of uncertainty sets. 

19.2 Additive Representation of Uncertainty 

It is commonly the case that the nominal plant model is quite accurate for low frequencies 

but deteriorates in the high-frequency range, because of parasitics, nonlinearities and/or time-
varying e�ects that become signi�cant at higher frequencies. These high-frequency e�ects may 

have been left unmodeled because the e�ort required for system identi�cation was not justi�ed 

by the level of performance that was being sought, or they may be well-understood e�ects that 

were omitted from the nominal model because they were awkward and unwieldy to carry along 

during control design. This problem, namely the deterioration of nominal models at higher 

frequencies, is mitigated to some extent by the fact that almost all physical systems have 



                

               

                  

                

       

 

   

   

 

 

   

 

                  

              

            

           

  

 

          

            

 

     

 

                

                 

               

     

             

               

      

  

  

 

 

 

 

 

 

 

 

 

 

               

    

             

                

               

                

        

          

strictly proper transfer functions, so that the system gain begins to roll o� at high frequency. 

In the above situation, with a nominal plant model given by the proper transfer function 

P0(s), the actual plant represented by P (s), and the di�erence P (s) ; P0(s) assumed to be 

stable, we may be able to characterize the model uncertainty via a bound of the form 

jP (j!) ; P0(j!)j � ` a(!) (19.1) 

where ( 

\Small" � j!j � !c` a(!) � : (19.2)
\Bounded" � j!j � !c 

This says that the response of the actual plant lies in a \band" of uncertainty around that of 

the nominal plant. Notice that no phase information about the modeling error is incorporated 

into this description. For this reason, it may lead to conservative results. 

The preceding description suggests the following simple additive characterization of the 

uncertainty set: 

�a 

� fP (s) j P (s) � P0(s) + W (s)�(s)g (19.3) 

where � is an arbitrary stable transfer function satisfying the norm condition 

k�k1 

� sup j�(j!)j � 1� (19.4) 

! 

and the stable proper rational weighting term W (s) is used to represent any information we 

have on how the accuracy of the nominal plant model varies as a function of frequency. Figure 

19.1 shows the additive representation of uncertainty in the context of a standard servo loop, 

with K denoting the compensator. 

When the modeling uncertainty increases with frequency, it makes sense to use a weight-
ing function W (j!) that looks like a high-pass �lter: small magnitude at low frequencies, 

increasing but bounded at higher frequencies. 

- � 

- W 

� � 

. K 

- P0 

-
� 

- l - l -r + + 

y 

; 6 

Figure 19.1: Representation of the actual plant in a servo loop via an additive perturbation 

of the nominal plant. 

Caution: The above formulation of an additive model perturbation should not be interpreted 

as saying that the actual or perturbed plant is the parallel combination of the nominal system 

P0(s) and a system with transfer function W (s)�(s). Rather, the actual plant should be 

considered as being a minimal realization of the transfer function P (s), which happens to be 

written in the additive form P0(s) + W (s)�(s). 

Some features of the above uncertainty set are worth noting: 



	                  

             

       

	               

             

            

           

             

              

                 

                 

      

                   

               

 

   

               

     

     

        

          

  

                  

    

     

             

          

 

         

 

 	  

               

  

  

 

 
 

 

            

� The unstable poles of all plants in the set are precisely those of the nominal model. Thus, 

our modeling and identi�cation e�orts are assumed to be careful enough to accurately 

capture the unstable poles of the system. 

� The set includes models of arbitrarily large order. Thus, if the uncertainties of major 

concern to us were parametric uncertainties, i.e. uncertainties in the values of the 

parameters of a particular (e.g. state-space) model, then the above uncertainty set 

would greatly overestimate the set of plants of interest to us. 

The control design methods that we shall develop will produce controllers that are guar-
anteed to work for every member of the plant uncertainty set. Stated slightly di�erently, 

our methods will treat the system as though every model in the uncertainty set is a possible 

representation of the plant. To the extent that not all members of the set are possible plant 

models, our methods will be conservative. 

Suppose we have a set of possible plants � such that the true plant is a member of that 

set. We can try to embed this set in an additive perturbation structure. First let P0 

2 � be 

a certain nominal plant in �. For any other plant P 2 � we write, 

P (j!) � P0(j!) + W (j!)�(j!): 

The weight jW (j!)j satis�es 

jW (j!)j � jW (j!)�(j!)j � jP (j!) ; P0(j!)j 

jW (j!)j � max jP (j!) ; P0(j!)j � ` a(j!): 

P 2� 

With the knowledge of the lower bound ` a(j!), we �nd a stable system W (s) such that 

jW (j!)j � ` a(j!) 

19.3 Multiplicative Representation of Uncertainty 

Another simple means of representing uncertainty that has some nice analytical properties is 

the multiplicative perturbation, which can be written in the form 

�m 

� fP j P � P0(1 + W �)� k�k1 

� 1g: (19.5) 

W and � are stable. As with the additive representation, models of arbitrarily large order 

-- � W 

� � 

-. +
� m - -P0 

Figure 19.2: Representation of uncertainty as multiplicative perturbation at the plant input. 



      

           

             

          

 

       

               

            

                

     

 

             

                 

                 

             

       

                 

                    

    

 

            

     

      

     


 


   

  

 

  

    

 
 


 
 




     

  


 
 

                   

  

    

                 

 

 

              

 

    

 

    

   

  

   

  

          

 

  

 

    

 

 

 

  

 

 

 

       

 

 

 

 

             

           

       

 

 

    

 

 

 

   

 

 

 

  

 

   

 

 

 

 

are included in the above sets. 

The caution mentioned in connection with the additive perturbation bears repeating 

here: the above multiplicative characterizations should not be interpreted as saying that the 

actual plant is the cascade combination of the nominal system P0 

and a system 1 + W �. 

Rather, the actual plant should be considered as being a minimal realization of the transfer 

function P (s), which happens to be written in the multiplicative form. 

Any unstable poles of P are poles of the nominal plant, but not necessarily the other 

way, because unstable poles of P0 

may be cancelled by zeros of I + W �. In other words, 

the actual plant is allowed to have fewer unstable poles than the nominal plant, but all its 

unstable poles are con�ned to the same locations as in the nominal model. In view of the 

caution in the previous paragraph, such cancellations do not correspond to unstable hidden 

modes, and are therefore not of concern. 

As in the case of additive perturbations, suppose we have a set of possible plants � such 

that the true plant is a member of that set. We can try to embed this set in a multiplicative 

perturbation structure. First let P0 

2 � a certain nominal plant in �. For any other plant 

P 2 � we have, 

P (j!) � P0(j!)(1 + W (j!)�(j!)): 

The weight jW (j!)j satis�es ���� 

���� 

P (j!) ; P0(j!) 

���� 

jW (j!)�(j!) 

With the knowledge of the envelope ` m(j!), we �nd a stable system W (s) such that jW (j!)j � 

` m(j!) 

Example 19.1 Uncertain Gain 

Suppose we have a plant P � kP�(s) with an uncertain gain k that lies in the 

interval k1 

� k � k2. We can write k � �(1 + �x) such that 

k1 

� �(1 ; �) 

k2 

� �(1 + �): 

Therefore � � 

k1 

+k2 , � � 

k2 

;k1 , and we can express the set of plants as2 k2 

+k1 

jW (j!)j � j � 

P0(j!)���� 

P (j!) ; P0(j!)jW (j!)j � � ` m(j!):max 

P 2� P0(j!) 

���� 

� � P (s)jP (s) � 

k1 

+ k2 

2 

P�(s) 1 + 

k2 

; k1 

x 

k2 

+ k1 

� ;1 � x � 1 : 

We can embed this � in a multiplicative structure by enlarging the uncertain 

elements x which are real numbers to complex �(j!) representing dynamic per-
turbations. This results in the following set ���� 

k1 

+ k2 

k2 

; k1��m 

� P (s)jP (s) � P (s) 1 + � � k�k1 

� 1 : 

2 k2 

+ k1 



     

 

 

  

    

  

 

  

    

       

 

           

            

      


 


   

   

 


 
 

  

 

 

 

  

 

 

  

 

 




  

 

 

   

           





   

  

              

                   

    

                

             

 

 

 

     

               

                      

             

                  

                 

                

 

Note that in this representation P0 

� 

k1 

+k2 P�, and W � 

k2 

;k1 .2 k2 

+k1 

Example 19.2 Uncertain Delay 

Suppose we have a plant P � e;ksP0(s) with an uncertain delay 0 � k � k1. We 

want to represent this family of plants in a multiplicative perturbation structure. 

The weight W (s) should satisfy ����� 

;j!kP0(j!) ; P0(j!)e 

P0(j!) 

�����jW (j!)j � max 

0�k�k1 

� max 

0�k�k1( je;j!k ; 1j 

� 

�j1 ; e;j!k1 j ! � k1 

0 

�! � k1 

� ` m(!): 

A stable weight that satis�es the above relation can be taken as 

2�k1s 

W (s) � � : 

�k1s + 1 

where � � 1. The reader should verify that this weight will work by ploting 

jW (j!)j and ` m(!), and showing that ` m(!) is below the curve jW (j!)j for all !. 

19.4 The Nyquist Criterion 

Before we analyze the stability of feedback loops where the plant is uncertain, we will review 

the Nyquist criterion. Consider the feedback structure in Figure 19.3. The transfer function 

- h - L 

-
;6 

Figure 19.3: Unity Feedback Confuguration. 

L is called the open-loop transfer function. The condition for the stability of the system 

in 19.3 is assured if the zeros of 1 + L are all in the left half of the complex plane. The 

agrument principle from complex analysis gives a criterion to calculate the di�erence between 

the number of zeros and the number of poles of an analytic function in a certain domain, D 

in the complex plane. Suppose the domain is as shown in Figure 19.4, and the boundary of 

D, denoted by �D, is oriented clockwise. We call this oriented boundary of D the Nyquist 

contour. 
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Nyquist Domain 

Figure 19.4: Nyquist Domain. 

As the radius of the semicircle in Figure 19.4 goes to in�nty the domain covers the right 

half of the complex plane. The image of �D under L is called a Nyquist plot, see Figure 19.5. 

Note that if L has poles at the j! axis then we indent the Nyquist contour to avoid these 

poles, as shown in Figure 19.4. De�ne 

�ol 

� Open ; loop poles � Number of poles of L in D � Number of poles of 1 + L in D 

�cl 

� Closed ; loop poles � Number of zeros of 1 + L in D: 

From the argument principle it follows that 

�cl;�ol 

� The number of clockwise encirclements that the Nyquist Plot makes of the point ;1: 

Using this characterization of the di�erence of the number of the closed-loop poles and the 

open-loop poles we arrive at the following theorem for the stability of Figure 19.3 

Theorem 19.1 The closed-loop system in Figure 19.3 is stable if and only if the Nyquist plot 

� does not pass through the origin, 

� makes �ol 

counter-clockwise encirclements of ;1. 

19.5 Robust Stability 

In this section we will show how we can analyze the stability of a feedback system when the 

plant is uncertain and is known to belong to a set of the form that we described earlier. We 

will start with the case of additive pertubations. Consider the unity feedback con�guration 

in Figure 19.1. The open-loop transfer function is L(s) � (P0(s) + W (s)�(s))K(s), and the 
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Nyquist Plot 

Figure 19.5: Nyquist Plot. 

nominal open-loop transfer function is L0(s) � P0(s)K(s). The nominal feedback system 

with the nominal open-loop transfer function L0 

is stable, and we want to know whether the 

feeback system remains stable for all �(s) satisfying j�(j!)j � 1 for all ! 2 R. We will 

assume that the nominal open-loop system is stable. This causes no loss of generality and the 

result holds in the general case. From the Nyquist criterion, we have that the Nyquist plot of 

L0 

does not encircle the point ;1. For the perturbed system, we have that 

1 + L(j!) � 1 + P (j!)K(j!) 

� 1 + (P0(j!) + W (j!)�(j!))K(j!) 

� 1 + L0(j!) + W (j!)�(j!)K(j!) 

From the Figure 19.6, it is clear that L(�!) will not encircle the point ;1 if the following 

condition is satis�ed, 

jW (j!)K(j!)j � j1 + L0(j!)j� 

which can be written as ���� 

W (j!)K(j!) 

1 + L0(j!) 

���� � 1: (19.6) 

A Small Gain Argument 

Next we will present a di�erent derivation of the above result that does not rely on the 

Nyquist criterion, and will be the basis for the multivariable generalizations of the robust 

stability results. Since the nominal feedback system is stable, the zeros of 1 + L0(s) are all in 

the left half of the complex plane. Therefore, by the continuity of zeros, the perturbed system 
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Figure 19.6: Nyquist Plot Illustrating Robust Stability. 

���� 

will be stable if and only if 

j1 + (P0(j!) + W (j!)�(j!))K(j!)j � 0 

for all ! 2 R, k�k1 

� 1. By rearranging the terms, the perturbed system is stable if and 

1 

only if ���� 

W (j!)K(j!)
min �(j!) � 0 for all ! 2 R+ 

1 + P0(j!)K(j!)j�(j!)j�1 

The following lemma will help us to transform this condition to the one given earlier. 

Lemma 19.1 The following are equivalent 

1. ���� �(j!) 

���� � 0 for all ! 2 R 

W (j!)K(j!)
min 1 + 

1 + P0(j!)K(j!)j�(j!)j�1 

2. ���� 

W (j!)K(j!) 

1 + P0(j!)K(j!) 

����1 ; � 0 for all ! 2 R 

Proof. First we show that 2) implies 1), which is a consequence of the following inequalities ���� 

W (j!)K(j!) 

���� 

���� 

W (j!)K(j!) 

����1 + �(j!) � 1 ; ���� 

1 + P0(j!)K(j!) 

W (j!)K(j!) 

1 + P0(j!)K(j!) 

�(j!) ���� : 

1 + P0(j!)K(j!) 

� 1 ; 



           

 

  




  


 

  




 



 

 

  

 

  

   

 

      

 

 

  

  

        

    

   

   

  

 

 

 

 

 




 

 

 

 

  

  

 

 

              

     

               

               

       

 

 




  


 

  




        


 

     

              

              

        

 

 

 

For the converse suppose 2) is violated, that is there exists !0 

such that ���� 

W (j!0)K(j!0) 

1 + P0(j!0)K(j!0) 

���� � 1: 

Write 

W (j!0)K(j!0) j��� ae 

1 + P0(j!0)K(j!0) 

� 

;j�;j� and let �(j!0) � 

1 e . Clearly, j�(� j!0)j � 1 and a 

W (j!0)K(j!0) �1 + �(j!0) � 0: 

1 + P0(j!0)K(j!0) 

Now select a real rational perturbation 

��(s) as 

1 s ; ���(s) � � � 

a s + � 

;j�;j� such that � j!0 

;� � e .!0 

+� 

r -
�� 

-+�� 

K ;6 

-
� W 

��� y 

-��+ P0 

Figure 19.7: Representation of the actual plant in a servo loop via a multiplicative perturba-
tion of the nominal plant. 

A similar set of results can be obtained for the case of multiplicative perturbations. In 

particular, a robust stability of the con�guration in Figure 19.7 can be guaranteed if the 

system is stable for the nominal plant P0 

and ���� 

W (j!)P0(j!)K(j!) 

1 + P0(j!)K(j!) 

���� � 1: for all ! 2 R: (19.7) 

Example 19.3 Stabilizing a Beam 

We are interested in deriving a controller that stabilizes the beam in Figure 19.8 

and tracks a step input (with good properties). The rigid body model from torque 

input to the tip de�ection is given by 

6:28 

P0(s) � 

2s 



  

 

 

 

  

  

 

    

   

   

 

   

      

   

 

   

               

         

    

  

  

 

 

 

    

                

           

    

               

            

               

               

 

  

 

 

 

 

   

 

  

  

 

 

              

    

               

             

            

Position Sensor 

�� z 

�� 

Felxible BeamDC Motor Mass 

Figure 19.8: Flexible Beam. 

Consider the controller 

500(s + 10) 

K0(s) � 

s + 100 

The loop gain is given by 

3140(s + 10) 

P0(s)K0(s) � 

s2(s + 100) 

and is shown in Figure 19.9. The closed loop poles are located at -49.0, -28.6, 

-22.4, and the nominal Sensitivity function is given by 

1 s2(s + 100) 

S0(s) � � 

1 + P0(s)K0(s) s3 + 100s2 + 3140s + 31400 

and is shown in Figure 19.10. It is evident from this that the system has good 

disturbance rejection and tracking properties. The closed loop step response is 

show in Figure 19.11 

While this controller seems to be an excellent design, it turns out that it performs 

quite poorly in practice. The bandwidth of this controller (which was never con-
strained) is large enough to excite the �exible modes of the beam, which were not 

taken into account in the model. A more complicated model of the beam is given 

by 

6:28 12:56 

P1(s) � + 

s2 s2 + 0:707s + 28 | {z } | {z }
nominal plant �exible mode 

If K0 

is connected to this plant, then the closed loop poles are -1.24, 0.29, 0.06, 

-0.06, which implies instability. 

Instead of using the new model to redesign the controller, we would like to use 

the nominal model P0, and account for the �exible modes as unmodeled dynamics 

with a certain frequency concentration. There are several advantages in this. For 
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Figure 19.9: Open-loop Bode Plot 

one, the design is based on a simpler nominal model and hence may result in a 

simpler controller. This approach also allows us to acomodate additional �exible 

modes without increasing the complexity of the description. And �nally, it enables 

us to tradeo� performance for robustness. 

Consider the set of plants: 

� � fP � P0(1 + �)� j�(j!)j � `(!)� � is stableg 

where ����� 

!2 

����� 

G
ai

n 
dB

 

`(!) � 2 

28 ; !2 + 0:707j! 
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Figure 19.10: Nominal Sensitivity 

This set includes the model P1. The stability Robustness Condition is given by: 

1 jT (j!)j � 

`(!) 

Where T is the nominal closed loop map with any controller K. First, consider 

the stability analysis of the initial controller K0(s). Figure 19.12 shows both 

the frequency response for jT0(j!)j and [`(!)];1 . It is evident that the Stability 

robustness condition is violated since 

1 jT0(j!)j �6 � 3 � ! � 70 rad/sec
`(!) 

1.5 
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0.5 

1 

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35

Time (sec) 

Figure 19.11: Step Response 
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Figure 19.12: jT0(j!)j and [`(!)];1 

Let's try a new design with a di�erent controller 

(5 � 10;4)(s + 0:01)
K1(s) � 

s + 0:1 

The new loop-gain is 

(3:14 � 10;3)(s + 0:01)
P0(s)K1(s) � 

s2(s + 0:1) 

which is shown in the Figure 19.13 We �rst check the robustness condition with 

the new controller. T1 

is given by 

P0(s)K1(s)
T1(s) � 

1 + P0(s)K1(s) 

Figure 19.14 depicts both jT1(j!)j and [`(!)];1 . It is clear that the condition 

is satis�ed. Figure 19.15 shows the new nominal step response of the system. 

Observe that the response is much slower than the one derived by the controller 

K0. This is essentially due to the limited bandwidth of the new controller, which 

was necessary to prevent instability. 



 

     

 

          

                     

         

  

    

     

   

 

                 

       

     

 

 

 

 

    

      

      

 

            

        

              

    

 

  

 

 

 

      

   

 

       

   

                 

                 

               

             

          

             

      

 

 

 

 

          

    

 

 

  

 

    

Exercises 

aExercise 19.1 Suppose P (s) = is connected with a controller K(s) in a unity feedback confgu-s 

ration. Does there exists a K such that the system is stable for both a = 1 and a = ;1. 

Exercise 19.2 For P (s) and K(s) given by 

1 1 

P (s) = , K(s) = ,
(s + 2)(s + a) s 

fnd the range of a such that the closed loop system with P and K is stable. 

Exercise 19.3 Let P be given by: 

P (s) = (1 + W (s) (s))P0 

, 

where 

1 2 

P0(s) = , W (s) = ,
s ; 1 s + 10 

and  is arbitrary stable with k k1 

: 2. Find a controller K(s) = k (constant) gain such that the 

system is stable. Compute all possible such gains. 

Exercise 19.4 Find the stability robustness condition for the set of plant described by: 

P0
P = f , k k1 

: 1g:
1 + WP0 

Assume WP0 

is strictly proper for well posedness. 

Exercise 19.5 Suppose 

1 

P (s) = and K(s) = 10, 

s ; a 

are connected in standard feedback confguration. While it is easy in this case to compute the exact 

stability margin as a changes, in general, such problems are hard to solve when there are many 

parameters. One approach is to embed the problem in a robust stabilization problem with unmodeled 

dynamics and derive the appropriate stability robustness condition. Clearly, the later provides a 

conservative bound on a for which the system remains stable. 

(a) Find the exact range of a for which the system is stable. 

(b) Assume the nominal plant is P0 

= 

1 . Show that P belongs to the set of plants: s 

P0
n = fP = , k k1 

: 1g
1 + W P0 

and W = ;a. 



	                   

          

     

 

 

 

 

           

 

	    

 

  

 

    

       

 

 

  

   

 

 

   

 

 

 

                 

          

                     

            

     

                  

                

 

            

         

 

    

                     

              

                    

(c) Derive a condition on the closed loop system that guarantees the stability of the set n. How does 

this condition constrain a� Is this di�erent than part (a)� 

(d) Repeat with nominal plant P0 

= 

1 

s+100 

. 

Exercise 19.6 Let a model be given by the stable plant: 

1 

P0(z) = , 1 �� a0 

� 0: 

z;1 ; (1 + a0) 

Consider the class of plants given by: � � 

1 

n = (z) = j ; 2a0 

: b : 2a0 

: 

z;1 ; (1 + b) 

1. Can the set n be embedded in a set of additive or multiplicative norm bounded perturbations, 

with nominal plant P0� Show how or explain your answer. 

2. If your answer to the previous part is NO, show that the class n can be embedded in some other 

larger set characterized by norm-bounded perturbations. Give a su�cient condition for stability 

using the small gain theorem. 

3. Improve your earlier condition so that it captures the fact that the unknown is a real parameter. 

(The condition does not have to be necessary, but should still take into consideration the phase 

information!). 

Exercise 19.7 Consider Exercise 17.4. Suppose that due to implementation problems (e.g. quanti-
zation e�ects), the actual controller can be modeled as: 

Ka 

= (I ; KW );1K 

where W is a fxed stable flter, and is a stable perturbation of H1-norm less than 1, but otherwise 

arbitrary. Provide a non-conservative condition for the stability robustness of the closed loop system. 

Use the parametrization of K in terms of Q to express your condition as a function of P and Q. 



    

 

P
h
a
s
e
 d

e
g
 

G
a
in

 d
B

 

−200 
−2 −1	 0 1 2 3


10 10	 10 10 10 10

Frequency (rad/sec)


100


0 

−100 

−120 

−140 

−160 

−180 
−2 −1	 0 1 2 3


10 10	 10 10 10 10

Frequency (rad/sec)


Figure 19.13: Loop Gain P0K1 
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Figure 19.14: jT1(j!)j and [`(!)];1 . 
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Figure 19.15: New Nominal Closed-loop Step Response 
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Chapter 20 

Stability Robustness 

20.1 Introduction 

Last chapter showed how the Nyquist stability criterion provides conditions for the stability 

robustness of a SISO system. It is possible to provide an extension of those conditions by gen-
eralizing the Nyquist criterion for MIMO systems. This, however, turns out to be unnecessary 

and a direct derivation is possible through the small gain theorem, which will be presented in 

this chapter. 

20.2 Additive Representation of Uncertainty 

It is commonly the case that the nominal plant model is quite accurate for low frequencies 

but deteriorates in the high-frequency range, because of parasitics, nonlinearities and/or time-
varying e�ects that become signi�cant at higher frequencies. These high-frequency e�ects may 

have been left unmodeled because the e�ort required for system identi�cation was not justi�ed 

by the level of performance that was being sought, or they may be well-understood e�ects that 

were omitted from the nominal model because they were awkward and unwieldy to carry along 

during control design. This problem, namely the deterioration of nominal models at higher 

frequencies, is mitigated to some extent by the fact that almost all physical systems have 

strictly proper transfer functions, so that the system gain begins to roll o� at high frequency. 

In the above situation, with a nominal plant model given by the proper rational matrix 

P0(s), the actual plant represented by P (s), and the di�erence P (s) ; P0(s) assumed to be 

stable, we may be able to characterize the model uncertainty via a bound of the form 

�max 

[P (j!) ; P0(j!)] � ` a(!) (20.1) 

where ( 

\Small" � j!j � !c` a(!) � (20.2)
\Bounded" � j!j � !c 



                  

              

            

           

  

          

            

 

    	  

 

                

                 

               

        

             

               

               

                      

                

  

  

  

 

 

 

 

 

 

 

 

               

    

             

                

               

                

        

          

	                  

             

       

	               

             

This says that the response of the actual plant lies in a \band" of uncertainty around that of 

the nominal plant. Notice that no phase information about the modeling error is incorporated 

into this description. For this reason, it may lead to conservative results. 

The preceding description suggests the following simple additive characterization of the 

uncertainty set: 

where � is an arbitra

� � fP (s) j P (s) � P0(s) + W (s)�(s)g 

ry stable transfer matrix satisfying the norm condition 

(20.3) 

k�k1 

� sup �max(�(j!)) � 1 

! 

(20.4) 

and the stable proper rational (matrix or scalar) weighting term W (s) is used to represent 

any information we have on how the accuracy of the nominal plant model varies as a function 

of frequency. Figure 20.1 shows the additive representation of uncertainty in the context of a 

standard servo loop, with K denoting the compensator. 

When the modeling uncertainty increases with frequency, it makes sense to use a weight-
ing function W (j!) that looks like a high-pass �lter: small magnitude at low frequencies, 

increasing but bounded at higher frequencies. In the case of a matrix weight, a variation 

on the use of the additive term W � is to use a term of the form W1�W2� we leave you to 

examine how the analysis in this lecture will change if such a two-sided weighting is used. 

- � 

- W 

� � 

. K 

- P0 

-
� 

- l - l -r + + 

y 

; 6 

Figure 20.1: Representation of the actual plant in a servo loop via an additive perturbation 

of the nominal plant. 

Caution: The above formulation of an additive model perturbation should not be interpreted 

as saying that the actual or perturbed plant is the parallel combination of the nominal system 

P0(s) and a system with transfer matrix W (s)�(s). Rather, the actual plant should be 

considered as being a minimal realization of the transfer function P (s), which happens to be 

written in the additive form P0(s) + W (s)�(s). 

Some features of the above uncertainty set are worth noting: 

� The unstable poles of all plants in the set are precisely those of the nominal model. Thus, 

our modeling and identi�cation e�orts are assumed to be careful enough to accurately 

capture the unstable poles of the system. 

� The set includes models of arbitrarily large order. Thus, if the uncertainties of major 

concern to us were parametric uncertainties, i.e. uncertainties in the values of the 



            

           

             

              

                 

                 

      

     

             

          

         

 

   

  

  

 

 

 

 

            

            

  

        

 

   

               

               

                  

  

           

             

          

 

       

               

            

                

     

 

             

                 

                 

             

       

parameters of a particular (e.g. state-space) model, then the above uncertainty set 

would greatly overestimate the set of plants of interest to us. 

The control design methods that we shall develop will produce controllers that are guar-
anteed to work for every member of the plant uncertainty set. Stated slightly di�erently, 

our methods will treat the system as though every model in the uncertainty set is a possible 

representation of the plant. To the extent that not all members of the set are possible plant 

models, our methods will be conservative. 

20.3 Multiplicative Representation of Uncertainty 

Another simple means of representing uncertainty that has some nice analytical properties is 

the multiplicative perturbation, which can be written in the form 

� � fP j P � P0(I + W �)� k�k1 

� 1g: (20.5) 

� � 

-- � W 

� 

-. +m - P0 

-

Figure 20.2: Representation of uncertainty as multiplicative perturbation at the plant input. 

An alternative to this input-side representation of the uncertainty is the following output-
side representation: 

� � fP j P � (I + W �)P0� k�k1 

� 1g: (20.6) 

In both the multiplicative cases above, W and � are stable. As with the additive represen-
tation, models of arbitrarily large order are included in the above sets. Still other variations 

may be imagined� in the case of matrix weights, for instance, the term W � can be replaced 

by W1�W2. 

The caution mentioned in connection with the additive perturbation bears repeating 

here: the above multiplicative characterizations should not be interpreted as saying that the 

actual plant is the cascade combination of the nominal system P0 

and a system I + W �. 

Rather, the actual plant should be considered as being a minimal realization of the transfer 

function P (s), which happens to be written in the multiplicative form. 

Any unstable poles of P are poles of the nominal plant, but not necessarily the other 

way, because unstable poles of P0 

may be cancelled by zeros of I + W �. In other words, 

the actual plant is allowed to have fewer unstable poles than the nominal plant, but all its 

unstable poles are con�ned to the same locations as in the nominal model. In view of the 

caution in the previous paragraph, such cancellations do not correspond to unstable hidden 

modes, and are therefore not of concern. 



      

           

           

      

 

          

             

          

 

       

                

             

             

                

     

       

       

      

              

                   

 

                

                

 

               

            

                

         

        

     

                 

              

                

                

               

              

          

            

                 

             

20.4 More General Representation of Uncertainty 

Consider a nominal interconnected system obtained by interconnecting various (reachable and 

observable) nominal subsystems. In general, our representation of the uncertainty regarding 

any nominal subsystem model such as P0 

involves taking the signal � at the input or output 

of the nominal subsystem, feeding it through an \uncertainty block" with transfer function 

W � or W1�W2, where each factor is stable and k�k1 

� 1, and then adding the output 

� of this uncertainty block to either the input or output of the nominal subsystem. The 

one additive and two multiplicative representations described earlier are special cases of this 

construction, but the construction actually yields a total of three additional possibilities with 

a given uncertainty block. Speci�cally, if the uncertainty block is W �, we get the following 

additional feedback representations of uncertainty: 

� P � P0(I ; W �P0)
;1� 

� P � P0(I ; W �);1� 

� P � (I ; W �);1P0. 

A useful feature of the three uncertainty representations itemized above is that the unstable 

poles of the actual plant P are not constrained to be (a subset of) those of the nominal plant 

P0. 

Note that in all six representations of the perturbed or actual system, the signals � and 

� become internal to the actual subsystem model. This is because it is the combination of 

P0 

with the uncertainty model that constitutes the representation of the actual model P , and 

the actual model is only accessed at its (overall) input and output. 

In summary, then, perturbations of the above form can be used to represent many types of 

uncertainty, for example: high-frequency unmodeled dynamics, unmodeled delays, unmodeled 

sensor and/or actuator dynamics, small nonlinearities, parametric variations. 

20.5 A Linear Fractional Description 

We start with a given a nominal plant model P0, and a feedback controller K that stabilizes 

P0. The robust stability question is then: under what conditions will the controller stabilize 

all P 2 �� More generally, we assume we have an interconnected system that is nominally 

internally stable, by which we mean that the transfer function from an input added in at 

any subsystem input to the output observed at any subsystem output is always stable in 

the nominal system. The robust stability question is then: under what conditions will the 

interconnected system remain internally stable for all possible perturbed models. 

If the plant uncertainty is speci�ed (additively, multiplicatively, or using a feedback 

representation) via an uncertainty block of the form W �, where W and � are stable, then 

the actual (closed-loop) system can be mapped into the very simple feedback con�guration 
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-

G 

w - z -

Figure 20.3: Standard model for uncertainty. 

shown in Figure 20.3. (The generalization to an uncertainty block of the form W1�W2 

is 

trivial, and omitted here to avoid additional notation.) 

As in the previous subsection, the signals � and � respectively denote the input and output 

of the uncertainty block. The input w is added in at some arbitrary accessible point of the 

interconnected system, and z denotes an output taken from an arbitrary accessible point. An 

accessible point in our terminology is simply some subsystem input or output in the actual 

or perturbed system� the input � and output � of the uncertainty block would not qualify as 

accessible points. 

If we remove the perturbation block � in Fig. 20.3, we are left with the nominal closed-
loop system, which is stable by hypothesis (since the compensator K has been chosen to 

stabilize the nominal plant and is lumped in G). Stability of the nominal system implies that 

the transfer functions relating the outputs � and z of the nominal system to the inputs � and 

w are all stable. Thus, in the transfer function representation � ! � ! � ! 

�(s) M(s) N(s) �(s)
� (20.7)

Z(s) J(s) L(s) W (s) 

each of the transfer matrices M , N , J , and L is stable. 

Now incorporating the constraint imposed by the perturbation, namely 

� � (�) � (20.8) 

and solving for the transfer function relating z to w in the perturbed system, we obtain 

Gwz(s) � L + J�(I ; M�);1N: (20.9) 

Note that M is the transfer function \seen" by the perturbation �, from the input � that 

it imposes on the rest of the system, to the output � that it measures from the rest of the 

system. Recalling that w and z denoted arbitrary inputs and outputs at the accessible points 

of the actual closed-loop system, we see that internal stability of the actual (i.e. perturbed) 

closed-loop system requires the above transfer function be stable for all allowed �. 



    

    

 

   

 

          

             

 

  

                 

        

 

          

           

 

      

 

 

  

 

   

 

         

          

 

  

 

  

 

         

 

   

 

      

 

     

 

  

                

 

 

  

 

    

 

     

 

  

               

 

   

  

 

            

 

    

              

 

     

                

   

  

   

 

  

 

   

   

              

              

                  

                 

                

                

                 

                 

    

                

  

    

20.6 The Small-Gain Theorem 

Since every term in Gwz 

other than (I ;M�);1 is known to be stable, we shall have stability of 

Gwz, and hence guaranteed stability of the actual closed-loop system, if (I ; M�);1 is stable 

for all allowed �. In what follows, we will arrive at a condition | the small-gain condition 

| that guarantees the stability of (I ; M�);1 . It can also be shown (see Appendix) that if 

this condition is violated, then there is a stable � with k�k1 

� 1 such that (I ; M�);1 and 

�(I ; M�);1 are unstable, and Gwz 

is unstable for some choice of z and w. 

Theorem 20.1 (\Unstructured" Small-Gain Theorem) De�ne the set of stable pertur-
4 

bation matrices 

6 � � f� j k�k1 

� 1g. If M is stable, then (I ; M�);1 and �(I ; M�);1 

are stable for each � in 

6 � if and only if kMk1 

� 1. 

Proof. The proof of necessity (see Appendix) is by construction of an allowed � that causes 

(I ;M�);1 and �(I ;M�);1 to be unstable if kMk1 

� 1, and ensures that Gwz 

is unstable. 

For here, we focus on the proof of su�ciency. We need to show that if kMk1 

� 1 then 

(I ; M�);1 has no poles in the closed right half-plane for any � 2 

6 �, or equivalently that 

I ; M� has no zeros there. For arbitrary x 6� 0 and any s+ 

in the closed right half-plane 

(CRHP), and using the fact that both M and � are well-de�ned throughout the CRHP, we 

can deduce that 

k[I ; M(s+)�(s+)]xk2 

� kxk2 

; kM(s+)�(s+)xk2 

� kxk2 

; �max[M(s+)�(s+)]k xk2 

� kxk2 

; kMk1 

k�k1kxk2 

� 0 (20.10) 

The �rst inequality above is a simple application of the triangle inequality. The third inequal-
ity above results from the Maximum Modulus Theorem of complex analysis, which says that 

the largest magnitude of a complex function over a region of the complex plane is found on the 

boundary of the region, if the function is analytic inside and on the boundary of the region. 

In our case, both q0M 0Mq and q0�0�q are stable, and therefore analytic, in the CRHP, for 

unit vectors q� hence their largest values over the CRHP are found on the imaginary axis. 

The �nal inequality in the above set is a consequence of the hypotheses of the theorem, and 

establishes that I ; M� is nonsingular | and therefore has no zeros | in the CRHP. 

20.7 Stability Robustness Analysis 

Next, we present a few examples to illustrate the use of the small-gain theorem in stability 

robustness analysis. 

Example 20.1 (Additive Perturbation) 



           

         

    

              

             

             

            

      

       

      

             

       

 

       

               

      

 

        

            

              

   

              

     

 

            

         

  

              


             


   

 

 

 

  

 

 

 

 

 

      

            

 

 

 

  

 

For the con�guration in Figure 20.1, it is easily seen that 

M � ;K(I + P0K);1W � ;(I + KP0)
;1KW 

Example 20.2 (Multiplicative Perturbation) 

A multiplicative perturbation of the form of Figure 20.2 can be inserted into the 

closed-loop system at either the plant input or output. The procedure is then 

identical to Example 20.1, except that M becomes a di�erent function. Again it 

is easily veri�ed that for a multiplicative perturbation at the plant input, 

M � ;(I + KP0)
;1KP0W� (20.11) 

while a perturbation at the output yields 

M � ;(I + P0K);1P0KW: (20.12) 

What the above examples show is that stability robustness requires ensuring the weighted 

versions of certain familiar transfer functions have H1 

norms that are less than 1. For 

instance, with a multiplicative perturbation at the output as in the last example, what we 

require for stability robustness is kTW k1 

� 1, where T is the complementary sensitivity 

function associated with the nominal closed-loop system. This condition evidently has the 

same �avor as the conditions we discussed earlier in connection with nominal performance of 

the closed-loop system. 

The small-gain theorem fails to take advantage of any special structure that there might 

be in the uncertainty set 

6 �, and can therefore be very conservative. As examples of the kinds 

of situations that arise, consider the following two examples. 

Example 20.3 

Suppose we have a system that is best represented by the model of Figure 20.4. 

When this system is reduced to the standard form, � will have a block-diagonal 

- + 

; 

Wa 

- �a 

�b 

� Wb 

66 � � m - K 

-. +m - P0 

-+m -

6 

Figure 20.4: Plant with multiple uncertainties. 

structure, since the two perturbations enter at di�erent points in the system: " # 

�a 

0 

� � (20.13)
0 �b 



           

             

 

                

        

 

 

  

              

             

 

 

                 

        

 

 

            

  

        

              

               

  

       

                  

         

 

       

              

                

               

               

       




 


 

  


 




 
  
 



 

 

      

                 

            

               

            

    

                  

              

              

Thus, there is some added information about the plant uncertainty that can-
not be captured by the unstructured small-gain theorem, and in general, even if 

kMk1 

� 1 for the M that corresponds to the � above, there may be no admissible 

perturbation that will result in unstable (I ; M�);1 . 

Example 20.4 

Suppose that in addition to norm bounds on the uncertainty, we know that the 

phase of the perturbation remains in the sector [;30�� 30�]. Again, even if kMk1 

� 

1 for the M that corresponds to the � for this system, there may be no admissible 

perturbation that will result in unstable (I ; M�);1 . 

In both of the preceding two examples, the unstructured small-gain theorem gives con-
servative results. 

Relating Stability Robustness to the (SISO) Nyquist Criterion 

Suppose we have a SISO nominal plant with a multiplicative perturbation, and a nominally 

stabilizing controller K. Then P � P0(1 + W �), and the compensated open-loop transfer 

function is 

PK � P0K + P0KW �: (20.14) 

Since P0, K, and W are known and j�j � 1 with arbitrary phase, we may deduce from (20.14) 

that the \real" Nyquist plot at any given frequency !0 

is contained in a region delimited by 

a circle centered at P0(j!0)K(j!0), with radius jP0KW (j!0)j. This is illustrated in Figure 

20.5(a). Clearly, if the circle of uncertainty ever includes ;1, there is the possibility that the 

\real" Nyquist plot has an extra encirclement, and hence is unstable. We may relate this 

to the robust stability problem as follows. From Example 20.2, the SISO system is robustly 

stable by the small gain theorem if 

P0K 

���� 

����W � 1� 8 !: (20.15)
1 + P0K 

Equivalently, 

jP0KW j � j1 + P0Kj: (20.16) 

The right-hand side of (20.16) is the magnitude of a translation of the Nyquist plot of the 

nominal loop transfer function. In Figure 20.5(b), because of the translation, encirclement 

of zero will destabilize the system. Clearly, this cannot happen if (20.16) is satis�ed. This 

makes the relationship of robust stability to the SISO Nyquist criterion clear. 

Performance as Stability Robustness 

Suppose that, for some plant model P , we wish to design a feedback controller that not only 

stabilizes the plant (�rst order of priority!), but also provides some performance bene�ts, such 

as improved output regulation in the presence of disturbances. Given that something is known 
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-1 

ωo P KW(jω )o o 
ωo 

P K + 1o 

1 

P Ko P K + 1o 

(a) (b) 

Figure 20.5: Relation of Nyquist criterion and robust stability. 

about the frequency spectrum of such disturbances, the system model might look like Figure 

20.6, where k�k2 

� 1, and the modeling �lter W can be constructed to capture frequency 

characteristics of the disturbance. Calculating the transfer function of this loop from � to 

y, we have that y � (I + PK);1W�. We assume that the performance speci�cation will be 

met if k(I + PK);1W k1 

� 1, which does not restrict the problem, since W can always be 

scaled to re�ect the actual magnitude of the disturbance or performance speci�cation. This 

formulation looks analogous to a robust stability problem, and indeed, it can be veri�ed that 

the small-gain theorem applied to the system of Figure 20.7 captures the identical constraint 

on the system transfer function. By mapping this system into the standard form of Figure 

20.3, we �nd that M � (I + PK);1W , which is exactly the M that is needed if the small-gain 

condition is to yield the desired condition. 

Finally, plant uncertainty has to be brought into the picture simultaneously with the 
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Figure 20.6: Plant with disturbance. 

�� �W 

� 

d 

�l- -. K P+l -

Figure 20.7: Mapping performance speci�cations into a stability problem. 

performance constraints. This is necessary to formulate the performance robustness problem. 

It should be evident that this will lead to situations with block-diagonal �, as was obtained 

in the context of the last example in the previous subsection. The treatment of this case will 

require the notion of structured singular values, as we shall see in the next lecture. 

Appendix 

Necessity of the small gain condition for robust stability can be proved by showing that if 

�max[M(j!0)] � 1 for some !0, we can construct a � of norm less than one, such that the 

resulting closed-loop map Gzv 

is unstable. This is done as follows. Take the singular value 

decomposition of M(j!0), 

- -.+ 

yr 

; 

6 

32 

�1 64 . 75M(j!0) � U�V 

0 � U V 

0: (20.17). . 

�n 

Since �max[M(j!0)] � 1, �1 

� 1. Then �(j!0) can be constructed as: 32 66664 

1��1 

0 77775 

�(j!0) � V U 0 (20.18). . . 
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Clearly, �max�(j!0) � 1. We then have 3232 

�1 

1��1 66664 

77775 

V 

0V 

66664 

0 

. . . 

77775 

�2 

(I ; M�);1(j!0) � I ; U U 0 

. . . 

�n 

0 22 33 

1 66664 

I ;
66664 

77775 

77775 

0 0� U U (20.19). . . 

0 32 66664 

0 

1 77775 

U 0� U . . . 

1 

which is singular. Only one problem remains, which is that �(s) must be legitimate as the 

transfer function of a stable system, evaluating to the proper value at s � j!0, and having 

0 

its maximum singular value over all ! bounded below 1. The value of the destabilizing 

perturbation at !0 

is given by 

1 

�0(j!0) � v1u1�max(M(j!0)) 

Write the vectors v1 

and u1 

0 as 32 

v1 

� 

66664 

j�1�ja1je 

j�2�ja2je 

. . . 

j�n�janje 

77775 

� u 

ih 

j�1 

j�2 

j�n0 �jb1je �jb2je � � � �jbnje1 

� � (20.20) 

where �i 

and �i 

belong to the interval [0� �). Note that we used � in the representation of 

the vectors v1 

and u1 

0 so that we can restrict the angles �i 

and �i 

to the interval [0� �). Now 

we can choose the nonnegative constants �1� �2� � � � � �n 

and �1� �2� � � � � �n 

such that the 

s;�i 

s;�iphase of the function at s � j!0 

is �i, and the phase of the function at s � j!0 

is s+�i 

s+�i 

�i. Now the destabilizing �(s) is given by 

�(s) � 

1 

g(s)hT (s) (20.21)
�max(M(j!0)) 

where 322 3 s;�1 

s+�1 

s;�1 

s+�1 

�jb1j
�jb j

�ja1j
�ja j 

666664 

777775 

66664 

77775 

s;�2 

s+�2 

s;�2 

s+�2 

2 2 

g(s) � � h(s) � : (20.22). . . . . . 

�janj s;�n �jbnj s;�n 

s+�n s+�n 



 

           

 

  

 

 

  

 

  

                    

              

	           
             

          
 

 

    

            

 

     

                  

        

	 

  

 

  

                

           

 

  

 

 

                

   

	 

  

 

      

	                  

             

    

  

       

 

  

                

                 

               

                     

              

               

                   

       

Exercises 

Exercise 20.1 Consider a plant described by the transfer function matrix  a 1  
s;1 s;1Pa(s) = 2s;1 1 

s(s;1) s;1 

where a is a real but uncertain parameter, confned to the range [0:5 , 1:5]. We wish to design a 

feedback compensator K(s) for robust stability of a standard servo loop around the plant. 

(a) We would like to fnd a value of a, say a~, and a scalar, stable, proper rational W (s) such that the 

set of possible plants Pa(s) is contained within the \uncertainty set" 

Pa~ 

(s)[I + W (s)�(s)] 

where �(s) ranges over the set of stable, proper rational matrices with k�k1 

: 1. Try and fnd 

(no assurances that this is possible!) a suitable a~ and W (s), perhaps by keeping in mind that 

what we really want to do is guarantee

 maxfPa 

;1(j!)[Pa(j!) ; Pa~ 

(j!)]g : jW (j!)j~ 

What specifc choice of �(s) yields the plant P1(s) (i.e. the plant with a = 1) ? 

(b) Repeat part (a), but now working with the uncertainty set 

Pa~ 

(s)[I + W1(s)�(s)W2 

(s)] 

where W1(s) and W2(s) are column and row vectors respectively, and �(s) is scalar. Plot the 

upper bound on
 maxfPa 

;1(j!)[Pa(j!) ; Pa~ 

(j!)]g~ 

that you obtain in this case. 

(c) For each of the cases above, write down a sufcient condition for robust stability of the closed-loop 

system, stated in terms of a norm condition involving the nominal complementary sensitivity 

function T = (I + KPa~ 

);1KPa~ 

and W | or, in part (b), W1 

and W2. 

Exercise 20.2 It turns out that the small gain theorem holds for nonlinear systems as well. Con-
sider a feedback confguration with a stable system M in the forward loop and a stable, unknown 

perturbation in the feedback loop. Assume that the confguration is well-posed. Verify that the closed 

loop system is stable if kMkk�k < 1. Here the norm is the gain of the system over any p-norm. (This 

result is also true for both DT and CT systems; the same proof holds). 

Exercise 20.3 The design of a controller should take into consideration quantization efects. Let us 

assume that the only variable in the closed loop which is subject to quantization is the output of the 

plant. Two very simple schemes are proposed: 
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Figure 20.8: Quantization in the Closed Loop. 

- P0 

� f�K 

6 

n 

Figure 20.9: Quantization Modeled as Bounded Noise. 

1. Assume that the output is passed through a quantization operator Q defned as: 

jxj
Q(x) = ab csgn(x), a � 0 

:5 + a 

where brc denotes the largest integer smaller than r. The output of this operator feeds into 

the controller as in Figure 20.8. Derive a sufcient condition that guarantees stability in the 

presence of Q. 

2. Assume that the input of the controller is corrupted with an unknown but bounded signal, with 

a small bound as in Figure 20.9. Argue that the controller should be designed so that it does 

not amplify this disturbance at its input. 

Compare the two schemes, i.e., do they yield the same result? Is there a diference? 



  

   

    

   

  

                    

             

                 

               

               

      

    

              

          

     

          

                

 

   

 

       

                

                

               

            

 

      


 

Chapter 21 

Robust Performance and 

Introduction to the Structured 

Singular Value Function 

21.1 Introduction 

As discussed in Lecture 20, a process is better described in terms of a set of plants centered around a 

nominal model. The robust stabilization problem is concerned with �nding non conservative conditions 

on the stable nominal closed loop system that guarantee the stability of all possible closed loop systems. 

An equally important problem is the robust performance problem which is concerned with �nding non 

conservative conditions on the nominal closed loop system that guarnatee that the performance is met 

for all possible closed loop systems. 

21.2 Robust Disturbance Rejection 

We will focus our discussion on one prototype problem, namely, the robust disturbance rejection 

problem shown in Figure 21.1. This motivates the following problem: 

Robust Disturbance Rejection Problem (RP) 

Find conditions on the nominal closed-loop system (Po�K) such that 

1. K robustly stabilizes all P 2 �, where � � fP j P � (I +�1W1)Po� k�k � 1g:1 

2. k(I + PK);1W2k � 1 for all P 2 �.1 

From Lecture 20, a performance objective in terms of the H1-norm of some closed loop map 

between some exogenous input w, to a regulated variable z, is mathematically equivalent to a robust 

stabilization problem with a perturbation block mapping the regulated output z to the exogenous input 

w. Obviously, the new perturbed system is stable if and only if kTzwk1 

� 1, which is the performance 
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Figure 21.1: Uncertain Plant with Disturbance 

objective. Notice that if the performance objective consists of several closed loop maps, then several 

perturbation blocks can be introduced in exactly the same fashion. 

Proceeding for RP, we can \wrap" a frequency-weighted perturbation from the output to the 

input of interest, which results in the model of Figure 21.2. Next, we can re-arrange the system into the 

- --

- W1 

z1- �1 

w1 

w2 �2 

�z2 W2 

� 

� � m 

6; 

�K 

m+ ++m - -Po 

Figure 21.2: Robust Performance Model 

M -� feedback form (a nominal stable M in feedback with the perturbation �) as in Figure 21.3. In 

this case, however, there are multiple inputs and outputs to consider. We use the following procedure 

to generate M and �: 

1. De�ne wi� zi 

to be the output and input, respectively, of the perturbation �i. 

2. For a total of m perturbations, compute the matrix transfer function M as the map from 3232 

w1 

z1 

w �
64 

75 to z �
64 

75 : (21.1). . 

. . . . 

wm 

zm 

In other words, all the � blocks are removed, and the transfer functions \seen" by the blocks 

from each input wj 

to each output zi 

are calculated and used as the (i� j)th element of M . 

3. The perturbation matrix � will have the structure 32 

� � 

64 

�1 

. . 

75 � k�ik1 

� 1: (21.2). 

�m 

For a SISO system, each �i(j!) is a scalar, so that � becomes a diagonal matrix with complex 

entries. In the MIMO case, � is block-diagonal. 



     

         

	  

      

  

 

  

  

 

  

 

              

         

             

              

      

	 

 

 

 

  

 

 

 

     

              

       

           

 

      

          

     

               

               

                  

                

       

 

          

                 

  

                 

 

 

    

	 

 

	    

 

 

       

    

 

          

Example 21.1 (Robust Disturbance Rejection) 

Applying the robust performance procedure to Figure 21.2 yields: 2 3 ;W1(I + P0K);1P0K ;W1(I + P0K);1P0K 

M � 

4 5 : (21.3) 

W2(I + P0K);1 W2(I + P0K);1 

The transfer functions on the diagonal are identical to those in the single-block robust 

stability and disturbance-rejection problems, respectively, while the o�-diagonal terms 

account for the interaction between the two constraints. Having found the appropriate M 

and �, we have thereby reduced the robust performance problem to a stability problem 

for the system of Figure 21.3. 

- + 

-l - M 

6 

� ! 

�1 � 

�m 

Figure 21.3: M -� Feedback Form 

A su�cient condition for robust stability is given by the small gain theorem, namely, 

�max[M(jw)]�max[�(jw)] � � � 1� for all w: 

Since � is norm bounded by one, this condition translates to kMk1 

� �. This condition, however, is 

far from necessary since � has a block diagonal structure. 

21.3 The Structured Singular Value 

For an unstructured perturbation, the supremum of the maximum singular value of M (i.e. kMk )1 

provides a clean and numerically tractable method for evaluating robust stability. Recall that, for the 

standard M -� loop, the system fails to be robustly stable if there exists an admissible � such that 

(I ; M�) is singular. What distinguishes the current situation from the unstructured case is that 

we have placed constraints on the set 

6 �. Given this more limited set of admissible perturbations, we 

desire a measure of robust stability similar to kMk1. This can be derived from the structured singular 

value �(M). 

De�nition 21.1 The structured singular value of a complex matrix M with respect to a class of 

perturbations 

6 � is given by 

4 

1 

�(M) � � � 2 

6 �: (21.4)
inff�max(�) j det(I ; M�) � 0g 

If det(I ; M�) 6� 0 for all � 2 

6 �, then �(M) � 0. 



           

 

  

 

      

    

 

                 

          

       

                

 

   

    

 

 

            

 

	    

 	 

 

                   


        


 	 

 

               

 

 





                

                

                

         

  

 

    

 

           

         

                     

                 

  

 

    

 

       

        

 

 

 

 

  

 

       

            

 

       

     

           

 

 

    

                 

                 

 

                  

              

                  

Theorem 21.1 The M -� System is stable for all � 2 

6 � with k�k1 

� 1 if and only if 

sup �(M(j!)) � 1: 

! 

Proof: Immediate, from the de�nition. Clearly, if � � 1, then the norm of the smallest allowable 

destabilizing perturbation � must by de�nition be greater than 1. 

21.4 Properties of the Structured Singular Value 

It is important to note that � is a function that depends on the perturbation class 

6 � (sometimes, this 

function is denoted by � 6 � 

to indicate this dependence). The following are useful properties of such a 

fucntion. 

1. �(M) � 0. 

2. If 

6 � � f�I j � 2 C g, then �(M) � �(M), the spectral radius of M (which is equal to the 

magnitude of the eigenvalue of M with maximum magnitude). 

3. If 

6 � � f� j � is an arbitrary complex matrixg then � � �max(M), from which sup! 

� � 

kMk1. 

Property 2 shows that the spectral radius function is a particular � function with respect to 

a perturbation class consisting of matrices of the form of scaled identity. Property 3 shows that 

the maximum singular value function is a particular � function with respect to a perturbation class 

consisting of arbitrary norm bounded perturbations (no structural constraints). 

4. If 

6 � � fdiag(�1� : : : � �n) j �i 

complexg, then �(M) � �(D;1MD) for any D � diag(d1� : : : � dn)� jdij � 

0. The set of such scales is denoted D. 

This can be seen by noting that det(I ; AB) � det(I ; BA), so that det(I ; D;1MD�) � det(I ;
MD�D;1) � det(I ; M�). The last equality arises since the diagonal matrices � and D commute. 

5. If 

6 � � diag(�1� : : : � �n)� �i 

complex, then �(M) � �(M) � �max(M). 

This property follows from the following observation: If 

6 �1 

� 

6 �2, then �1 

� �2. It is clear that the 

class of perturbations consisting of scaled identity matrices is a subset of 

6 � which is a subset of the 

class of all unstructured perturbations. 

6. From 4 and 5 we have that �(M) � �(D;1MD) � infD2D 

�max(D
;1MD). 

21.5 Computation of � 

In general, there is no closed-form method for computing �. Upper and lower bounds may be computed 

and re�ned, however. In these notes we will only be concerned with computing the upper bound. If 

6 � � diag(�1� : : : � �n), then the upper bound on � is something that is easy to calculate. Furthermore, 

property 6 above suggests that by in�mizing �max(D
;1MD) over all possible diagonal scaling matrices, 

we obtain a better approximation of �. This turns out to be a convex optimization problem at each 



                   

     

                     

                    

                  

                

     

               

          

 

 

 

     

 

                   

                 

       

 




 





 
 

 

  

 

  

  

 

   


 


 


  

  

 

 

 



 


 

   

 

 

  

 

 

 

             

         

 

       

      

  

 

 

 

       


 
 

 


 


 

  



 

  


 


 

    


 


 

  



 

  

         

    

     


 
 


 




 

 

 

  

 

 

 



 


 
 
 
 





 
 


 




 

 
 

 

 

 

  

 

 


 


 
 
 
 

    


 
 


 




 

   
 

 

   

 


 
 
 
 

�

frequency, so that by in�mizing over D at each frequency, the tightest upper bound over the set of D 

may be found for �. 

We may then ask when (if ever) this bound is tight. In other words, when is it truly a least upper 

bound. The answer is that for three or fewer �'s, the bound is tight. The proof of this is involved, 

and is beyond the scope of this class. Unfortunately, for four or more perturbations, the bound is not 

tight, and there is no known method for computing � exactly for more than three perturbations. 

21.6 Robust Disturbance Rejection (SISO) 

As shown earlier, the disturbance rejection requirement could be converted to a robust stability problem 

with two blocks of uncertainty, as in Figure 21.2, where �1 

and �2 

are SISO stable systems. Hence 

6 � is the set of 2 � 2 diagonal complex matrices (which result from evaluating � at each frequency). 

Now, since this is a two-block problem, it should be possible to �nd � by in�mizing �max(D
;1MD). 

We have D � diag(d1� d2), so that 8 ������� 

9 ������� 

2 3d2 

W1 

K; 

W1 

P0 

K (j!) ; (j!)1+P0 

K d1 

1+P0 

K 4 5�(M(j!)) � inf 

d1 

�d2 

�0 

�max 

� (21.5)������: 

������ 

d1 

W2 

P0 

W2(j!) (j!)d2 

1+P0 

K 1+P0 

K{z }
A(�) 

ying the upper left diagonal, and the nominal

|
with the \pure" robust stability requirement 

performance requirement on the lower right. Setting � � d2�d1 

and �xing !, and taking the de�nition 

of A(�) from (21.5), we have 

�(M(j!)) � inf f�1�2 (A�(�)A(�))g: (21.6)max 

j�j�0 

Now, for nominal performance, we require that 

occup 

���� 

���� 

W2 

1 + P0K 

� 1:(j!) (21.7) 

For robust stability, we nee ���� 

���� 

W1P0K 

1 + P0K 

� 1:(j!) (21.8) 

For robust performance, the necessary and su�cient condition is 

�(M(j!)) � 1: (21.9) 

A bit of algebra yields 

�max(A
�A) � j�j2 

���� 

W1K 

1 + P0K 

���� 

���� 

W2 

1 + P0K 

(j!) 

���� 

22 

(j!) (21.10)+ 

+ 

���� 

W1KP0 

1 + P0K 

(j!) 

���� 

���� 

W2P0 

1 + P0K 

(j!) 

���� 

22 

1 

+ j�j2 

(21.11) 

from which we have ���� (j!) 

���+ 

��� W2 

1 + P0K 

(j!) 

���� 

�2 

: (21.12) 

W1P0K 

inf �max(A
�A) � 

� 1 + P0K 



     

    

 

 

 

 

          

 

          

  

 

   

              

          

    




 

  

 





 




 

  

 




  



 
 
 
 

             

     

                   

                

      

  

             

              

              

             

        

 

   

             

                

                   

        

ωo 

-1 

L(j )W (j )1ω 

ωL(j ) 

W (j )2 ω 

ω 

Figure 21.4: Robust Performance/Nyquist Criterion 

This minimum occurs at jW2P0jj�j2 � (21.13)jW1Kj 

which is not equal to 1 in general, so that sup! 

� � kMk1. In other words, � is a less conservative 

measure than k�k in this case.1 

Once again, there is a graphical interpretation of the SISO robust disturbance rejection problem, 

in terms of the Nyquist criterion. From (21.12), we have 

W2 

���� 

���� 

���� 

���� 

W1P0K 

�(M(j!)) � 1 () (j!) (j!) � 1: (21.14)+ 

1 + P0K 1 + P0K 

Letting L(j!) represent the nominal loop gain P0K(j!), this can be rewritten as: 

jW1L(j!)j + jW2j � j1 + L(j!)j: (21.15) 

Graphically, we can represent this at each frequency ! as a circle centered at ;1 of radius jW2j, and 

a second circle centered at L(j!) of radius jW1L(j!)j. Robust performance will be achieved as long 

as the two circles never intersect. 

Loop-shaping Revisited 

Loop-shaping is a well-established method of control design that concentrates on the frequency-domain 

characteristics of the open-loop transfer function L � P0K. Based primarily on design experience, 

there are certain characteristics of the loop transfer function that translate into desirable control 

performance. Other open-loop characteristics are known by experience to result in undesirable or 

unpredictable behavior. This method di�ers from �-synthesis and H1 

methods, which concentrate 

on optimizing the characteristics of the closed-loop transfer function. Since, presumably, a controller 

with good behavior designed by loop-shaping should be similar in some way to a controller designed 

by more recent methods, it is of interest to look for parallels in the heuristic rules of loop-shaping and 

the more methodical methods of �-synthesis and H1. 



            

    

      

             

             

               

 

 

 

                  

     

            

  

 

 

 

 

    

     

 

   

 

           

   

 
 




 


 






 
 

  


  




      

 

   

 

     

     

  

 

 

                

                  

 

 

 

                 

 

    

 

 

            

                  

Identifying the sensitivity and complementary sensitivity functions from (21.14), we can write 

the RP requirement as 

jW1(j!)T (j!)j + jW2(j!)S(j!)j � 1: (21.16) 

Model uncertainty typically increases with frequency, so it is important that the complementary sensi-
tivity function decreases with increasing frequency. For disturbance rejection, which is typically most 

critical over a low frequency range, we require that S(j!) remain small. The weighting functions W1 

and W2 

are designed to re�ect this, and so might take on the form of Figure 21.5. Normally, at low 

W W2 1 

Figure 21.5: Typical Weighting Functions 

frequency, L(j!) �� 1 and at high frequency, L(j!) �� 1. Now, 

L 1 

T0 

� � S0 

� (21.17)
1 + L 1 + L 

so that at low frequency, T0 

� 1 and S0 

� 1�L. Thus we can approximate the RP requirement at the 

low end as: 

jW1j + 

����W2 

1 

L 

���� � 1 �) jLj � 

1 

jW2j
; jW1j 

(21.18) 

At high frequency, the approximation is T0 

� L and S0 

� 1, which leads to: 

1 ; jW2jjW1Lj + jW2j � 1� �) jLj � : (21.19)jW1j 

These constraints are summarized in Figure 21.6, which also notes another design rule, which is that 

the 0 dB crossing should occur at a slope no more negative than -40 dB per decade. If W1 

and W2 

do not overlap signi�cantly in frequency, then the upper and lower bounds reduce to jW2j and 1�jW1j, 

respectively. 

Example 21.2 (Loop Shaping) 

Assume P0 

is minimum phase stable with relative degree 1. Designing a controller by 

shaping the loop gain L � P0K is not a�ected by P0� just the relative degree is needed. 



     

       

  

 

  

   

              

 

               

                  

          

 

      

  

  

                

               

 

  

  

      

   

      

 

                      

 

 

  

  

      

 

 

  

    

L(j )ω 

0 dB 

@ -40 dB/decade max 

1 - | W | 

2 

1 

| W |1 

2 

| W | 

1 - | W | 

Figure 21.6: Typical Loop-shaping Problem 

Suppose the multiplicative uncertainty is described by 

s + 1 

W1 

� � 

20(0:01s + 1) 

i.e., the multiplicative perturbations of the plant are upper bounded by W1(j!) at each 

frequency. 

The objective is to track sinusoidal signals at the reference input in the frequency range 

[0� 1] rad�s. We would like to make the tracking error small� however, we do not know yet 

by how much. Let W2(j!) have the following frequency response � 

a 0 � ! � 1 jW2(j!)j � 

0 otherwise 

Note that this may not correspond to a stable W2(s)� however, this does not a�ect the 

resulting loop shape. We are going to exhibit the design by trial and error. Let 

b 

L(s) � : 

cs + 1 

At high frequency, ! � 20, 

1 ; jW2j 1 

L � � ! � 20: jW1j jW1j 

If we pick c � 1, then the largest value for b such that the above is satis�ed is b � 20. 

Hence 

20 

L(s) � : 

s + 1 

At low frequency, ! � 1, 

jW2j a jLj � � : 

1 ; jW1j 1 ; jW1j 



                 

   




 

  




          


      

                

                 

              

                 

               

 

              

               

                  

                   

    

                  

               

           

             

   

                 

           

  

 

     

 

         

 

     

   

 

         

 

 

 

 

       

 

 

  
 


  

 




 

 

 

 


 




 




  

    

 

 



 
 

 

  

 

  




 

 

 

 








 

 

 

 


 

Since jL(j!)j is decreasing and jW1(j!)j is increasing in the range [0� 1], the largest a can 

be solved for: 

a jL(j1)j � � 

1 ; jW1(j1)j
which implies that a � 13:15. Checking the RP condition 

jW2S(j!)j + jW1T (j!)j � 0:92 8! 

which implies RP is achieved and the tracking error is smaller than 1�13:15 in the range 

[0� 1]. If a better performance is desired, a possibly more complicated L needs to be used. 

The discussion in this chapter has focused on perturbations that are arbitrary dynamic systems. 

This alowed us to think of any class of structured perurbations as sets of arbitrary (structured) matrices 

each frequency point. These matrices correspond evaluating the dynamic given at to system at a 

0 

frequency. 

In practical applications, some perturbations may be static and not dynamic. These arise in 

problems with real parameter uncertainties. We can still proceed as before and transform such problems 

to the general M -� diagram. In this case, � will have a combination of both static and dynamic 

perturbations. � for such a class can be de�ned as before, and it will provide a necessary and su�cient 

condition for robust stability. 

The main issue here is computing a good upper bound for �. Of course, we can always embed 

this class of perturbations in a larger class containing dynamic perturbations and use D-scaling to 

obtain an upper bound. This, however, gives conservative conditions. Computing non-conservative 

upper bounds of � for such perturbations remains an active area of research. 

21.7 Rank-One � 

Although we do not have methods for computing � exactly, there is one particular situation where this 

is possible. This situation occurs if M has rank 1, i.e. 

M � ab� 

where a� b 2 C 

n . Then it follows that � with respect to 

6 � containing complex diagonal perturbations 

is given by 

1 

� inf f�max(�) j det(I ; M�) � 0g: 

�(M) �26 � 

However, 

det(I ; M�) � det(I ; ab��) 

det(I ; b��a)� 2 31 

b�1a1 

� det 

BBB@ 

6664 

b� 

2a2 

. . . 

b� 

nan 

CCCA 

7775 

I ; [�1 

� � � �n] 

2 3 

b�1a1 

b� 

2a2 

� 1 ; [�1 

� � � �n] 

6664 

7775 

�. . . 

b� 

nan 



   

 

  


 

 




 




 





 


 

 

 

 


 





 



 
 

 

   
  
 




 





 

  


 

 

 

 


 


 

       


 


 

 

 

 

 


 

 

 

  

 







 

               


 
 

 

  


 

 

 

 

 

 

   

 




 

  

 





 




 

  

 




  


 
 
 
 

       

   

      





 
 

 

   
   

 

  

 

 

 


 

     

 

     

 

 

 

     

                 

  

  

 

 

 

 

 

 









 


 
 

 

 

 

      

  



 


 

 

and �max(�) � maxi 

j�ij. Hence, 

1 

8 ���� 

j�ij 

��������� 

[�1 

� � � �n 

9 ���� 

2 3 

b� 

1a1 

b� 

2a2 

. 

6664 

7775 

� inf ] � 1 : ���� 

max ���: 

�(M) 

�1 

�:::��n 

i 

. . 

nan 

�b 

Xn 

Optimizing the RHS, it follows that (verify) 

1 1 �jbiaij� 

P $ �(M) � n 

iaij 

:�b�(M) ji�1 i�1 

Notice that the SISO robust disturbance rejection problem is a rank-one problem. This follows since 32 ;W1K 

P0 

1 

M � 

4 5 [ ]: 

1 + P0K 1 + P0KW2 

Then ���� 

W1P0K 

1 + P0K 

(j!) 

����+ 

���� 

W2 

1 + P0K 

(j!) 

�����(M(j!)) � 

which is the condition we derived before. 

Coprime Factor Perturbations 

Consider the class of SISO systems ���� N � N0 

+�1W1� D � D0 

+� 

� � 

N(s)
� � 2W2� k�ik � 1 

D(s) 

where the nominal plant is N0�D0 

with the property that both N0 

and D0 

are stable with no common 

zeros in the RHP. Assume that K stabilizes N0�D0. This block diagram is shown in Figure 21.7. 

- -

- W1 

z1- �1 

w1 

w2 �2 

� 

z2 W2 

� 

� � mmm+ 

+ + 

; 6 

�K 

u y -- - D;1 

0N0 

Figure 21.7: Coprime Factor Perturbation Model 



             


 





 

 

 

 

 

 

    

 




 


 


 


 

 

 

  

 

 

 

 

  

 

 

 

  

 

 

  

 


 

 


  

      

  




 

 

  





 


 


 

 

  


 


 
 
 
 

        

              

                 

 

  

 

 

     

    

 

 

  

 

  

 

  

    

 

                

                  

     

 

        








 



 

 

 


 

 

 

      

 

 

      


  

 

   

 







 

 

   

 
 

 
 

 
 

 

 

  

 


 


 


 

 




 

      
   





 
 

   

  

                   

           




 

 
  
 

   




 
 

 

    

 

 

 

   

 
 

 
 

 
 

 

 

  

 

 


 


 


 

 




 


 
 

   

  

The closed loop block diagram can be mapped to the M -� diagram where 2 3 5 

W1 

K W1 

K; ;D0 

+N0 

K D0 

+N0 

K 4M � 

W2 

W2 

D0 

+N0 

K D0 

+N0 

K 2 3W1 

K; D0 

+N0 

K 4 5 [1� 1]: 

W2 

D0 

+N0 

K 

Hence, M has rank 1 and 

�(M(j!)) � 

���� 

W1K 

D0 

+ N0K 

����+ 

���� 

���� : 

W2 

D0 

+ N0K 

Robust Hurwitz Stability of Polynomials with Complex Perturbations 

Another application of the structured singular value with rank one matrices is the robust stabil-�ity of a family of polynomials with complex perturbations of the coe�cients. In this case let � ��T 

�n;1 

�n;2 

: : : �0 

and consider the polynomial family 

P (s� �) � s 

n + (an;1 

+ �n;1�n;1)s 

n;1 + : : : + (a0 

+ �0�0)� 

where ai, �i, and �i 

2 C and j�ij � 1. We want to obtain a condition that is both necessary and 

su�cient for the Hurwitz stability of the entire family of polynomials P (s� �). We can write the 

polynomials in this family as 

P (s� 0) + P~(s� �)P (s� �) � (21.20)� �; 

which can also be rewritten as 

;
�n;1�n;1s 

n;1 + : : : 

n;1n� + �0�0 

� (21.21)+ an;1s + : : : + a0 

+s 

2 32 

�n;1 

0 0 : : : 0 �n;1s
n;1 

3 666664 

0 �n;2 

0 : : : 0 

. .. . . . .. . 

�1 

0 

666664 

777775 

�n;2s
n;2 

. . . 

�1s 

777775 

�� 

P (s� �) � P (s� 0) + 
1 1 : : : 1 : 

0 0 : : : 0 �0 

�0 

We assume that the center polynomial P (s� 0) is Hurwitz stable. This implies that the stability of the 

entire family P (s� �) is equivalent to the condition that 2 32 

�n;1 

0 0 : : : 0 �n;1(j!)
n;1

3 666664 

0 �n;2 

0 : : : 0 

. .. . . . .. . 

�1 

0 

666664 

777775 

�n;2(j!)
n;2 

. . . 

�1(j!) 

777775 

1 �� 

1 + 
1 1 : : : 1 

P (j!� 0) 

6� 0 

0 0 : : : 0 �0 

�0 



 

               

 





  

  


      


 
 


 

 


 









 

 

 

 

 

 

 

   

 

 

 


  

        

 

  

 

            

                 


 




 
 
  


 

   


 
 
 

 

 

 

 

 







 

   

                  

       

 

   

 

     




 

 


1 

for all ! 2 R and j�ij � 1. This is equivalent to the condition that 

�n;1(j!)
n;1 

�n;2(j!)
n;2 

320 BBBBB@ 

666664 

777775 

CCCCCA 

�� 

I + 

1 

P (j!� 0) 

. . . 

�1(j!) 

�0 

det 
1 1 : : : 1 � 6� 0 

for all ! 2 R and � 2 

6 � with k�k1 

� 1. Now using the concept of the structured singular value we 

arrive at the following condition which is both necessary and su�cient for the Hurwitz stability of the 

entire family 

�(M(j!)) � 1 

for all ! 2 R, where 32 666664 

�n;1(j!)
n;1 

�n;2(j!)
n;2 

. . . 

�1(j!) 

�0 

� 

777775 

� 

1 1 : : : 1 : 

1 

M(j!) � 

P (j!� 0) 

X 

Clearly this is a rank one matrix and by our previous discussion the structured singular value can be 

computed analytically resulting in the following test 

n
1 j�n;ijj!jn;i � 1 jP (j!� 0)j 

i�1 

for all ! 2 R. 



 

               

              

             

      

 

 

   

  

  

 

 

 

            

                

     

 

  

                   

            

            

                  

       

               

  

         

 

     

      

               

     

      

  

 

 

 

        

 

     

        

  

 

      

        

 

          

 

       

Exercises 

Exercise 21.1 In decentralized control, the plant is assumed to be diagonal and controllers are de-
signed independently for each diagonal element. If however, the real process is not completely decou-
pled, the interactions between these separate subsystems can drive the system to instability. 

Consider the 2 � 2 plant � � 

P11 

P12P (s) � : 

P21 

P22 

Assume that P12 

and P21 

are stable and relatively small in comparison to the diagonal elements, and 

only a bound on their frequency response is available. Suppose a controller K � diag(K1�K2) is 

designed to stabilize the system P0 

� diag(P11� P22). 

1. Set-up the problem as a stability robustness problem, i.e., put the problem in the M ; � form. 

2. Derive a non-conservative condition (necessary and su�cient) that guarantees the stability ro-
bustness of the above system. Assume the o�-diagonal elements are perturbed independently. 

Reduce the result to the simplest form (an answer like �(M) � 1 is not acceptable� this problem 

has an exact solution which is computable). 

3. How does your answer change if the o�-diagonal elements are perturbed simultaneously with the 

same �. 

Exercise 21.2 Consider the rank 1 � problem. Suppose 

6 �, contains only real perturbations. Com-
pute the exact expression of �(M). 

Exercise 21.3 Consider the set of plants characterized by the following sets of numerators and de-
nominators of the transfer function: 

N(s) � N0(s) + N�(s)�� D(s) � D0(s) + D�(s)� 

Where both N0 

and D0 

are polynomials in s, � 2 R
n , and N�� D� 

are polynomial row vectors. The 

set of all plants is then given by: 

N(s)
� � f 

D(s) 

j � 2 R
n� j�ij � �g 

Let K be a controller that stabilizes 

N0 . Compute the exact stability margin� i.e., compute the largestD0 

� such that the system is stable. 



  

    
 

  

                

                 

              

                 

               

 

    

               

              

           

       

                   

                

                 

  

 

 

  

 

 

 

 

 

 

 

         




 




 

 


 

 

   


 

 

 

  

  

 

Chapter 22 

Reachability of DT LTI Systems 

X 

22.1 Introduction 

We now begin a series of lectures to address the question of synthesizing feedback controllers. This 

objective requires a detailed understanding of how inputs impact the states of a given system, a notion 

we term reachability. Also, this objective requires a detailed understanding of the information the 

output provides about the rest of the states of the dynamic system, a notion we term observability. 

These notions together defne the minimal set of conditions under which a stabilizing feedback controller 

exists. 

22.2 The Reachability Problem 

In previous lectures we have examined solutions of state-space models, the stability of undriven models, 

some properties of interconnections, and input-output stability. We now turn to a more detailed 

examination of how inputs a�ect states, for the nth-order DT system 

x(i + 1) = Ax(i) + Bu(i) : (22.1) 

(The discussion of reachability in the DT case is generally simpler than in the CT case that we will 

consider next Chapter, but some structural subtleties that are hidden in the CT case become more 

apparent in the DT case. For the most part, however, DT results parallel CT results quite closely.) 

Recall that 

k;1 

x(k) = Ak x(0) + Ak;i;1 Bu(i) 

i=0 10 ih 

Ak= x(0) + Ak;1B j Ak;2B j     j B 

BBB@ 

u(0) 

u(1) CCCA. . . 

u(k ; 1) 

= Ak x(0) + Rk 

Uk 

(22.2) 



    

 

 

 

           

                    

                       

                  

        

 

            

       

 

 

   

                 

   

 

    

  

    

     

                   

          

 

                 

 

 

                 

  

 

                

 

 

                  

       

                

                   

                    

 

 

       

 

 

       

                

          

      

    

   

  

   

         

 

     

  

      

 

       

                  

   

 

 

 

 

 

 

 

   

 

 

              

where the defnition of Rk 

and Uk 

should be clear from the equation that precedes them. Now consider 

whether and how we may choose the input sequence u(i), i 2 [0, k; 1], so as to move the system from 

x(0) = 0 to a desired target state x(k) = d at a given time k. If there is such an input, we say that 

the state d is reachable in k steps. It is evident from (22.2) that | assuming there are no constraints 

placed on the input | the set R k 

of states reachable from the origin in k steps, or the k-reachable set, 

is precisely the range of Rk, i.e. 

R k 

= Ra(Rk) (22.3) 

The k-reachable set is therefore a subspace, and may be referred to as the k-reachable subspace. We 

call the matrix Rk 

the k-step reachability matrix. 

Theorem 22.1 

For k : n : `, 

Ra(Rk)  Ra(Rn) = Ra(R`) (22.4) 

so the set of states reachable from the origin in some (fnite) number of steps by appropriate choice of 

control is precisely the subspace of states reachable in n steps. 

Proof. 

The fact that Ra(Rk)  Ra(Rn) for k : n follows trivially from the fact that the columns of Rk 

are in-
cluded among those of Rn. To show that Ra(Rn) = Ra(R`) for ` ? n, note from the Cayley-Hamilton 

n;1,theorem that Ai for i ? n can be written as a linear combination of A    , A, I , so all the columns 

of R` 

for ` ? n are linear combinations of the columns of Rn. Thus (22.4) is proved, and the rest of 

the statement of the theorem follows directly. 

In view of Theorem 22.1, the subspace of states reachable in n steps, i.e. Ra(Rn), is referred 

to as the reachable subspace, and will be denoted simply by R ; any reachable target state, i.e. any 

state in R , is reachable in n steps (or less). The system is termed a reachable system if all of R
n is 

reachable, i.e. if rank(Rn) = n. The matrix h i 

Rn 

= An;1B j An;2B j    j B , (22.5) 

is termed the reachability matrix (often written with its block entries ordered oppositely to the order 

that we have used here, but this is not signifcant). 

Example 22.1 Consider the single-input system        
x1(k + 1) 1 0 x1(k) 1 

= + u(k): 

x2(k + 1) 0 1 x2(k) 1 

The reachable subspace is evidently (from symmetry) the line x1 

= x2. This system is 

not reachable. 

The following alternative characterization of R k 

is useful, particularly because its CT version 

will play an important role in our development of the CT reachability story. Let us frst defne the 

k-step reachability Gramian Pk 

by 

k;1X 

T iB T (AT )iPk 

= RkRk 

= A B (22.6) 

i=0 

This matrix is therefore symmetric and positive semi-defnite. We then have the following result. 



  

   

 

  

 

                  

   

    

 

 

 

   

 

 

 

  

  

  

 

 

 

        
 

                 
 

  

 

            
 

 

  

 

 

                  

        

      

                  

    

 

  

 

 

 

  

 

                   

                    

                  

   

               

                   

 

  

  

 

                   

                  

         

                   

                 

 

 

               

                  

        

 

         

Lemma 22.1 

Ra(Pk) = Ra(Rk) = R k 

: (22.7) 

Proof. 

It is easy to see that Ra(Pk) � Ra(Rk). For the reverse inclusion, we can equivalently show that 

Ra�(Pk) � Ra�(Rk) 

For this, note that 

q 

T Pk 

= 0 =) q 

T Pkq = 0 

T T() hR q,R qi = 0k k 

() q 

T Rk 

= 0 

� so any vector in Ra  (Pk) is also in Ra�(Rk). 

Thus the reachable subspace can equivalently be computed as Ra(P`) for any ` ? n. If the system is 

stable, then P1 

:= P is well defned, and is easily shown to satisfy the Lyapunov equation 

T TAPA ; P = ;BB (22.8) 

We leave you to show that (22.8) has a (unique) positive defnite (and hence full rank) solution P if 

and only if the system (A,B) is reachable. 

Reachability from an Arbitrary Initial State 

Note from (22.2) that getting from a nonzero starting state x(0) = s to a target state x(k) = d requires 

us to fnd a Uk 

for which 

kd; A s = Rk 

Uk 

(22.9) 

For arbitrary d, s, the requisite condition is the same as that for reachability from the origin. Thus we 

can get from an arbitrary initial state to an arbitrary fnal state if and only if the system is reachable 

(from the origin); and we can make the transition in n steps or less, when the transition is possible. 

Controllability versus Reachability 

Now consider what is called the controllability problem, namely that of bringing an arbitrary initial 

state x(0) to the origin in a fnite number of steps. From (22.2) we see that this requires solving 

k;A x(0) = Rk 

Uk 

(22.10) 

If A is invertible and x(0) is arbitrary, then the left side of (22.10) is arbitrary, so the condition for 

controllability of x(0) to the origin in a fnite number of steps is precisely that rank(Rk) = n for some 

k, i.e. just the reachability condition that rank(Rn) = n. 

If, on the other hand, A is singular (i.e. has eigenvalues at 0), then the left side of (22.10) will 

kbe confned to a subspace of the state space, even when x(0) is unrestricted. The range of A for 

a singular A may decrease initially, but Ra(Ak) = Ra(An) for k ? n (since by stage n the Jordan 

blocks associated with the zero eigenvalues of A are all guaranteed to have been \zeroed out" in An). 

Meanwhile, as we have seen, the range of Rk 

may increase initially, but Ra(Rk) = Ra(Rn) for k ? n. 



                   

	      

      

             

               

 

    

   

   

             

  

                      

 

   

      

   	 

  

     

 

 
 

                   

                    

      

                

                     

  

    

                     

                

                   

     

                  

              

       

   

 

  

 

 

 

 

    

 

             

                             

   




	


 

 

 

 

  
 

 

 

        

 

           

           

It follows from these facts and (22.10) that an arbitrary initial state is controllable to 0 in fnite time, 

i.e. the system is controllable, i� 

Ra  (An) � Ra  (Rn) (22.11) 

For invertible A, we recover our earlier condition. (The distinction between reachability and controlla-
bility is not seen in the CT case, because the state transition matrix there is eAt rather than Ak , and 

is always invertible.) 

22.3 Modal Aspects 

The following result begins to make the connection of reachability with modal structure. 

Corollary 22.1 

The reachable subspace R is A-invariant, i.e. x 2 R =) Ax 2 R . We write this as AR � R 

Proof. 

We frst show 

Ra  (ARn) � Ra  (Rn) (22.12) 

For this, note that � � 

AnB An;1BARn 

= 
AB 

The last n ; 1 blocks are present in Rn, while the Cayley-Hamilton theorem allows us to write AnB 

as a linear combination of blocks in Rn. This establishes (22.12). It follows that x = Rn� =) Ax = 

ARn� = Rn� 2 R . 

Some feel for how this result connects to modal structure may be obtained by considering what 

happens if the subspace R is one-dimensional. If v ( 6= 0) is a basis vector for R , then Corollary 22.1 

states that 

Av = �v (22.13) 

for some �, i.e. R is the space spanned by an eigenvector of A. More generally, it is true that any 

A-invariant subspace is the span of some eigenvectors and generalized eigenvectors of A. (It turns out 

that R is the smallest A-invariant subspace that contains Ra  (B), but we shall not pursue this fact. ) 

Standard Form for Unreachable Systems 

If a system of the form (22.1) is unreachable, it is convenient to choose coordinates that highlight this 

fact. Specifcally, we shall show how to change coordinates (using a similarity transformation) from 

x = Tz to 

z = T 

;1 x = 

z1 

z2 

where z1 

is an r-vector and z2 

is an (n ; r)-vector, with r denoting the dimension of the reachable 

subspace, r = dim R . In these new coordinates, the system (22.1) will take the form 

z1(k + 1) 

A1 

A12 

z1(k) 

B1 = + u(k) (22.14)
z2(k + 1) 0 A2 

z2(k) 0 

with the reachable subspace being the subspace with z2 

= 0. We shall refer to a system in the form 

(22.14) as being in the standard form for an unreachable system. 



        

 

 

         

    

   

  

 

 

                

 

  

 

 

 

  

                  

  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

   

 

 

 

 

 

 

 

 

 

              

 

 

                  

    

 

                

                   

               

   

 

 

 

           

    

                    

   

      

                  

                 

        

     

                

                  

              

      

   

                

  

         

 

       

 

   

         

 

 

 

    

 

  

 

 

 

   

 

  

 

     

 

    

 

 

       

n�rThe matrix T is constructed as follows. Let T1 

be a matrix whose columns form a basis for 

the reachable subspace, i.e. 

Ra(T1) = Ra(Rn) , 

n�(n;r)
and let T2 

be a matrix whose columns are independent of each other and of those in T1. Then 

choose 

T = [ T1 

j T2 

] : 

This matrix is invertible, since its columns are independent by construction. We now claim that 

Ar�r A12� 

1A [ T1 

j T2 

] = TA = [ T1 

j T2 

] (22.15)
0 A2 2 3 

Br�m 

1 

�B = TB = [ T1 

j T2 

] 

4 ;;; 

5 : 

0 

Our reasoning is as follows. Since the reachable subspace is A-invariant, the columns of AT1 

must 

�remain in Ra(T1), which forces the 0 block in the indicated position in A. Similarly, the presence of 

the zero block in B� is a consequence of the fact that the columns of B are in the reachable subspace. 

The above standard form is not uniquely defned, but it can be shown (we leave you to show it!) 

that any two such standard forms are related by a block upper triangular similarity transformation. 

As a result, A1 

and A2 

are unique up to similarity transformations (so, in particular, their Jordan 

forms are uniquely determined). 

From (22.14) it is evident that if z2(0) = 0 then the motion of z1(k) is described by the rth-order 

reachable state-space model 

z1(k + 1) = A1z1(k) + B1u(k): (22.16) 

This is also called the reachable subsystem of (22.1) or (22.14). The eigenvalues of A1, which we may 

refer to as the reachable eigenvalues, govern the ZIR in the reachable subspace. Also, the behavior of 

z2(k) is described by the undriven state-space model 

z2(k + 1) = A2z2(k) (22.17) 

and is governed by the eigenvalues of A2, which we may call the unreachable eigenvalues. 

There is no loss of generality in assuming a given unreachable system has been put in the standard 

form for unreachable systems; proofs of statements about unreachable systems are often much more 

transparent if done in these coordinates. 

Modal Reachability Tests 

An immediate application of the standard form is to prove the following modal test for (un)reachability. 

Theorem 22.2 

TThe system (22.1) is unreachable if and only if wT B = 0 for some left eigenvector w of A. We say 

that the corresponding eigenvalue � is an unreachable eigenvalue. 

Proof. 

TIf wT B = 0 and wT A = �wT with w =6 0, then wT AB = �wT B = 0 and similarly wT AkB = 0, so 

wT Rn 

= 0, i.e. the system is unreachable. 



               

 

 

          

 

 
 

 

 

       

                 

           

  

          
   

           

    

 

   
   

           

 

 
   

     

 

  

                  

  

         

  

    

  

   

 

             

 

 
 

 
 

 

        

 

 
  

      

 

                   

            

   

                  

                

                

                

   

                  

                 

                  

                

                

            

              

                      

                  

 

 

 

  

 

 

 

 

 

 

 

 

TConversely, if the system is unreachable, transform it to the standard form (22.14). Now let w2 

T Tdenote a left eigenvector of A2, with eigenvalue �. Then w = [ 
0 w2 

] is a left eigenvector of the 

� �transformed A matrix, namely A, and is orthogonal to the (columns of the) transformed B, namely B. 

An alternative form of this test appears in the following result. 

Corollary 22.2 

The system (22.1) is unreachable if and only if [ 
zI ; A B ] loses rank for some z = �. This � is 

then an unreachable eigenvalue. 

Proof. 

TThe matrix [ 
zI ; A B ] has less than full rank at z = � i� wT [ 

sI ; A B ] = 0 for some w 6= 0. 

But this is equivalent to having a left eigenvector of A being orthogonal to (the columns of) B. 

Example 22.2 

Consider the system 

3 0 1 

x(k + 1) = x(k) + u(k)
0 3 1 | {z } | {z }
A B 

T TLeft eigenvectors of A associated with its eigenvalue at � = 3 are w1 

= [ 1 0 ] and w [ 0 1 ],= 

Tneither of which is orthogonal to B. However, w0 

= [ 
1 ;1 ] is also a left eigenvector associated 

with � = 3, and is orthogonal to B. This example drives home the fact that the modal unreachability 

test only asks for some left eigenvector to be orthogonal to B. 

Jordan Chain Interpretation 

Recall that the system (22.1) may be thought of as having a collection of \Jordan chains" at its 

core. Reachability, which we frst introduced in terms of reaching target states, turns out to also 

describe our ability to independently \excite" or drive the Jordan chains. This is the implication of 

the reachable subspace being an A-invariant subspace, and is the reason why the preceding modal tests 

for reachability exist. 

The critical thing for reachability is to be able to excite the beginning of each chain; this excitation 

can then propagate down the chain. An additional condition is needed if several chains have the same 

eigenvalue; in this case, we need to be able to independently excite the beginning of each of these 

chains. (Example 22.2 illustrates that reachability is lost otherwise; with just a single input, we are 

unable to excite the two identical chains independently.) With distinct eigenvalues, we do not need to 

impose this independence condition; the distinctness of the eigenvalues permits independent motions. 

Some additional insight is obtained by considering the distinct eigenvalue case in more detail. 

In this case, A in (22.1) is diagonalizable, and A = V �W , where the columns of V are the right 

eigenvectors of A and the rows of W are the left eigenvectors of A. For x(0) = 0 we have 

Xn 

x(k) = v`w`
T Bg`(k) (22.18) 

`=1 

where 

k;1X 

�k;i;1 g`(k) = u(i) (22.19)` 

i=0 



 

 

                     

                

 

 

   

                 

 

   

          

 

   

If wj
T B = 0 for some j, then (22.18) shows that x(k) is confned to the span of fv`g`=6 j , i.e. the system 

is not reachable. For example, suppose we have a second-order system (n = 2), and suppose w1 

T B = 0. 

Then if x(0) = 0, the response to any input must lie along v2. This means that v2 

spans the reachable 

space, and that any state which has a component along v1 

is not reachable. 



 

               

                      

                   

            

 

     

 

 

      

                 

  

 

             

 

       

                  

          

     

 

  

    

  

                 

                 

                       

       

                

 


 



 

 
 





 


 



 


 


 


 

               

     

 

            

       

                  

	                 

          

              

               

                

     

Exercises 

Exercise 22.1 Suppose you are given the single-input, nth-order system x(k + 1) = Ax(k) + bu(k), 

and assume the control u at every time step is confned to lie in the interval [0, 1]. Assume also that an 

eigenvalue of A, say �1, is real and nonnegative. Show that the set of states reachable from the origin 

is confned to one side of a hyperplane through the origin in Rn . (Hint: An eigenvector associated 

with �1 

will help you make the argument.) 

[A hyperplane through the origin is an (n ; 1)-dimensional subspace defned as the set of vectors 

0x in Rn for which a x = 0, where a is some fxed nonzero vector in Rn . Evidently a is normal to the 

hyperplane. The two \sides" of the hyperplane, or the two \half-spaces" defned by it, are the sets of 

0 0x for which a x : 0 and a x ? 0.] 

Exercise 22.2 Given the system ���� 

a b d 

x(k + 1) = x(k) + u(k)
0 c e 

where a, b, c, d, e are scalars, deduce precisely what condition these coe�cients satisfy when the 

system is not reachable. Draw a block diagram corresponding to the above system and use it to 

interpret the following special cases in which reachability is lost: (a) e = 0; (b) b = 0 and d = 0; (c) 

b = 0 and c = a. 

Exercise 22.3 (a) Given m-input system x(k + 1) = Ax(k) + Bu(k), where A is the Jordan-form 

matrix 0 1
2 1 0 0 0 

0 2 0 0 0 

0 0 2 0 0 

0 0 0 3 1 

0 0 0 0 3 

BBB@ 

CCCA 

A = 

obtain conditions that are necessary and su�cent for the system to be reachable. (Hint: Your 

conditions should involve the rows bi 

of B. Some form of the modal reachability test will | not 

surprisingly! | lead to the simplest solution.) 

(b) Generalize this reachability result to the case where A is a general n � n Jordan-form matrix. 

(c) Given the single-input, reachable system x(k + 1) = Ax(k) + bu(k), show that there can be only 

one Jordan block associated with each distinct eigenvalue of A. 

Exercise 22.4 Given the n-dimensional reachable system x(k + 1) = Ax(k) + Bu(k), suppose that 

u(k) is generated according to the nonlinear feedback scheme shown in the fgure, where u(k) = 

w(k) + f(x(k)), with f(:) being an arbitrary but known function, and w(k) being the new control 

input for the closed-loop system. 



                   

                  

   

 	

 

 

 

 

 

 

 

 

 

 

 

  

         

     

   

             

	                   

                    

    

                  

                   

                   

       

 

 
 
 
 
 
 
 

   

 

  

 











 




   


 


 




 
 




   


 


 





 


 
 


 



 
 
 
 




   


 

   




     

      

	                    

                

                 

  

Show that w(k) can always be chosen to take the system state from the origin to any specifed target 

state in no more than n steps. You will thereby have proved that reachability is preserved under (even 

nonlinear) state feedback. 

w + u- l - System 

x 

6+ 

f(�) 

� 

xk+1 

= Axk 

+ B(wk 

+ f(xk)) 

Exercise 22.5 Consider the following linear SISO System, �: 

x(k + 1) = A(k)x(k) + B(k)u(k) 

y(k) = C(k)x(k) + D(k)u(k) 

where A(k) = A(k + N) 8k ? 0, similarly for B(k), C(k), and D(k). 

(a) Show that � is N -Periodic, i.e., for zero initial conditions, show that if y is the output response 

for some input u, then y(k ; N) is the output response for u(k ; N). Assume for simplicity that 

u(k) = 0 for k � 0. 

We want to get a di�erent representation of this system that is easier to work with. To achieve 

this, we will group together every N successive inputs starting from k = 0. We will also do the 

same for the output. To be more precise, we will defne a mapping L, called a lifting, such that 

L : (u(0), u(1), u(2), : : : , u(k), : : :) ! u~ 

where 00 u(0) 01 u(N) 01 u(kN) 11 

u~ = 

BB@ 

BB@ 

u(1) 

. . . 

u(N ; 1) 

CCA , 

BB@ 

u(N + 1) 

. . . 

u(2N ; 1) 

CCA , : : : , 

BB@ 

u(kN + 1) 

. . 

CCA , : : : 

CCA : 

. 

u((k + 1)N ; 1) 

Similarly, L : y ! y~. 

~(b) Show that the system mapping u~ to y~ is linear time invariant. We will denote this by �, the 

lifted system. What are the dimensions of the inputs and outputs. (In other words, by lifting 

the inputs and outputs, we got rid of the periodicity of the system and obtained a Multi-Input 

Multi-Output System). 



	                 

          

	                  

                  

          

	                  

      

(c) Give a state-space description of the lifted system. (Hint: Choose as a state variable x~(k) = x(kN), 

i.e., samples of the original state vector. Justify this choice). 

~(d) Show that the reachable subspace of the lifted system � is included in the reachable subspace of 

the periodic system �. Show that the converse is true if the periodic system is reachable in T 

steps with T = rN (a multiple of the period). 

~(e) Is it true that reachability of the periodic system � implies reachability of the lifted system �. 

Prove or show a counter example. 
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