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Chapter 19 

Robust Stability in SISO Systems
 

19.1 Introduction 

There are many reasons to use feedback control. As we have seen earlier, with the help of an 

appropriately designed feedback controller we can reduce the e�ect of noise and disturbances, 

and we can improve the tracking of command signals. Another very important use for feedback 

control is the reduction of the e�ects of plant uncertainty. The mathematical models that we 

use to describe the plant dynamics are almost never perfect. A feedback controller can be 

designed so as to maintain stability of the closed-loop and an acceptable level of performance 

in the presence of uncertainties in the plant description, i.e., so as to achieve robust stability 

and robust performance respectively. 

For the study of robust stability and robust performance, we assume that the dynamics 

of the actual plant are represented by a transfer function that belongs to some uncertainty 

set �. We begin by giving mathematical descriptions of two possible uncertainty sets. Many 

other descriptions exist, and may be treated by methods similar to those we present for these 

particular types of uncertainty sets. 

19.2 Additive Representation of Uncertainty 

It is commonly the case that the nominal plant model is quite accurate for low frequencies 

but deteriorates in the high-frequency range, because of parasitics, nonlinearities and/or time-
varying e�ects that become signi�cant at higher frequencies. These high-frequency e�ects may 

have been left unmodeled because the e�ort required for system identi�cation was not justi�ed 

by the level of performance that was being sought, or they may be well-understood e�ects that 

were omitted from the nominal model because they were awkward and unwieldy to carry along 

during control design. This problem, namely the deterioration of nominal models at higher 

frequencies, is mitigated to some extent by the fact that almost all physical systems have 


 



strictly proper transfer functions, so that the system gain begins to roll o� at high frequency. 

In the above situation, with a nominal plant model given by the proper transfer function 

P0(s), the actual plant represented by P (s), and the di�erence P (s) ; P0(s) assumed to be 

stable, we may be able to characterize the model uncertainty via a bound of the form 

jP (j!) ; P0(j!)j � ` a(!) (19.1) 

where (
` a(!) � 

\Small" � j!j � !c : (19.2)
\Bounded" � j!j � !c 

This says that the response of the actual plant lies in a \band" of uncertainty around that of 

the nominal plant. Notice that no phase information about the modeling error is incorporated 

into this description. For this reason, it may lead to conservative results. 

The preceding description suggests the following simple additive characterization of the 

uncertainty set: 

�a 

� fP (s) j P (s) � P0(s) + W (s)�(s)g (19.3) 

where � is an arbitrary stable transfer function satisfying the norm condition 

k�k1 

� sup j�(j!)j � 1� (19.4) 

! 

and the stable proper rational weighting term W (s) is used to represent any information we 

have on how the accuracy of the nominal plant model varies as a function of frequency. Figure 

19.1 shows the additive representation of uncertainty in the context of a standard servo loop, 

with K denoting the compensator. 

When the modeling uncertainty increases with frequency, it makes sense to use a weight-
ing function W (j!) that looks like a high-pass �lter: small magnitude at low frequencies, 

increasing but bounded at higher frequencies. 
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Figure 19.1: Representation of the actual plant in a servo loop via an additive perturbation 

of the nominal plant. 

Caution: The above formulation of an additive model perturbation should not be interpreted 

as saying that the actual or perturbed plant is the parallel combination of the nominal system 

P0(s) and a system with transfer function W (s)�(s). Rather, the actual plant should be 

considered as being a minimal realization of the transfer function P (s), which happens to be 

written in the additive form P0(s) + W (s)�(s). 

Some features of the above uncertainty set are worth noting: 



�	 The unstable poles of all plants in the set are precisely those of the nominal model. Thus, 

our modeling and identi�cation e�orts are assumed to be careful enough to accurately 

capture the unstable poles of the system. 

�	 The set includes models of arbitrarily large order. Thus, if the uncertainties of major 

concern to us were parametric uncertainties, i.e. uncertainties in the values of the 

parameters of a particular (e.g. state-space) model, then the above uncertainty set 

would greatly overestimate the set of plants of interest to us. 

The control design methods that we shall develop will produce controllers that are guar-
anteed to work for every member of the plant uncertainty set. Stated slightly di�erently, 

our methods will treat the system as though every model in the uncertainty set is a possible 

representation of the plant. To the extent that not all members of the set are possible plant 

models, our methods will be conservative. 

Suppose we have a set of possible plants � such that the true plant is a member of that 

set. We can try to embed this set in an additive perturbation structure. First let P0 

2 � be 

a certain nominal plant in �. For any other plant P 2 � we write, 

P (j!) � P0(j!) + W (j!)�(j!): 

The weight jW (j!)j satis�es 

jW (j!)j � jW (j!)�(j!)j � jP (j!) ; P0(j!)j 

jW (j!)j � max jP (j!) ; P0(j!)j � ` a(j!): 

P 2� 

With the knowledge of the lower bound ` a(j!), we �nd a stable system W (s) such that 

jW (j!)j � ` a(j!) 

19.3 Multiplicative Representation of Uncertainty 

Another simple means of representing uncertainty that has some nice analytical properties is 

the multiplicative perturbation, which can be written in the form 

�m 

� fP j P � P0(1 + W �)� k�k1 

� 1g:	 (19.5) 

W and � are stable. As with the additive representation, models of arbitrarily large order 
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Figure 19.2: Representation of uncertainty as multiplicative perturbation at the plant input. 



are included in the above sets. 

The caution mentioned in connection with the additive perturbation bears repeating 

here: the above multiplicative characterizations should not be interpreted as saying that the 

actual plant is the cascade combination of the nominal system P0 

and a system 1 + W �. 

Rather, the actual plant should be considered as being a minimal realization of the transfer 

function P (s), which happens to be written in the multiplicative form. 

Any unstable poles of P are poles of the nominal plant, but not necessarily the other 

way, because unstable poles of P0 

may be cancelled by zeros of I + W �. In other words, 

the actual plant is allowed to have fewer unstable poles than the nominal plant, but all its 

unstable poles are con�ned to the same locations as in the nominal model. In view of the 

caution in the previous paragraph, such cancellations do not correspond to unstable hidden 

modes, and are therefore not of concern. 

As in the case of additive perturbations, suppose we have a set of possible plants � such 

that the true plant is a member of that set. We can try to embed this set in a multiplicative 

perturbation structure. First let P0 

2 � a certain nominal plant in �. For any other plant 

P 2 � we have, 

P (j!) � P0(j!)(1 + W (j!)�(j!)): 

The weight jW (j!)j satis�es ����


����


P (j!) ; P0(j!)jW (j!)j � ���� 

jW (j!)�(j!) 

P (j!) ; P0(j!) 

j �
 

P0(j!)

 
 ����


jW (j!)j � � ` m(j!):max 

P 2� P0(j!)

 
 

With the knowledge of the envelope ` m(j!), we �nd a stable system W (s) such that jW (j!)j � 

` m(j!) 

Example 19.1 Uncertain Gain 

Suppose we have a plant P � kP�(s) with an uncertain gain k that lies in the 

interval k1 

� k � k2. We can write k � �(1 + �x) such that 

k1 

� �(1 ; �) 

k2 

� �(1 + �): 

Therefore � � 

k1 

+k2 , � � 

k2 

;k1 , and we can express the set of plants as 2 k2 

+k1 ���� 

� � P (s)jP (s) � 

k1 

+ k2 

P�(s) 1 + 

k2 

; k1 

x � ;1 � x � 1 : 

2 k2 

+ k1 

We can embed this � in a multiplicative structure by enlarging the uncertain 

elements x which are real numbers to complex �(j!) representing dynamic per-
turbations. This results in the following set ���� 

��m 

� P (s)jP (s) � 

k1 

+ k2 

P (s) 1 + 

k2 

; k1 

� � k�k1 

� 1 : 

2 k2 

+ k1 



Note that in this representation P0 

� 

k1 

+k2 P�, and W � 

k2 

;k1 .2 k2 

+k1 

Example 19.2 Uncertain Delay 

Suppose we have a plant P � e;ks P0(s) with an uncertain delay 0 � k � k1. We 

want to represent this family of plants in a multiplicative perturbation structure. 

The weight W (s) should satisfy �����


�����


e;j!kP0(j!) ; P0(j!) 

P0(j!)
jW (j!)j � max 

0�k�k1 


 
 

� max je;j!k ; 1j
0�k�k1 

j1 ; e;j! k1 j ! � 

� 

k1 

0

(
�


! � 

� 

k1 

� ` m(!): 

A stable weight that satis�es the above relation can be taken as


2�k1s


W (s) � � : 

�k1s + 1 

where � � 1. The reader should verify that this weight will work by ploting 

jW (j!)j and ` m(!), and showing that ` m(!) is below the curve jW (j!)j for all !. 

19.4 The Nyquist Criterion 

Before we analyze the stability of feedback loops where the plant is uncertain, we will review 

the Nyquist criterion. Consider the feedback structure in Figure 19.3. The transfer function 

- h - L 

-
;6 

Figure 19.3: Unity Feedback Confuguration. 

L is called the open-loop transfer function. The condition for the stability of the system 

in 19.3 is assured if the zeros of 1 + L are all in the left half of the complex plane. The 

agrument principle from complex analysis gives a criterion to calculate the di�erence between 

the number of zeros and the number of poles of an analytic function in a certain domain, D 

in the complex plane. Suppose the domain is as shown in Figure 19.4, and the boundary of 

D, denoted by �D, is oriented clockwise. We call this oriented boundary of D the Nyquist 

contour. 



R 

Nyquist Domain 

Figure 19.4: Nyquist Domain. 

As the radius of the semicircle in Figure 19.4 goes to in�nty the domain covers the right 

half of the complex plane. The image of �D under L is called a Nyquist plot, see Figure 19.5. 

Note that if L has poles at the j! axis then we indent the Nyquist contour to avoid these 

poles, as shown in Figure 19.4. De�ne 

�ol 

� Open ; loop poles � Number of poles of L in D � Number of poles of 1 + L in D 

�cl 

� Closed ; loop poles � Number of zeros of 1 + L in D: 

From the argument principle it follows that 

�cl;�ol 

� The number of clockwise encirclements that the Nyquist Plot makes of the point ;1: 

Using this characterization of the di�erence of the number of the closed-loop poles and the 

open-loop poles we arrive at the following theorem for the stability of Figure 19.3 

Theorem 19.1 The closed-loop system in Figure 19.3 is stable if and only if the Nyquist plot 

� does not pass through the origin, 

� makes �ol 

counter-clockwise encirclements of ;1. 

19.5 Robust Stability 

In this section we will show how we can analyze the stability of a feedback system when the 

plant is uncertain and is known to belong to a set of the form that we described earlier. We 

will start with the case of additive pertubations. Consider the unity feedback con�guration 

in Figure 19.1. The open-loop transfer function is L(s) � (P0(s) + W (s)�(s))K(s), and the 



-1 

Nyquist Plot 

Figure 19.5: Nyquist Plot. 

nominal open-loop transfer function is L0(s) � P0(s)K(s). The nominal feedback system 

with the nominal open-loop transfer function L0 

is stable, and we want to know whether the 

feeback system remains stable for all �(s) satisfying j�(j!)j � 1 for all ! 2 R. We will 

assume that the nominal open-loop system is stable. This causes no loss of generality and the 

result holds in the general case. From the Nyquist criterion, we have that the Nyquist plot of 

L0 

does not encircle the point ;1. For the perturbed system, we have that 

1 + L(j!) � 1 + P (j!)K(j!) 

� 1 + (P0(j!) + W (j!)�(j!))K(j!) 

� 1 + L0(j!) + W (j!)�(j!)K(j!) 

From the Figure 19.6, it is clear that L(�!) will not encircle the point ;1 if the following 

condition is satis�ed, 

jW (j!)K(j!)j � j1 + L0(j!)j� 

which can be written as ����


W (j!)K(j!) 


 1 + L0(j!) 

����


� 1: (19.6)



 

A Small Gain Argument 

Next we will present a di�erent derivation of the above result that does not rely on the 

Nyquist criterion, and will be the basis for the multivariable generalizations of the robust 

stability results. Since the nominal feedback system is stable, the zeros of 1 + L0(s) are all in 

the left half of the complex plane. Therefore, by the continuity of zeros, the perturbed system 
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Figure 19.6: Nyquist Plot Illustrating Robust Stability. 

will be stable if and only if 

����

j1 + (P0(j!) + W (j!)�(j!))K(j!)j � 0 

for all ! 2 R, k�k1 

� 1. By rearranging the terms, the perturbed system is stable if and 

1 

only if ����


W (j!)K(j!)
min �(j!) � 0
 for all ! 2 R+


1 + P0(j!)K(j!)j�(j!)j�1 


 

The following lemma will help us to transform this condition to the one given earlier. 

Lemma 19.1 The following are equivalent 

1. ����


����


W (j!)K(j!)
min 1
 �(j!) � 0
 for all ! 2 R+


1 + P0(j!)K(j!)j�(j!)j�1 


 
 

2.
 ����


W (j!)K(j!) 


 1 + P0(j!)K(j!) 

����


1 ;
 � 0
 for all ! 2 R 


 

Proof. First we show that 2) implies 1), which is a consequence of the following inequalities ����


W (j!)K(j!) 

����


����


W (j!)K(j!) 

����


1 +



 1 + P0(j!)K(j!) 

�(j!) 


 

� 1 ; 

� 1 ;
 

����



 1 + P0(j!)K(j!) 

�(j!) 


 

W (j!)K(j!) 


 1 + P0(j!)K(j!) 

����


:
 


 



For the converse suppose 2) is violated, that is there exists !0 

such that ����


W (j!0)K(j!0) 


 1 + P0(j!0)K(j!0) 

����


� 1:



 

Write 

W (j!0)K(j!0) j��� ae
1 + P0(j!0)K(j!0) 

and let �(� j!0) � 

1 e;j�;j� Clearly, j 

�. �(j!0)j � 1 and a 

W (j!0)K(j!0) �1 + �(j!0) � 0: 

1 + P0(j!0)K(j!0) 

Now select a real rational perturbation 

��(s) as 

� 1 s ; � 

�(s) � � � 

a s + � 

such that � j!0 

;� � e;j�;j�.!0 

+� 

��
r - -+�� 

K ;6 
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Figure 19.7: Representation of the actual plant in a servo loop via a multiplicative perturba-
tion of the nominal plant. 

A similar set of results can be obtained for the case of multiplicative perturbations. In 

particular, a robust stability of the con�guration in Figure 19.7 can be guaranteed if the 

system is stable for the nominal plant P0 

and ����


W (j!)P0(j!)K(j!) 


 1 + P0(j!)K(j!) 

����


� 1: for all ! 2 R: (19.7) 


 

Example 19.3 Stabilizing a Beam 

We are interested in deriving a controller that stabilizes the beam in Figure 19.8 

and tracks a step input (with good properties). The rigid body model from torque 

input to the tip de�ection is given by 

6:28 

P0(s) � 

s2 



Position Sensor 

�� z �� 

DC Motor 

Felxible Beam Mass 

Figure 19.8: Flexible Beam. 

Consider the controller 

500(s + 10) 

K0(s) � 

s + 100 

The loop gain is given by 

3140(s + 10) 

P0(s)K0(s) � 

s2(s + 100) 

and is shown in Figure 19.9. The closed loop poles are located at -49.0, -28.6, 

-22.4, and the nominal Sensitivity function is given by 

1 s2(s + 100) 

S0(s) � � 

1 + P0(s)K0(s) s3 + 100s2 + 3140s + 31400 

and is shown in Figure 19.10. It is evident from this that the system has good 

disturbance rejection and tracking properties. The closed loop step response is 

show in Figure 19.11 

While this controller seems to be an excellent design, it turns out that it performs 

quite poorly in practice. The bandwidth of this controller (which was never con-
strained) is large enough to excite the �exible modes of the beam, which were not 

taken into account in the model. A more complicated model of the beam is given 

by 

6:28 12:56 

P1(s) � 

2 

+ 

s s2 + 0:707s + 28 | {z } | {z }
nominal plant �exible mode 

If K0 

is connected to this plant, then the closed loop poles are -1.24, 0.29, 0.06, 

-0.06, which implies instability. 

Instead of using the new model to redesign the controller, we would like to use 

the nominal model P0, and account for the �exible modes as unmodeled dynamics 

with a certain frequency concentration. There are several advantages in this. For 
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Figure 19.9: Open-loop Bode Plot 

one, the design is based on a simpler nominal model and hence may result in a 

simpler controller. This approach also allows us to acomodate additional �exible 

modes without increasing the complexity of the description. And �nally, it enables 

us to tradeo� performance for robustness. 

Consider the set of plants: 

� � fP � P0(1 + �)� j�(j!)j � `(!)� � is stab leg 

where �����


!2 

�����


`(!) � 2


28 ; !2 + 0:707j! 
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Figure 19.10: Nominal Sensitivity 

This set includes the model P1. The stability Robustness Condition is given by: 

1 jT (j!)j � 

`(!) 

Where T is the nominal closed loop map with any controller K. First, consider 

the stability analysis of the initial controller K0(s). Figure 19.12 shows both 

the frequency response for jT0(j!)j and [`(!)];1 . It is evident that the Stability 

robustness condition is violated since 

1 jT0(j!)j �6 � 3 � ! � 70 rad/sec 

`(!) 
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Figure 19.11: Step Response 
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Figure 19.12: jT0(j!)j and [`(!)];1 

Let's try a new design with a di�erent controller 

(5 � 10;4)(s + 0:01)
K1(s) � 

s + 0:1 

The new loop-gain is 

(3:14 � 10;3)(s + 0:01)
P0(s)K1(s) � 

s2(s + 0:1) 

which is shown in the Figure 19.13 We �rst check the robustness condition with 

the new controller. T1 

is given by 

P0(s)K1(s)
T1(s) � 

1 + P0(s)K1(s) 

Figure 19.14 depicts both jT1(j!)j and [`(!)];1 . It is clear that the condition 

is satis�ed. Figure 19.15 shows the new nominal step response of the system. 

Observe that the response is much slower than the one derived by the controller 

K0. This is essentially due to the limited bandwidth of the new controller, which 

was necessary to prevent instability. 



Exercises 

Exercise 19.1 Suppose P (s) � 

a
s 

is connected with a controller K(s) in a unity feedback con�gu-
ration. Does there exists a K such that the system is stable for both a � 1 and a � ;1. 

Exercise 19.2 For P (s) and K(s) given by 

1 1 

P (s) � � 

(s + 2)(s + a) 

K(s) � � 

s 

�nd the range of a such that the closed loop system with P and K is stable. 

Exercise 19.3 Let P be given by: 

P (s) � (1 + W (s)�(s))P0 

� 

where 

1 2 

P0(s) � � W (s) � � 

s ; 1 s + 10 

and � is arbitrary stable with k�k1 

� 2. Find a controller K(s) � k (constant) gain such that the 

system is stable. Compute all possible such gains. 

Exercise 19.4 Find the stability robustness condition for the set of plant described by: 

P0
P � f � k�k1 

� 1g: 

1 +�WP0 

Assume WP0 

is strictly proper for well posedness. 

Exercise 19.5 Suppose 

1 

P (s) � and K(s) � 10� 

s ; a 

are connected in standard feedback con�guration. While it is easy in this case to compute the exact 

stability margin as a changes, in general, such problems are hard to solve when there are many 

parameters. One approach is to embed the problem in a robust stabilization problem with unmodeled 

dynamics and derive the appropriate stability robustness condition. Clearly, the later provides a 

conservative bound on a for which the system remains stable. 

(a) Find the exact range of a for which the system is stable. 

(b) Assume the nominal plant is P0 

� 

1 

s 

. Show that P belongs to the set of plants: 

P0
� � fP � � k�k1 

� 1g
1 + W �P0 

and W � ;a. 



(c)	 Derive a condition on the closed loop system that guarantees the stability of the set �. How does 

this condition constrain a� Is this di�erent than part (a)� 

1(d) Repeat with nominal plant P0 

� s+100 

. 

Exercise 19.6 Let a model be given by the stable plant: 

1 

P0(z) �	 � 1 �� a0 

� 0: 

z;1 ; (1 + a0) 

Consider the class of plants given by: � � 

1 

� � (z) � ; (1 + b)
j ; 2a0 

� b � 2a0 

: 

z;1 

1. Can the set � be embedded in a set of additive or multiplicative norm bounded perturbations, 

with nominal plant P0� Show how or explain your answer. 

2. If your answer to the previous part is NO, show that the class � can be embedded in some other 

larger set characterized by norm-bounded perturbations. Give a su�cient condition for stability 

using the small gain theorem. 

3. Improve your earlier condition so that it captures the fact that the unknown is a real parameter. 

(The condition does not have to be necessary, but should still take into consideration the phase 

information!). 

Exercise 19.7 Consider Exercise 17.4. Suppose that due to implementation problems (e.g. quanti-
zation e�ects), the actual controller can be modeled as: 

Ka 

� (I ; KW �);1K 

where W is a �xed stable �lter, and � is a stable perturbation of H1-norm less than 1, but otherwise 

arbitrary. Provide a non-conservative condition for the stability robustness of the closed loop system. 

Use the parametrization of K in terms of Q to express your condition as a function of P and Q. 
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Figure 19.13: Loop Gain P0K1 
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Figure 19.14: jT1(j!)j and [`(!)];1 . 
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Figure 19.15: New Nominal Closed-loop Step Response 
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