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Problem 4.1 

¯Find a function V : R3 ≥� R+ which has a unique minimum at x = 0, and 
is strictly monotonically decreasing along all non-equilibrium trajecto
ries of system 

ẋ1(t) = −x1(t) + x2(t)
2 , 

ẋ2(t) = −x2(t)
3 + x3(t)

4 , 

ẋ3(t) = −x3(t)
5 . 

Let us begin with collecting storage function and compatible quadratic supply rate 
pairs for the system. Naturally, positive definite functions of system states are a good 
starting point. For V1(x) = x2 we have 1 

2 2 2V̇1 = −2x1 + 2x1x2 � −x1 + w 2 = �1,1 

2where w1 = x2, and the classical inequality 

2ab � a 2 + b2 

2was used. For V2 = x2 we have 

4 4 2 2V̇2 = −2x2 + 2x2x3 � −w1 + 2w2 = �2, 

8/3
where w2 = x3 and the inequality 

2ab3 � a 4 + 2b4 

1Version of October 11, 2003 
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(a weakened version of a classical inequality) was used. Finally, for V3 = 3x 4/3 
we have 3 

16/3 2V̇3 = −4x3 = −4w2 . 

Now, for 
V = c1V1 + c2V2 + c3V3 

we have 
2 2 2V̇ � c1�1 + c2�2 + c3�3 = −c1x1 + (c1 − c2)w1 + (2c2 − 4c3)w2 . 

Taking c1 = 1, c2 = c3 = 2 yields a continuously differentiable Lyapunov function 

2 4/3
V (x) = x 2 + 2x2 + 6x31 

for which the derivatives along system trajectories are bounded by 

4 16/3
V̇ (x) � −x 2 − x2 − 4x3 .1 

Problem 4.2 

System � takes arbitrary continuous input signals v : [0, →) ≥� R and 
produces continuous outputs w : [0, →) ≥� R in such a way that the series 
connection of � and the LTI system with transfer function G0(s) = 1/(s + 
1), described by equations 

ẋ0(t) = −x0(t) + w(t), w(·) = �(v(·)), 

has a non-negative storage function with supply rate 

�0(¯ v, ¯ w − 0.9¯ v − w).x0, ̄ w) = ( ̄ x0)(¯ ¯

(a) Find at least one nonlinear system � which fits the description. 

The ideal saturation nonlinearity 
� 

sat(y) = 
y/|y|, 
y, 

|y| ∀ 1, 
|y| � 1, 

is a nice example of � satisfying the conditions. Indeed, if 

ẋ0(t) = −x0(t) + sat(v(t)), x0(0) = 0 

then |x0(t)| � 1 for all t ∀ 0. Hence 

(v(t) − sat(v(t)))(sat(v(t)) − x0(t)) ∀ 0 � t ∀ 0 

(if v(t) ≤ [−1, 1] then the product equals zero, otherwise the multipliers have same 
sign). 
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(b)	 Derive constraints to be imposed on the values G(j�) of a transfer 
function 

G(s) = C(sI − A)−1B 

with a Hurwitz matrix A, which guarantee that x(t) � 0 as t � → for 
every solution of 

ẋ(t) = Ax(t) + Bw(t), v(t) = Cx(t), w(·) = �(v(·)). 

Make sure that your conditions are satisfied at least for one non
zero transfer function G = G(s). 

Let us prove that condition 

0.1 − j� 
Re	 (1 − G(j�)) > 0 � � ≤ R (4.1)

1 − j� 

is sufficient to guarantee that x(t) � 0 as t � →. Indeed, since A is a Hurwitz 
matrix, and G is strictly proper, there exists π > 0 such that 

0.1 − j� 2Re (1 − G(j�)) > π(1 + |(j�I − A)−1B| ) � � ≤ R. 
1 − j� 

Therefore, the frequency inequality conditions of the KYP Lemma are satisfied for 
the existence of a matrix P = P � such that 

22	
x 

P
Ax + Bw 

� (w−Cx)(w−0.9x0)−π(|x|2+|w| ) � w, x0 ≤ R, x ≤ Rn . 
x0 w − x0 

To show that P is positive definite, substitute w = x0 into the last inequality, which 
yields 

22 
x 

P
Ax + Bx0 � −π(|x|2 + |0.9x0| ) � x0 ≤ R, x ≤ Rn , 

x0 −0.1x0 

which is equivalent to the Lyapunov inequality 

P Â + Â�P = −Q, 

where 
� 
 � 
 

Â = 
A 
0 

B 
−0.1 

, Q = π 
I 
0 

0 
0.81 

. 

Since Â is a Hurwitz matrix, and Q = Q� > 0, it follows that P > 0. 

Now 
x x 

V = V0 + P 
x0 x0 



4 

is a non-negative storage function for the closed loop system, with supply rate 

2� = −π(|x|2 + |w| ). 

Hence w is square integrable over the interval [0, →). Since 

ẋ = Ax + Bw, 

and A is a Hurwitz matrix, this implies that x(t) � 0 as t � →. 

Since 
0.1 − j� 

Re ∀ 0.1 � � ≤ R,
1 − j� 

condition (4.1) is satisfied for all G with sufficiently small H-Infinity norm (maximal 
absolute value of the frequency response). 

Problem 4.3 

For the pendulum equation 

ÿ(t) + ẏ + sin(y) = 0, 

find a single continuously differentiable Lyapunov function V = V (y, ẏ) 
that yields the maximal region of attraction of the equilibrium y = ẏ = 0. 
(In other words, the level set 

x ≤ R2 : V (¯{¯ x) < 1} 

schould be a union of disjoint open sets, one of which is the attractor � 
of the zero equilibrium, and V (y(t), ẏ(t)) schould have negative derivative 
at all points of � except the origin.) 

Note that the problem can be interpreted as follows: given the initial angular position 
and angular velocity of a pendulum, find the number of complete rotations it will have 
before settling at an equilibrium position. An “exact analytical” answer can be obtained 
by stating that the maximal region of attraction is the area bounded by the four separa
trix solutions of the system equation, converging to the two unstable equilibria (0, ±�). 
However, this “exact” answer (which cannot be expressed in elementary functions) will 
be of no use in the case when the pendulum model is slightly modified (a different friction 
model, flexibility of the pendulum taken into account, etc.) On the other hand, one can 
expect that an estimate obtained by using a Lyapunov function will be more “robust” 
with respect to various perturbations of the model. 

An obvious Lyapunov function is given by the system energy (potential plus kinetic) 

V0(y, ẏ) = 0.5 ̇y 2 − cos(y), dV/dt = −ẏ(t)2 . 
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To estimate the region of attraction of the equilibrium at the origin, using this Lyapunov 
function, one may can find a constant c such that the level set 

L(V0, c) = {(y0, y1) : V0(y0, y1) < c} 

does not contain a path connecting the origin with any other equilibrium of the system. 
It is easy to see that taking c = 1 does the job, and yields the region of attraction �0 

given by 
�0 = {(y, ẏ) : 0.5 ̇y 2 − cos(y) < 1, −� < y < �}. 

This appears to be a very poor estimate, taking into account what we know about the 
true maximal region of attraction. 

To get a better Lyapunov function, one can try to construct it in such a way that the 
level sets are polytopes centered at the origin. Remember that a function V is a Lyapunov 
function if and only if the system trajectories never leave any of its level sets. Since the 
boundary of a polytope in R2 is a segment, it is especially easy to check this condition 
for the Lyapunov functions candidates with polytopic level sets. 

One of the simplest examples of a Lyapunov function constructed this way is given by 

|y| + |ẏ|, yẏ ∀ 0,
V1(y, ẏ) = 

max{y, ẏ}, yẏ � 0. 

It is easy to check that V1 is a Lyapunov function for the pendulum system in the area 

�1 = {(y, ẏ) : V1(y, ẏ) < �}, 

which is also the resulting estimate of the region of attraction. 
The previous estimate �0 is contained in �1. Even better estimates can be obtained 

by using other lyapunov functions with polytopic level sets. 


