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Standard LTI Feedback Optimization Setup1 

The two most frequently used techniques of optimization-based feedback design are H2 
and H-Infinity optimization. Both are normally applied to what can be referred to as 
the standard LTI feedback optimization setup, to be the main subject of discussion in this 
lecture. 

1.1 Basic Concepts 

There are three basic concepts behind the standard feedback optimization setup: the 
notion of a multi-input, multi-output (MIMO) linear time-invariant (LTI) finite order 
system, the notion of an internally stable feedback interconnection of two MIMO LTI 
systems, and the notion of a system norm. In addition, there is a concept of well-posedness 
of the resulting optimization problem, which has to be satisfied (otherwise the available 
optimization algorithms are guaranteed to break down). 

1.1.1 Components of a standard setup 

In order to define a standard LTI feedback optimization problem, sketched on Fig­
ure fig:PKstandard, one has to specify the plant P , and a performance measure. 
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Figure 1.1: Standard LTI feedback optimization setup 

The plant is a finite order linear time-invariant system with two inputs, w and u, and 
two outputs, z and y. Inputs and outputs can be multi-variable. The first input w is 
called disturbance, and is typically used to describe external noises and internal perturba­
tions caused by nonlinearity and uncertainty. The second input u is called actuator, and 
describes the output of the feedback controller K (to be designed via optimization). The 
first output z is called cost, and represents signals which the designer wants to be small. 
Finally, the second output y, usually referred to as sensor, or measurement, represents 
input of the controller K (to be designed). 

The performance measure specifies a particular quantitive measure of “smallness” for 
the cost output z. The optimization process will aim at finding an LTI feedback system K 
which makes the feedback system on Figure fig:PKstandard stable, and “minimizes” the 
closed loop system from w to z. Two measures (also called norms) of how “large” a stable 
LTI system is are most popular in feedback optimization: H2 norm and H-Infinity norm. 
The H2 norm measures the size of an LTI system as an integral of square of amplitude of 
its frequency response, while the H-Infinity norm uses the maximal (over all frequencies) 
amplitude. 

There are plants P for which the standard H2 and H-Infinity optimization algorithms 
are guarantreed to fail. Certain well-posedness conditions (to be discussed later in this 
lecture) have to be satisfied to avoid such failures. 

1.1.2 State-space format for continuous time LTI systems 

While H2 and H-Infinity optimization can be applied to discrete-time (DT) and continuous-
time (CT) systems, represented in many of possible formats (state-space, transfer matrix, 
zero-pole, etc.), the basic algorithms are traditionally developed and explained for CT 
systems defined by state-space equations. A state-space model for a finite order CT LTI 
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system with input f = f(t), output g = g(t), and state x = x(t) has the form 

ẋ(t) = Ax(t) + Bf(t), (1.1) 

g(t) = Cx(t) + Df(t), (1.2) 

where A, B, C, D are constant matrices with real entries. In the modern control literature, 
it is common to use the notation 

⎡ 
A B 

S = 
C D 

for this system. For example, the SISO CT LTI system with transfer function G(s) = 1/s2 

can be represented by a state space model with 
� � � � 

0 1 0 ⎛ ⎝ 
A = , B = , C = 1 0 , D = 0. 

0 0 1 

When a CT LTI system describes the plant in a standard feedback optimization setup, 
its input is partitioned into the disturbance and actuator components. Similarly, the 
output is partitioned into the cost and measurement components. Consequently, it is 
natural to decompose the corresponding B, C, D matrices: 

ẋ = Ax + B1w + B2u, (1.3) 

z = C1x + D11w + D12u, (1.4) 

y = C2x + D21w + D22u, (1.5) 

or 
⎠ ⎛ ⎝ � 

A B1 B2 
� � � � 

P = ⎤ C1 D11 D12 
� . 

C2 D21 D22 

A state-space model of controller K (which is an LTI system transforming y into u) can

be given in the form 

ẋf = Af xf + Bf y (1.6) 

u = Cf xc + Df y (1.7) 

where Af , Bf , Cf , Df are matrices with real coefficients, to be found by an optimization 
algorithm. 
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1.1.3 Well-posedness 

There are three sets of constraints which have to be imposed on a standard LTI feedback 
optimization setup for it to be well-posed and numerically well conditioned. 

The first set of constraints guarantees existence of a stabilizing feedback (so that the 
set of feasible decision parameters is not empty). This requires the pair (A, B2) to be 
stabilizable, and the pair (C2, A) to be detectable. If this is not the case, the physical 
feedback control setup should be modified by adding extra actuators (to make the pair 
(A, B2) stabilizable) and/or sensors (to make the pair (C2, A) detectable). 

The second set of constraints guarantees existence of an optimal controller (and is also 
related to numerical well-posedness of the optimization problem). Informally speaking, 
it requires the setup to be “hard enough”, in the sense that every component of the 
measurement output of the plant should be dependent on the disturbance input at every 
frequency, and every component of the actuator input should affect the cost output at 
every frequency. The formal constraints are as follows: matrix 

A − sI B2Mu(s) = (1.8)
C1 D12 

must be left invertible (i.e. its columns must be linearly independent) for all s on the 
imaginary axis, including the case s = �, when the condition is that matrix D12 must be 
left invertible; similarly, matrix 

A − sI B1My (s) = (1.9)
C2 D21 

must be right invertible (i.e. its rows must be linearly independent) for all s on the 
imaginary axis, including the case s = �, when the condition is that matrix D21 must be 
right invertible. When A has no eigenvalues on the imaginary axis, the condition can be 
re-written as left invertibility of transfer matrix 

P12(s) = Pu�z (s) = C1(sI − A)−1B2 + D12, 

and right invertibility of 

P21(s) = Pw�y (s) = C2(sI − A)−1B1 + D21. 

The case when Mu(s) is not left invertible at some s = j� will be referred to as control 
singularity at frequency �. Similarly, the case when My (s) is not right invertible at some 
s = j� will be referred to as sensor singularity at frequency �. 
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Finally, the third set of constraints, applicable to H2 optimization only, requires D11 = 
0 and D22 = 0. Every setup with D22 �= 0 can be reduced easily to the case with D22 = 0 
(any direct presence of control signal in the sensor signal can be compensated, since u is 
“known” anyway. An H2 optimization setup with D11 �= 0 is not necessarily meaningless, 
it is just not supported by the standard H2 optimization software. After learning about 
the inner workings of H2 optimization, you will be able to upgrade the existing algorithms 
to the case D11 �= 0. 

1.1.4 MATLAB format for H2 and H-Infinity optimization 

This subsection describes the use of Mu-Analysis and Synthesis Toolbox, the recom­
mended set of routines for H2 and H-Infinity optimization. 

To define a plant state space model P in this toolbox, use 

P=pck(A,B,C,D); 

where A, B, C, D are the matrices defining 
⎡ 

A B 
P = . 

C D 

To call an H2 optimization algorithm with a minimal set of input and output argu­
ments, use 

K=h2syn(P,nmeas,ncon); 

where P is the plant model in the packed format, nmeas is the number of sensors (i.e. 
the dimension of vector y), ncon is the number of actuators (the dimension of u), K is 
the optimal controller model in the packed format. To get the coefficient matrices of the 
controller, unpack K with 

[Af,Bf,Cf,Df]=unpck(K); 

To call an H2 optimization algorithm with a minimal set of input and output argu­
ments, use 

K=hinfsyn(P,nmeas,ncon,gmin,gmax,tol); 

Here the output argument and the first three input arguments have same meaning as 
in H2 optimization. The presence of the last three input arguments is caused by the 
fact that function hinfsyn.m is not capable of finding the optimal H-Infinity controller. 
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Instead it searches for a controller which yields closed loop H-Infinity norm �, such that 
(� − �min)/� is not larger than the relative tolerance parameter tol. Here �min is the 
minimal achievable H-Infinity norm, gmin is a known lower bound for �min (one can safely 
use gmin=0), and gmax is a known upper bound for �min. While it is not always easy to 
find an upper bound, hinfsyn.m will tell you if your current guess is too low. 

1.1.5 A simple design example 

Consider a simple feedback design task shown on Figure fig:PFsimple, where G = G(s) = 
1/s2 is a given open loop plant model, and F = F (s) is the feedback controller to be 
designed to provide a desired closed loop response T = T (s) from reference input r to 
controlled output q. Assume that the “ideal” desired closed loop response is T (s) = 

r 
 � 
 
 
 qF G
−� 

Figure 1.2: A simple feedback design example 

T0(s) = 1/(s + 1). This response cannot be achieved by using a proper controller transfer 
function F (s). However, one can try to approximate the ideal response T0(s) by choosing 
an appropriate stabilizing proper controller F , while checking the trade-off between the 
quality of approximation and the power utilized by the controller. Both H2 and H-Infinity 
optimization frameworks are easy to use for this purpose. 


 
 �
 eT0 
−� 

v 
r 
 � 
 
 
 qF P

−� 

Figure 1.3: Reduction to standard optimization setup 

To re-write the design specifications as a standard feedback optimization setup, in­
troduce the ideal response transfer function to the block diagram, and define e as the 
difference between the actual and the desired response. Our objective is to make the 
closed loop transfer function from r to e “small” by selecting a controller with input r − q 
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and output v. In terms of the standard setup, this calls for selecting r as the disturbance 
input w, v as the actuator input u, r − q as the sensor output y, and e as the cost output 
z. The corresponding plant transfer matrix P is given by 

1/(s + 1) −1/s2 

P (s) = 
1 −1/s2 , 

which corresponds to a minimal state space model with 
⎦ ⎞ ⎦ ⎞ ⎦ ⎞ 

−1 0 0 1 0 
A = � 0 0 0 ⎣ , B1 = � 0 ⎣ , B2 = � 1 ⎣ , 

0 1 0 0 0 

⎛ ⎝ ⎛ ⎝ 
C1 = 1 0 −1 , C2 = 0 0 −1 , D11 = D22 = 0, D12 = 0, D21 = 1. 

An attempt to use h2syn.m or hinfsyn.m on this setup will produce an error message, 
because the setup is not well-posed. One obvious reason for this is absence of a control 
penalty (causing a control singularity at � = �). This can be fixed by adding �uv as an 
extra component of the cost z, where �u will become a tuning parameter for the designer 
(the larger �u is, the less power the optimal controller will use, at the expense of providing 
a poorer approximation of the desired closed loop response). 

A less obvious problem with the setup is a sensor singularity at � = 0, which is not 
as easy to spot since the open loop plant has a pole at s = 0. Actually, this is a double 
sensor singularity at � = 0, since the determinant of My (s) has a double root at s = 0. 
This singularity can be fixed by having an extra disturbance signal f = �y w2 added to 
the input of the double integrator. Here parameter �y will quantify sensitivity of the 
closed loop system with respect to the plant disturbances (the smaller �y , the larger the 
sensitivity). 


 
 �
 eT0 
−� 

u r 
 � 
 F 

� 
 qP
−� f 

Figure 1.4: 

The resulting standard setup will have two-component w, two-component z, and two 
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tuning parameters �u and �y . The plant transfer matrix will have the form 

⎦ ⎞ 
1/(s + 1) −�y /s

2 −1/s2 

P (s) = � 0 0 �u ⎣ , 
1 −�y /s

2 −1/s2 

and a minimal state space model given by 

ẋ1(t) = −x1(t) + w1(t), (1.10) 

ẋ2(t) = u(t) + �y w2(t), (1.11) 

ẋ3(t) = x2(t), (1.12) 

z1(t) = x1(t) − x3(t), (1.13) 

z2(t) = �uu(t), (1.14) 

y(t) = −x3(t) + w1(t). (1.15) 

A sample MATLAB code for H2 optimization is given by 

eu=0.01;

ey=0.01;

A=[-1 0 0;0 0 0;0 1 0];

B1=[1 0;0 ey;0 0];

B2=[0;1;0];

C1=[1 0 -1;0 0 0];

C2=[0 0 -1];

D11=zeros(2);

D12=[0;eu];

D21=[1 0];

D22=0;

P=pck(A,[B1 B2],[C1;C2],[D11 D12;D21 D22]);

K=h2syn(P,1,1);

[Af,Bf,Cf,Df]=unpck(K);


To modify this for H-Infinity optimization, simply replace the h2syn line with 

K=hinfsyn(P,1,1,0,1,0.01); 


