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Hankel Optimal Model Order Reduction1 

This lecture covers both the theory and an algorithmic side of Hankel optimal model order 
reduction. 

9.1 Problem Formulation and Main Results 

This section formulates the main theoretical statements of Hankel optimal model reduc­
tion, including the famous Adamyan-Arov-Krein (AAK) theorem. 

9.1.1 The Optimization Setup 

Let G = G(s) be a matrix-valued function bounded on the jθ-axis. The task of Hankel 
ˆoptimal model reduction of G calls for finding a stable LTI system G of order less than a 

given positive integer m, such that the Hankel norm ∞�∞H of the difference � = G − Ĝ is 
minimal. Remember that Hankel norm of an LTI system with transfer matrix � = �(s), 
input w, and output v, is defined as the L2 gain of the associated Hankel operator H�, 
i.e. as the maximum of the “future output energy integral” 

�
� 

� �1/2 

|v(t)|2dt 
0 

subject to the constraints 
� 0 

w(t) = 0 for t ∀ 0, |w(t)|2dt � 1. 
−� 

1Version of March 29, 2004 
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While the standard numerical algorithms of Hankel optimal model reduction will be 
defined here for the case when G is a stable causal finite order LTI system defined by a 
controllable and observable state space model 

ẋ = Ax + Bw, y = Cx + Dw, (9.1) 

some useful insight can be obtained by studying general statements when G = G(s) is 
not necessarily a rational transfer matrix.. 

9.1.2 The i-th largest singular value of a Hankel operator 

Let G = G(s) be a matrix-valued function bounded on the jθ-axis. 
For an integer k > 0 let us say that ψ = ψk is the k-th singular number of HG if ψk 

is the minimum of the L2 gain of � −HG over the set of all linear transformations � of 
rank less than k (this definition works for arbitrary linear transformations, not only for 
Hankel operators). 

When G is defined by a minimal state space model (9.1) with m states and a Hurwitz 
matrix A, ψi = 0 for i > m, and the first m largest singular numbers si are square 
roots of the corresponding eigenvalues of WoWc, where Wo, Wc are the controllability and 
observability Grammians of (9.1). For some non-rational transfer matrices, an analytical 
or numerical calculation of ψi may be possible. For example, the i-th largest singular 
number of HG, where G(s) = exp(−s), equals 1 for all positive i. 

9.1.3 The AAK Theorem 

The famous Adamyan-Arov-Krein theorem provides both a theoretical insight and (taking 
a constructive proof into account) an explicit algorithm for finding Hankel optimal reduced 
models. 

Theorem 9.1 Let G = G(s) be a matrix-valued function bounded on the jθ-axis. Let 
ψ1 ∀ ψ2 ∀ . . . ψm ∀ 0 be the m largest singular values of HG. Then ψm is the minimum 

ˆof ∞G − Ĝ∞ over the set of all stable systems G of order less than m. 

In other words, approximating Hankel operators by general linear transformations of 
rank less than m cannot be done better (in terms of the minimal L2 gain of the error) 
than approximating it by Hankel operators of rank less than m. 

The proof of the theorem, to be given in the next section for the case of a rational 
transfer matrix G = G(s), is constructive, and provides a simple algorithm for calculating 
the Hankel optimal reduced model. 
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9.1.4 H-Infinity quality Hankel optimal reduced models 

It is well established by numerical experiments that Hankel optimal reduced models usu­
ally offer very high H-Infinity quality of model reduction. A somewhat conservative de­
scription of this effect is given by the following extension of the AAK theorem. 

Theorem 9.2 Let G = G(s) be a stable rational function. Let ψ1 ∀ ψ2 ∀ . . . ψm > 0 
ψm+1 > ˜ ψr = 0 be the be the m largest singular values of HG. Let ψm > ˜ ψm+2 > · · · > ˜

ordered sequence of the remaining singular values of HG, each value taken once, without 
ˆrepetition. Then there exists a Hankel optimal reduced model G of order less than m such 

that 
r 

G∞� � ψm + ψk .∞G− ˆ ˜
k=m+1 

Just as in the case of the basic AAK theorem, the proof of Theorem 9.2 is construc­
tive, and hence provides an explicit construction of the reduced model with the proven 
properties. In practice, the actual H-Infinity norm of model reduction error is much 
smaller. 

It is important to remember that the Hankel optimal reduced model is never unique 
(at least, the “D” terms do not have any effect on the Hankel norm, and hence can be 
modified arbitrarily). The proven H-Infinity model reduction error bound is guaranteed 
only for a specially selected Hankel optimal reduced model. 
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9.2 Proof of the AAK theorem 

The fact that ψm is a lower bound for the Hankel norm model reduction error follows from 
the definition of ψm and from the fact that rank of the Hankel operator associated with 
a stable system equals its order. This section contains a rather explicit construction of 
a reduced model of order less than m for which the Hankel norm of the approximation 
error equals ψm. To avoid inessential mathematical complications, we consider only the 
case when G is defined by a minimal (controllable and observable) finite dimensional state 
space model 

ẋ = Ax + Bw, y = Cx + Dw (9.2) 

with a Hurwitz matrix A. 
The starting point of the proof is the fact that, according to the explicit formulae for 

singular value decomposition of Hankel operators based of the controllability and observ-
W −1ability Grammians Wc, Wo of system (9.2), the matrix Wo − ψ2 has not more than m c 

m − 1 positive eigenvalues. The proofs is similar to the one given in the derivation of H-
Infinity suboptimal control, and also uses the generalized Parrot’s theorem in combination 
with a modified version of the KYP lemma. 

9.2.1 Upper bounds for Hankel norms 

The following simple observation is frequently helpful when workin with Hankel operators. 

Theorem 9.3 If rational transfer matrices G+, G− of same dimensions are such that all 
poles of G+ have negative real part, and all poles of G− have positive real part, then 

∞G+∞H � ∞G+ + G−∞�. 

Since the Hankel operator associates with a transfer matrix G = G+ + G− is defined 
by the stable part G+ of G, and the Hankel norm never exceeds L-Infinity norm, the 
statement is true. In fact, Theorem 9.3 is the “simple” side of the so-called Nehari 
theorem, which claims that ∞G+∞H is the minimum of ∞G+ + G−∞� over the set of all 
anti-stable G−. The non-trivial part of the Nehari theorem will be a by-product of the 
proof of the AAK theorem. 

Example 9.1 Adding G− = −1/2 to G+ = 1/(s + 1) yields G = (1 − s)/(2 + 2s) 
(Infinity-norm ∞G∞� = 0.5 equals the Hankel norm of 1/(s + 1)). 
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9.2.2 KYP lemma for L-Infinity norm approximation 

A simple but important observation given by the KYP lemma is that a “certificate” of 
an L-Infinity bound ∞H∞� � δ for a given transfer matrix H(s) = d + c(sI − a)−1b is 
delivered by a symmetric matrix p = p� such that 

x + dw|2 − 2¯ x + bw) ∀ 0 � ¯δ2|w|2 − |c¯ x p(a¯ x, w.	 (9.3) 

Note that a does not have to be a Hurwitz matrix here. 
When system (9.2) is approximated by system Gr (not necessarily stable) with state 

space model 
ẋr = Ar xr + Br w, yr = Cr xr + Dr w, (9.4) 

the “approximation error dynamics” system with input w and output � = y − yr has state 
space model 

x = a¯ x + dw, ¯̇ x + bw, � = c¯

where 

x	 Ax + Bw 
¯ x + bw =	 , c¯x =	 , a¯ x + dw = Cx + Dw − Cr xr − Dr w. (9.5)

xr	 Ar xr + Br w 

Let � = �(s) denote the transfer matrix from w to �. According to the KYP lemma, the 
inequality ∞�∞� � δ can be established by finding a symmetric matrix 

p = p � =	
p11 p12 (9.6)
p21 p22 

such that (9.3) holds. 
In view of Theorem 9.3, for Hankel model order reduction it is important to keep track 

of the order of the stable part of Gr . Tis is made possible by the following observation. 

Theorem 9.4 If (9.3) holds for a, b, c, d, p defined by (9.5),(9.6), and p22 has less than 
m positive eigenvalues then the order of the stable part of Gr is less than m. 

˙Proof Let V = V++V− be the direct sum decomposition of the state space {xr } into 
the stable observable subspace V+ of Ar with respect to Cr , and the compementary Ar ­
invariant subspace V−. In a system of coordinates associated with this decomposition, 
matrices Cr , Ar , p22 have the block form 

� 
 a+ 0 p++ p+−Cr = c+ c− , Ar = 0 a− 
, p22 = , 

p−+ p−− 
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where the pair (c+, a+) is observable. Substituting w = 0 into (9.3) yields 

pa+ a � p � −c c, 

which, in particular, implies 

p++a+ + a+p++ � −c � c+.+

Hence p++ > 0 and the number of positive eigenvalues of p22 is at least as large as the 
dimension of a+. Finally, note that the dimension of a+ is not smaller than the order of 
the stable part of Gr . 

9.2.3 Hankel optimal reduced models via Parrot’s Theorem 

The observations made in the previous two subsections suggest the following approach 
ˆto constucting a reduced model G of system G given by (9.2): simply find a matrix 

p = p� in (9.6) such that p22 has less than n+ m positive eigenvalues, and (9.3) holds for 
ˆa, b, c, d defined by (9.5) with some Ar , Br , Cr , Dr . Then G, defined as the stable part of 

Dr + Cr (sI − Ar )
−1Br , will satisfy ∞G− Ĝ∞H � δ. 

Note that, once p is fixed, the existence of Ar , Br , Cr , Dr satisfying the requirements 
can be checked via the generalized Parrot’s theorem (same as used in the derivation of 
H-Infinity suboptimal controllers). 

Theorem 9.5 Let ψ : Rn × Rm × Rk � R be a quadratic form which is concave with 
respect to its second argument, i.e. 

ψ(0, g, 0) � 0 � g ≤ Rm . (9.7) 

Then an m-by-k matrix L such that 

ψ(f, Lh, h) ∀ 0 � f ≤ Rn, h ≤ Rk (9.8) 

exists if and only if the following two conditions are satisfied: 

(a) for every h ≤ Rk there exists g ≤ Rm such that 

inf ψ(f, g, h) > −→; (9.9) 
f �R

n 

(b) the inequality 
sup ψ(f, g, h) ∀ 0 (9.10) 

g�R
m 

holds for all f ≤ Rn , h ≤ Rk . 
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In application to Hankel optimal model reduction, set 

� xr Ar Brf = x, g = , h = , L = 
Cr Dr 

, 
yr w 

� �

� � � 

ψ(f, g, h) = −2 
x 

p
Ax + Bw 

+ δ2|w|2 − |Cx + Dw − yr |
2 . (9.11)

xr � 

Note that ψ is concave with respect to g. 
It turns out that one convenient selection for p is 

− δ2W−1Wo Wo cp = 
− δ2W −1 − δ2W−1 . (9.12)

Wo c Wo c 

While formally there is no need to explain this choice (one just has to verify that conditions 
(a),(b) of Theorem 9.5 are satisfied), there is a clear line of reasoning here. To come to 
this particular choice of p, note first that (9.9) implies ψ(f, 0, 0) ∀ 0, which means 

p11A + A� p11 � −C �C 

for ψ defined by (9.11). Hence 
p11 ∀ Wo. 

Similarly, under the simplifyin assumption that p is invertible, (9.10) means 

Aq11 + q11A
� � −δ−2BB� , 

where q11 is the upper left corner of p−1 . Hence 

q11 ∀ δ−2Wc. 

Since 
−1 −1 q11 = p11 − p12p22 p21, 

we have 
−1 −1 p12p22 p21 = p11 − δ2 q11 . 

Since our desire is to minimize the number of positive eigenvalues of p22, it is natural to 
use the minimal possible values of p11 and q11, which suggests using 

p11 = Wo, q11 = δ−2Wc, p12 = p21 = p22 = Wo − δ2W −1 .c 
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With the proposed selection of p, the quadratic form ψ can be represented as 

ψ(f, g, h) = −2x [WoBw + A�(Wo − δ2W −1)xr + (Wo − δ2W −1)� − C � yr ] + ψ̃(g, h).c c 

Hence condition (a) can be satisfied if the equation 

WoBw + A�(Wo − δ2W −1)xr + (Wo − δ2W −1)� − C � yr = 0 c c 

has a solution (�, yr ) for every pair (w, xr ). In order to prove this, it is sufficient to show 
that every vector � such that 

��C � = 0, ��(Wo − δ2W−1) = 0 (9.13)c 

also satisfies 
��WoB = 0, ��A�(Wo − δ2W −1) = 0. (9.14)c 

Note that by the definition, 

(Wo − δ2W −1)A + A�(Wo − δ2W −1) + C �C = δ2W −1BB�W−1 .c c c c 

Multiplying this by �� on the left and � on the right and using (9.13) yields � �B�W −1 = 0 c 

and hence (9.14) follows. 
Similarly, the quadratic form ψ can be represented as 

�W −1 2ψ(f, g, h) = (x+xr )
�(Wo −δ

2W −1)(Ax+Bw−�)+2δ2 x (Ax+Bw)+δ2|w| −|Cx−yr |
2 ,c c 

which is unbounded with respect to � if (x + xr )
�(Wo − δ2W−1) ≥= 0 and is made non-c 

negative by selecting yr = −Cxr otherwise. 


