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1 Introduction 

Semidefinite programming (SDP ) is the most exciting development in math
ematical programming in the 1990’s. SDP has applications in such diverse 
fields as traditional convex constrained optimization, control theory, and 
combinatorial optimization. Because SDP is solvable via interior point 
methods, most of these applications can usually be solved very efficiently 
in practice as well as in theory. 

2 Review of Linear Programming 

Consider the linear programming problem in standard form: 

LP : minimize c x· 

s.t. ai x = bi, i = 1, . . . ,m · 

n 
+.x ∈ ℜ

Here x is a vector of n variables, and we write “c x” for the inner-product 
∑

· 
“ j

n 
=1 cjxj”, etc. 

Also, ℜn 
+ 

n x ≥ 0}, and we call ℜn 
+ the nonnegative orthant. 

n 

:= {x ∈ ℜ |
In fact, ℜ is a closed convex cone, where K is called a closed a convex cone + 

if K satisfies the following two conditions: 
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• If x,w ∈ K, then αx + βw ∈ K for all nonnegative scalars α and β. 

K is a closed set. • 

In words, LP is the following problem: 

“Minimize the linear function c x, subject to the condition that x must solve ·
m given equations ai x = bi, i = 1, . . . ,m, and that x must lie in the closed · 
convex cone K = n .” +ℜ

We will write the standard linear programming dual problem as: 

m 

LD : maximize yibi 
i=1 

m 

s.t.	 yiai + s = c 
i=1 

n 
+.s ∈ ℜ

Given a feasible solution x of LP and a feasible solution (y, s) of LD, the 
duality gap is simply c x− 

∑m
i=1 yibi = (c− 

∑m
i=1 yiai) x = s x ≥ 0, because ·	 · ·

x ≥ 0 and s ≥ 0. We know from LP duality theory that so long as the pri
mal problem LP is feasible and has bounded optimal objective value, then 
the primal and the dual both attain their optima with no duality gap. That 
is, there exists x ∗ and (y ∗ , s ∗) feasible for the primal and dual, respectively, 

∗ m ∗ ∗ ∗such that c x i=1 yi bi = s x = 0.· −	 · 

Facts about Matrices and the Semidefinite Cone 

If X is an n × n matrix, then X is a positive semidefinite (psd) matrix if 

n v T Xv ≥ 0 for any v ∈ ℜ . 
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If X is an n × n matrix, then X is a positive definite (pd) matrix if 

n v T Xv > 0 for any v ∈ ℜ , v =6 0. 

Let Sn nmatrices, and let Sn× +

the set of positive semidefinite (psd) n × n symmetric matrices. Similarly 
let Sn denote the set of positive definite (pd) n × n symmetric matrices. ++ 

Let X and Y be any symmetric matrices. We write “X � 0” to denote 
that X is symmetric and positive semidefinite, and we write “X � Y ” to 
denote that X − Y � 0. We write “X ≻ 0” to denote that X is symmetric 
and positive definite, etc. 

2 
Remark 1 Sn 

+ 

denote the set of symmetric n denote 

{X ∈ Sn | X � 0} is a closed convex cone in ℜn

× (n + 1)/2. 
of =


dimension n


nTo see why this remark is true, suppose that X,W S∈ +

α, β ≥ 0. For any v ∈ ℜn, we have: 

v T (αX + βW )v = αvT Xv + βvT Wv ≥ 0, 

. Pick any scalars 

whereby αX n nβW S This shows that S+ ∈ ++

+forward to show that Sn 

Recall the following properties of symmetric matrices: 

If X ∈ Sn, then X = QDQT for some orthonormal matrix Q and • 
some diagonal matrix D. (Recall that Q is orthonormal means that 
Q−1 = QT , and that D is diagonal means that the off-diagonal entries 
of D are all zeros.) 

3 

is a cone. It is also straight.

is a closed set. 
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If X = QDQT as above, then the columns of Q form a set of n• 
orthogonal eigenvectors of X, whose eigenvalues are the corresponding 
diagonal entries of D. 

X � 0 if and only if X = QDQT where the eigenvalues (i.e., the • 
diagonal entries of D) are all nonnegative. 

X ≻ 0 if and only if X = QDQT where the eigenvalues (i.e., the • 
diagonal entries of D) are all positive. 

• If X � 0 and if Xii = 0, then Xij = Xji = 0 for all j = 1, . . . , n. 

Consider the matrix M defined as follows: • 

P v 
M = T , 

v d 

where P ≻ 0, v is a vector, and d is a scalar. Then M ≻ 0 if and 
only if d− vT P−1v > 0. 

Semidefinite Programming 

Let X ∈ Sn . We can think of X as a matrix, or equivalently, as an array of 
n2 components of the form (x11, . . . , xnn). We can also just think of X as 
an object (a vector) in the space Sn . All three different equivalent ways of 
looking at X will be useful. 

What will a linear function of X look like? If C(X) is a linear function 
of X, then C(X) can be written as C X, where • 

n n 

C X := CijXij .• 
i=1 j=1 

If X is a symmetric matrix, there is no loss of generality in assuming that 
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the matrix C is also symmetric. With this notation, we are now ready to 
define a semidefinite program. A semidefinite program (SDP ) is an opti
mization problem of the form: 

SDP : minimize C X• 

s.t. Ai X = bi , i = 1, . . . ,m, • 

X � 0, 

Notice that in an SDP that the variable is the matrix X, but it might 
be helpful to think of X as an array of n2 numbers or simply as a vector 
in Sn . The objective function is the linear function C X and there are m• 
linear equations that X must satisfy, namely Ai X = bi , i = 1, . . . ,m.• 
The variable X also must lie in the (closed convex) cone of positive semidef
inite symmetric matrices Sn Note that the data for SDP consists of the +. 
symmetric matrix C (which is the data for the objective function) and the 
m symmetric matrices A1, . . . , Am, and the m−vector b, which form the m 
linear equations. 

Let us see an example of an SDP for n = 3 and m = 2. Define the 
following matrices: 

     

1 0 1 0 2 8 1 2 3 
A1 =  0 3 7 , A2 =  2 6 0 , and C =  2 9 0 , 

1 7 5 8 0 4 3 0 7 

and b1 = 11 and b2 = 19. Then the variable X will be the 3 × 3 symmetric 
matrix: 
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x11 x12 x13 

 X =	 x21 x22 x23 , 
x31 x32 x33 

and so, for example, 

C X = x11 + 2x12 + 3x13 + 2x21 + 9x22 + 0x23 + 3x31 + 0x32 + 7x33 • 

= x11 + 4x12 + 6x13 + 9x22 + 0x23 + 7x33. 

since, in particular, X is symmetric. Therefore the SDP can be written 
as: 

SDP : minimize x11 + 4x12 + 6x13 + 9x22 + 0x23 + 7x33 

s.t. 
x11 + 0x12 + 2x13 + 3x22 + 14x23 + 5x33 = 11 

0x11 + 4x12 + 16x13 + 6x22 + 0x23 + 4x33 = 19 

  
x11 x12 x13 

X =  x21 x22 x23  � 0. 
x31 x32 x33 

Notice that SDP looks remarkably similar to a linear program. However, 
the standard LP constraint that x must lie in the nonnegative orthant is re
placed by the constraint that the variable X must lie in the cone of positive 
semidefinite matrices. Just as “x ≥ 0” states that each of the n components 
of x must be nonnegative, it may be helpful to think of “X � 0” as stating 
that each of the n eigenvalues of X must be nonnegative. 
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It is easy to see that a linear program LP is a special instance of an 
SDP . To see one way of doing this, suppose that (c, a1, . . . , am, b1, . . . , bm) 
comprise the data for LP . Then define: 

 
ai1 0 . . . 0 

  
c1 0 . . . 0 

 

 0 ai2 . . . 0   0 c2 . . . 0  
Ai = 

 
 
 

. . . 
. . . 

. . . 
. . . 

 
 
 

, i = 1, . . . , m, and C = 
 
 
 

. . . 
. . . 

. . . 
. . . 

 
 
 

. 

0 0 . . . ain 0 0 . . . cn 

Then LP can be written as: 

SDP : minimize C X• 

s.t. Ai X = bi , i = 1, . . . ,m, • 
Xij = 0, i = 1, . . . , n, j = i + 1, . . . , n, 
X � 0, 

with the association that 

  
x1 0 . . . 0 

 0 x2 . . . 0  
 

X =  . . . .  . . . . . 
 . . . .  

0 0 . . . xn 

Of course, in practice one would never want to convert an instance of LP 
into an instance of SDP . The above construction merely shows that SDP 
includes linear programming as a special case. 
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5 Semidefinite Programming Duality 

The dual problem of SDP is defined (or derived from first principles) to be: 

m 

SDD : maximize yibi 
i=1 

m 

s.t.	 yiAi + S = C 
i=1 

S � 0. 

One convenient way of thinking about this problem is as follows. Given mul
mtipliers y1, . . . , ym, the objective is to maximize the linear function i=1 yibi. 

The constraints of SDD state that the matrix S defined as 

m 

S = C − yiAi 

i=1 

must be positive semidefinite. That is, 

m 

C − yiAi � 0. 
i=1 

We illustrate this construction with the example presented earlier. The 
dual problem is: 

SDD :	 maximize 11y1 + 19y2 

     

1 0 1 0 2 8 1 2 3 
s.t.	 y1 

 0 3 7 + y2 
 2 6 0 + S =  2 9 0 

1 7 5 8 0 4 3 0 7 

S � 0, 
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which we can rewrite in the following form: 

SDD : maximize	 11y1 + 19y2 

s.t. 
	  

1− 1y1 − 0y2 2− 0y1 − 2y2 3− 1y1 − 8y2 
	  
	 2− 0y1 − 2y2 9− 3y1 − 6y2 0− 7y1 − 0y2  � 0. 

3− 1y1 − 8y2 0− 7y1 − 0y2 7− 5y1 − 4y2 

It is often easier to “see” and to work with a semidefinite program when 
it is presented in the format of the dual SDD, since the variables are the m 
multipliers y1, . . . , ym. 

As in linear programming, we can switch from one format of SDP (pri
mal or dual) to any other format with great ease, and there is no loss of 
generality in assuming a particular specific format for the primal or the 
dual. 

The following proposition states that weak duality must hold for the 
primal and dual of SDP : 

Proposition 5.1 Given a feasible solution X of SDP and a feasible solu
mtion (y, S) of SDD, the duality gap is C X − i=1 yibi = S X ≥ 0. If 

∑m	
• • 

C	 X− i=1 yibi = 0, then X and (y, S) are each optimal solutions to SDP •
and SDD, respectively, and furthermore, SX = 0. 

In order to prove Proposition 5.1, it will be convenient to work with the 
trace of a matrix, defined below: 
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n 

trace(M) = Mjj. 
j=1 

Simple arithmetic can be used to establish the following two elementary 
identities: 

• trace(MN) = trace(NM) 

A B = trace(AT B) 

Proof of Proposition 5.1. For the first part of the proposition, we 
must show that if S � 0 and X � 0, then S X ≥ 0. Let S = PDP T and • 
X = QEQT where P,Q are orthonormal matrices and D,E are nonnegative 
diagonal matrices. We have: 

S X = trace(ST X) = trace(SX) = trace(PDP T QEQT )• 

n 

= trace(DP T QEQT P ) = Djj(P
T QEQT P )jj ≥ 0, 

j=1 

where the last inequality follows from the fact that all Djj ≥ 0 and the fact 
that the diagonal of the symmetric positive semidefinite matrix P T QEQT P 
must be nonnegative. 

To prove the second part of the proposition, suppose that trace(SX) = 0. 
Then from the above equalities, we have 

n 

Djj(P
T QEQT P )jj = 0. 

j=1 
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However, this implies that for each j = 1, . . . , n, either Djj = 0 or the 
(P T QEQT P )jj = 0. Furthermore, the latter case implies that the jth row 
of P T QEQT P is all zeros. Therefore DP T QEQT P = 0, and so SX = 
PDP T QEQT = 0. 
q.e.d. 

Unlike the case of linear programming, we cannot assert that either SDP 
or SDD will attain their respective optima, and/or that there will be no 
duality gap, unless certain regularity conditions hold. One such regularity 
condition which ensures that strong duality will prevail is a version of the 
“Slater condition”, summarized in the following theorem which we will not 
prove: 

Theorem 5.1 Let z ∗ P and z ∗ denote the optimal objective function values D 

∗ 

of SDP and SDD, respectively. Suppose that there exists a feasible solution 
X̂ of SDP such that X̂ ≻ 0, and that there exists a feasible solution (ŷ, Ŝ) 
of SDD such that Ŝ ≻ 0. Then both SDP and SDD attain their optimal 

∗values, and zP = zD. 

Key Properties of Linear Programming that do 

not extend to SDP 

The following summarizes some of the more important properties of linear 
programming that do not extend to SDP : 

•	 There may be a finite or infinite duality gap. The primal and/or dual 
may or may not attain their optima. As noted above in Theorem 
5.1, both programs will attain their common optimal value if both 
programs have feasible solutions in the interior of the semidefinite cone. 

•	 There is no finite algorithm for solving SDP . There is a simplex 
algorithm, but it is not a finite algorithm. There is no direct analog 
of a “basic feasible solution” for SDP . 
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•	 Given rational data, the feasible region may have no rational solutions. 
The optimal solution may not have rational components or rational 
eigenvalues. 

•	 Given rational data whose binary encoding is size L, the norms of any 
feasible and/or optimal solutions may exceed 22L 

(or worse). 

•	 Given rational data whose binary encoding is size L, the norms of any 
feasible and/or optimal solutions may be less than 2−2L 

(or worse). 

7 SDP in Combinatorial Optimization 

SDP has wide applicability in combinatorial optimization. A number of 
NP−hard combinatorial optimization problems have convex relaxations that 
are semidefinite programs. In many instances, the SDP relaxation is very 
tight in practice, and in certain instances in particular, the optimal solution 
to the SDP relaxation can be converted to a feasible solution for the origi
nal problem with provably good objective value. An example of the use of 
SDP in combinatorial optimization is given below. 

7.1 An SDP Relaxation of the MAX CUT Problem 

Let G be an undirected graph with nodes N = {1, . . . , n}, and edge set E. 
Let wij = wji be the weight on edge (i, j), for (i, j) ∈ E. We assume that 
wij ≥ 0 for all (i, j) ∈ E. The MAX CUT problem is to determine a subset 
S of the nodes N for which the sum of the weights of the edges that cross 
from S to its complement S̄ is maximized (where (S̄ := N \ S) . 

We can formulate MAX CUT	 as an integer program as follows. Let xj = 1 
¯for j ∈ S and xj = −1 for j ∈ S. Then our formulation is: 

n n 

MAXCUT : maximizex 
1 wij(1− xixj)4 

i=1 j=1 

s.t. xj ∈ {−1, 1}, j = 1, . . . , n. 
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Now let 

Y = xx T , 

whereby 

Yij = xixj i = 1, . . . , n, j = 1, . . . , n. 

Also let W be the matrix whose (i, j)th element is wij for i = 1, . . . , n 
and j = 1, . . . , n. Then MAX CUT can be equivalently formulated as: 

n n 

MAXCUT : maximizeY,x 
1 

i=1 j=1 
wij − W • Y4 

s.t.	 xj ∈ {−1, 1}, j = 1, . . . , n 

Y = xxT . 

Notice in this problem that the first set of constraints are equivalent to 
Yjj = 1, j = 1, . . . , n. We therefore obtain: 

n n 

MAXCUT : maximizeY,x 
1 

i=1 j=1 
wij − W • Y4 

s.t.	 Yjj = 1, j = 1, . . . , n 

Y = xxT . 
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Last of all, notice that the matrix Y = xxT is a symmetric rank-1 posi
tive semidefinite matrix. If we relax this condition by removing the rank
1 restriction, we obtain the following relaxtion of MAX CUT, which is a 
semidefinite program: 

n n 

RELAX : maximizeY 
1
4 wij − W Y 

i=1 j=1 
• 

s.t. Yjj = 1, j = 1, . . . , n 

Y � 0. 

It is therefore easy to see that RELAX provides an upper bound on MAX
CUT, i.e., 

MAXCUT ≤ RELAX. 

As it turns out, one can also prove without too much effort that: 

0.87856 RELAX ≤ MAXCUT ≤ RELAX. 

This is an impressive result, in that it states that the value of the semidefi
nite relaxation is guaranteed to be no more than 12% higher than the value 
of NP -hard problem MAX CUT. 

SDP in Convex Optimization 

As stated above, SDP has very wide applications in convex optimization. 
The types of constraints that can be modeled in the SDP framework include: 
linear inequalities, convex quadratic inequalities, lower bounds on matrix 
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norms, lower bounds on determinants of symmetric positive semidefinite 
matrices, lower bounds on the geometric mean of a nonnegative vector, plus 
many others. Using these and other constructions, the following problems 
(among many others) can be cast in the form of a semidefinite program: 
linear programming, optimizing a convex quadratic form subject to convex 
quadratic inequality constraints, minimizing the volume of an ellipsoid that 
covers a given set of points and ellipsoids, maximizing the volume of an 
ellipsoid that is contained in a given polytope, plus a variety of maximum 
eigenvalue and minimum eigenvalue problems. In the subsections below we 
demonstrate how some important problems in convex optimization can be 
re-formulated as instances of SDP . 

8.1	 SDP for Convex Quadratically Constrained Quadratic 

Programming, Part I 

A convex quadratically constrained quadratic program is a problem of the 
form: 

QCQP : minimize xT Q0x + q0 
Tx + c0


x

s.t.	 xT Qix + qi

T x + ci ≤ 0 , i = 1, . . . ,m, 

where the Q0 � 0 and Qi � 0, i = 1, . . . ,m. This problem is the same as: 

QCQP : minimize θ

x, θ

s.t.	 xT Q0x + q0 

Tx + c0 − θ ≤ 0 
xT Qix + qi

T x + ci ≤ 0 , i = 1, . . . ,m. 

We can factor each Qi into 

Qi = Mi
T Mi 
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for some matrix Mi. Then note the equivalence: 

xT

I
Mi

T −ci 

M
− 

ix
qi
T x 

� 0 ⇔ x T Qix + qi
T x + ci ≤ 0. 

In this way we can write QCQP as: 

QCQP : minimize θ

x, θ

s.t. 

I M0x 
xT M0 

T −c0 − q0 
T x + θ 

� 0 

I Mix 
xT MT 

i
T x 

� 0 , i = 1, . . . ,m. 
i −ci − q

Notice in the above formulation that the variables are θ and x and that 
all matrix coefficients are linear functions of θ and x. 

8.2	 SDP for Convex Quadratically Constrained Quadratic 

Programming, Part II 

As it turns out, there is an alternative way to formulate QCQP as a semi-
definite program. We begin with the following elementary proposition. 

Proposition 8.1 Given a vector x ∈ ℜk and a matrix W ∈ ℜk×k, then 

1 xT 

� 0	 if and only if W � xx T . 
x W 
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( ) ( ) 

( ) ( ) 

( ) 

Using this proposition, it is straghtforward to show that QCQP is equiv
alent to the following semi-definite program: 

QCQP : minimize θ

x,W, θ


s.t. 

c0
1	
− θ 1

2q0 
T 1 xT 

≥ 0 
q0 Q0 

• 
x W2

ci 2
1 qi

T 1 xT 

1 qi Qi 
• 

x W 
≥ 0 , i = 1, . . . ,m 

2

1	 xT 

.� 0 
x W 

Notice in this formulation that there are now (n+1)(
2 
n+2) variables, but that 

the constraints are all linear inequalities as opposed to semi-definite inequal
ities. 

8.3 SDP for the Smallest Circumscribed Ellipsoid Problem 

A given matrix R ≻ 0 and a given point z can be used to define an ellipsoid 
in ℜn: 

ER,z := {y | (y − z)T R(y − z) ≤ 1}. 

One can prove that the volume of ER,z is proportional to det(R−1). 
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Suppose we are given a convex set X ∈ ℜn described as the convex hull 
of k points c1, . . . , ck. We would like to find an ellipsoid circumscribing these 
k points that has minimum volume. Our problem can be written in the fol
lowing form: 

MCP : minimize vol (ER,z) 
R, z 
s.t. ci ∈ ER,z, i = 1, . . . , k, 

which is equivalent to: 

MCP : minimize − ln(det(R))

R, z

s.t. (ci − z)T R(ci − z) ≤ 1, i = 1, . . . , k 

R ≻ 0, 

Now factor R = M2 where M ≻ 0 (that is, M is a square root of R), 
and now MCP becomes: 

MCP : minimize − ln(det(M2))

M,z

s.t. (ci − z)T MT M(ci − z) ≤ 1, i = 1, . . . , k, 

M ≻ 0. 

Next notice the equivalence: 

I Mci − Mz 
(Mci − Mz)T 1 

� 0 ⇔ (ci − z)T MT M(ci − z) ≤ 1 
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In this way we can write MCP as: 

MCP : minimize 
M,z 

−2 ln(det(M)) 

( ) 

s.t. 
I 

(Mci − Mz)T 

Mci − Mz 
1 

� 0, i = 1, . . . , k, 

M ≻ 0. 

Last of all, make the substitution y = Mz to obtain: 

MCP : minimize −2 ln(det(M)) 
M,y 

s.t. 
(Mci 

I 
− y)T 

Mci 

1
− y � 0, i = 1, . . . , k, 

M ≻ 0. 

Notice that this last program involves semidefinite constraints where all of 
the matrix coefficients are linear functions of the variables M and y. How
ever, the objective function is not a linear function. It is possible to convert 
this problem further into a genuine instance of SDP , because there is a way 
to convert constraints of the form 

− ln(det(X)) ≤ θ 

to a semidefinite system. Nevertheless, this is not necessary, either from 
a theoretical or a practical viewpoint, because it turns out that the function 
f(X) = − ln(det(X)) is extremely well-behaved and is very easy to optimize 
(both in theory and in practice). 
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Finally, note that after solving the formulation of MCP above, we can 
recover the matrix R and the center z of the optimal ellipsoid by computing 

R = M2 and z = M−1 y. 

8.4 SDP for the Largest Inscribed Ellipsoid Problem 

Recall that a given matrix R ≻ 0 and a given point z can be used to define 
an ellipsoid in ℜn: 

ER,z := {x | (x − z)T R(x − z) ≤ 1}, 

and that the volume of ER,z is proportional to det(R−1). 

Suppose we are given a convex set X ∈ ℜn described as the intersection 
of k halfspaces {x | (ai)

T x ≤ bi}, i = 1, . . . , k, that is, 

X = {x | Ax ≤ b} 

where the ith row of the matrix A consists of the entries of the vector 
ai, i = 1, . . . , k. We would like to find an ellipsoid inscribed in X of maxi
mum volume. Our problem can be written in the following form: 

MIP : maximize vol (ER,z) 
R, z 
s.t. ER,z ⊂ X, 

which is equivalent to: 
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MIP : maximize det(R−1) 
R, z 
s.t. ER,z ⊂ {x | (ai)

T x ≤ bi}, i = 1, . . . , k 

R ≻ 0, 

which is equivalent to: 

MIP : maximize ln(det(R−1)) 
R, z 
s.t. maxx{ai

T x | (x − z)T R(x − z) ≤ 1} ≤ bi, i = 1, . . . , k 

R ≻ 0. 

For a given i = 1, . . . , k, the solution to the optimization problem in the 
ith constraint is 

∗ R−1ai 
x = z + √ 

aT R−1aii 

with optimal objective function value 

ai
T z + ai

T R−1ai , 

and so MIP can be rewritten as: 
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√ 

MIP : maximize ln(det(R−1))

R, z


s.t. aT
i z + aT

i R
−1ai ≤ bi, i = 1, . . . , k 

R ≻ 0. 

Now factor R−1 = M2 where M ≻ 0 (that is, M is a square root of R−1), 
and now MIP becomes: 

MIP : maximize ln(det(M2))

M,z


s.t. aT
i z + aT

i M
T Mai ≤ bi, i = 1, . . . , k 

M ≻ 0, 

which we can re-write as: 

MIP : maximize 2 ln(det(M))

M,z

s.t. aT MT Mai ≤ (bi − ai

T z)2 , i = 1, . . . , k i 

bi − ai
T z ≥ 0, i = 1, . . . , k 

M ≻ 0. 

Next notice the equivalence: 

  
( 

(bi − ai z)I Mai 

)

 aT MT Mai ≤ (bi − aT
i z)2 T  i  

(Mai)
T

i z) 
� 0 

 
and 

(bi − aT ⇔ 
 bi − ai

T z ≥ 0.  
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In this way we can write MIP as: 

MIP : minimize −2 ln(det(M))

M,z


(bi − ai
T z)I Mais.t. 

(Mai)
T (bi − aT

i z) 
� 0, i = 1, . . . , k, 

M ≻ 0. 

Notice that this last program involves semidefinite constraints where all of 
the matrix coefficients are linear functions of the variables M and z. How
ever, the objective function is not a linear function. It is possible, but not 
necessary in practice, to convert this problem further into a genuine instance 
of SDP , because there is a way to convert constraints of the form 

− ln(det(X)) ≤ θ 

to a semidefinite system. Such a conversion is not necessary, either from 
a theoretical or a practical viewpoint, because it turns out that the function 
f(X) = − ln(det(X)) is extremely well-behaved and is very easy to optimize 
(both in theory and in practice). 

Finally, note that after solving the formulation of MIP above, we can 
recover the matrix R of the optimal ellipsoid by computing 

R = M−2 . 

8.5 SDP for Eigenvalue Optimization 

There are many types of eigenvalue optimization problems that can be for
mualated as SDP s. A typical eigenvalue optimization problem is to create 
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a matrix 

k 

S := B − wiAi 

i=1 

given symmetric data matrices B and Ai, i = 1, . . . , k, using weights w1, . . . , wk, 
in such a way to minimize the difference between the largest and smallest 
eigenvalue of S. This problem can be written down as: 

EOP : minimize 
w,S 

λmax(S)− λmin(S) 

k 
∑ 

s.t. S = B − 
i=1 

wiAi, 

where λmin(S) and λmax(S) denote the smallest and the largest eigenvalue 
of S, respectively. We now show how to convert this problem into an SDP . 

Recall that S can be factored into S = QDQT where Q is an orthonor
mal matrix (i.e., Q−1 = QT ) and D is a diagonal matrix consisting of the 
eigenvalues of S. The conditions: 

λI � S � µI 

can be rewritten as: 

Q(λI)QT � QDQT � Q(µI)QT . 

After premultiplying the above QT and postmultiplying Q, these conditions 
become: 
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9 

λI � D � µI 

which are equivalent to: 

λ ≤ λmin(S) and λmax(S) ≤ µ. 

Therefore EOP can be written as: 

EOP :	 minimize µ− λ 
w, S, µ, λ 

k 

s.t.	 S = B − wiAi 
i=1 

λI � S � µI. 

This last problem is a semidefinite program. 

Using constructs such as those shown above, very many other types of 
eigenvalue optimization problems can be formulated as SDP s. 

SDP in Control Theory 

A variety of control and system problems can be cast and solved as instances 
of SDP . However, this topic is beyond the scope of these notes. 
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10 Interior-point Methods for SDP 

At the heart of an interior-point method is a barrier function that exerts 
a repelling force from the boundary of the feasible region. For SDP , we 
need a barrier function whose values approach +∞ as points X approach 
the boundary of the semidefinite cone Sn 

+. 

Let X ∈ S+
n . Then X will have n eigenvalues, say λ1(X), . . . , λn(X) 

(possibly counting multiplicities). We can characterize the interior of the 
semidefinite cone as follows: 

intSn λ1(X) > 0, . . . , λn(X)+ = {X ∈ Sn | > 0}. 

A natural barrier function to use to repel X from the boundary of Sn 
+ 

then is 

n n 

− ln(λi(X)) = − ln( λi(X)) = − ln(det(X)). 
j=1 j=1 

Consider the logarithmic barrier problem BSDP (θ) parameterized by 
the positive barrier parameter θ: 

BSDP (θ) : minimize C X − θ ln(det(X)) • 

s.t. Ai X = bi , i = 1, . . . ,m, • 
X ≻ 0. 

Let fθ(X) denote the objective function of BSDP (θ). Then it is not too 
difficult to derive: 
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∇fθ(X) = C − θX−1 , (1) 

and so the Karush-Kuhn-Tucker conditions for BSDP (θ) are: 

 
 Ai X = bi , i = 1, . . . ,m, 
 
 

• 
 
 
 
 
 

X ≻ 0, (2) 
 
 
 
 m 
 
 
 C − θX−1 = yiAi.  

i=1 

Because X is symmetric, we can factorize X into X = LLT . We then 
can define 

S = θX−1 = θL−TL−1 , 

which implies 

1 
LT SL = I, 

θ 

and we can rewrite the Karush-Kuhn-Tucker conditions as: 
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∑ ∑ ∑ ∑ 

√ 
√ ∑ ∑ 

 
 Ai X = bi , i = 1, . . . ,m, 
 
 

• 
 
 
 
 
 
 X ≻ 0,X = LLT 
 
 
 

(3) m 
 
 
 yiAi + S = C 
 
 
 i=1 
 
 
 
 
 
 1I − 

θ
LT SL = 0. 

From the equations of (3) it follows that if (X, y, S) is a solution of (3), then 
X is feasible for SDP , (y, S) is feasible for SDD, and the resulting duality 
gap is 

n n n n 

S X = SijXij = (SX)jj = θ = nθ. • 
i=1 j=1 j=1 j=1 

This suggests that we try solving BSDP (θ) for a variety of values of θ 
as θ 0. → 

However, we cannot usually solve (3) exactly, because the fourth equation 
group is not linear in the variables. We will instead define a “β-approximate 
solution” of the Karush-Kuhn-Tucker conditions (3). Before doing so, we 
introduce the following norm on matrices, called the Frobenius norm: 

√ n n 

‖M‖ := 
√

M M = √ M2 .•	 ij 
i=1 j=1 

For some important properties of the Frobenius norm, see the last subsection 
of this section. A “β-approximate solution” of BSDP (θ) is defined as any 
solution (X, y, S) of 
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∑ 

 
 Ai X = bi , i = 1, . . . ,m, 
 
 

• 
 
 
 
 
 
 X ≻ 0,X = LLT 
 
 
 

(4) m 
 
 
 yiAi + S = C 
 
 
 i=1 
 
 
 
 
 
 1‖I − 

θ
LT SL‖ ≤ β. 

¯ ¯Lemma 10.1 If (X, y, S) is a β-approximate solution of BSDP (θ) and ¯

¯ ¯
β < 1, then X is feasible for SDP , (ȳ, S) is feasible for SDD, and the 

duality gap satisfies: 

m 

nθ(1− β) ≤ C X − yibi = X̄ S̄ ≤ nθ(1 + β). (5) 
i=1 

Proof: Primal feasibility is obvious. To prove dual feasibility, we need 
to show that S̄ � 0. To see this, define 

R = I − 
1 
L̄T S̄L̄ (6) 

θ 

and note that ‖R‖ ≤ β < 1. Rearranging (6), we obtain 

S̄ = θL̄−T (I − R)L̄−1 ≻ 0 

because ‖R‖ < 1 implies that I−R ≻ 0. We also have X̄ S̄ = trace( X̄S̄) = • 
trace(L̄L̄T S̄) = trace(L̄T S̄L̄) = θtrace(I − R) = θ(n − trace(R)). However, 
|trace(R)| ≤ √n‖R‖ ≤ nβ, whereby we obtain 

¯ ¯nθ(1− β) ≤ X S ≤ nθ(1 + β).• 

q.e.d. 
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10.1 The Algorithm 

Based on the analysis just presented, we are motivated to develop the fol
lowing algorithm: 

Step 0 . Initialization. Data is (X0, y0, S0, θ0). k = 0. Assume that 
(X0, y0, S0) is a β-approximate solution of BSDP (θ0) for some known value 
of β that satisfies β < 1. 

Step 1. Set Current values. (X, y, S) = , yk, Sk), θ = θk . ¯ ¯ ¯ (Xk

′ 

Step 2. Shrink θ. Set θ = αθ for some α ∈ (0, 1). In fact, it will be 
appropriate to set 

√
β − β 

α = 1− √
β + 
√

n 

Step 3. Compute Newton Direction and Multipliers. Compute 
the Newton step D 

′ 

for BSDP (θ 
′ 

) at X = X̄ by factoring X̄ = L̄L̄T and 
solving the following system of equations in the variables (D, y): 

 m 
 = ′ 

X̄−1 + θ 
′ 

X̄−1DX̄−1 yiAi 
 C − θ 

i=1 (7) 
 
 
 

Ai D = 0, i = 1, . . . ,m. • 
′ ′ 

Denote the solution to this system by (D , y ). 

Step 4. Update All Values. 

′ ′ ¯X = X + D 
m 

′ 
∑ 

′ 

S = C − yiAi 

i=1 

′ ′ ′ 

Step 5. Reset Counter and Continue. (Xk+1, yk+1, Sk+1) = (X , y , S ). 
′ 

θk+1 = θ . k k + 1. Go to Step 1. ← 
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A picture of this algorithm looks something like this: 
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Some of the unresolved issues regarding this algorithm include: 

•	 how to set the fractional decrease parameter α 

′	 ′ •	 the derivation of the Newton step D and the multipliers y 

whether or not successive iterative values (Xk, yk, Sk) are β-approximate • 
solutions to BSDP (θk), and 

•	 how to get the method started in the first place. 

10.2 The Newton Step 

Suppose that X̄ is a feasible solution to BSDP (θ): 

BSDP (θ) : minimize C X − θ ln(det(X)) • 

s.t. Ai X = bi , i = 1, . . . ,m, • 
X ≻ 0. 

Let us denote the objective function of BSDP (θ) by fθ(X), i.e., 

fθ(X) = C X − θ ln(det(X)).• 

Then we can derive: 

∇fθ(X̄) = C − θX̄−1 

¯and the quadratic approximation of BSDP (θ) at X = X can be derived 
as: 
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minimize fθ(X̄) + (C − X̄−1) (X − X̄) + 1θX̄−1(X − X̄) X̄−1(X − X̄)• 2 • 
X 

s.t. Ai X = bi, i = 1, . . . ,m. • 

¯Letting D = X − X , this is equivalent to: 

minimize (C − θX̄−1) D + 2
1θX̄−1D X̄−1D 

D 

s.t. Ai D = 0, i = 1, . . . ,m. • 

The solution to this program will be the Newton direction. The Karush-
Kuhn-Tucker conditions for this program are necessary and sufficient, and 
are: 

 m 
 X̄−1 ¯ X̄−1 
 + θX−1D = yiAi 
 C − θ 

i=1 (8) 
 
 
 

Ai • D = 0, i = 1, . . . ,m. 

′ ′ 

These equations are called the Normal Equations. Let D and y denote the 
solution to the Normal Equations. Note in particular from the first equation 

′ ′ ′ 

in (8) that D must be symmetric. Suppose that (D , y ) is the (unique) so
lution of the Normal Equations (8). We obtain the new value of the primal 
variable X by taking the Newton step, i.e., 

′ ′ ¯X = X + D . 

We can produce new values of the dual variables (y, S) by setting the new 
m 

′ ′ ′ 

value of y to be y and by setting S = C − y Ai. Using (8), then, we 
i=1 

have that 
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∑ 

′ ′ 

S = θX̄−1 − θX̄−1D X̄−1 . (9) 

We have the following very powerful convergence theorem which demon
strates the quadratic convergence of Newton’s method for this problem, 
with an explicit guarantee of the range in which quadratic convergence takes 
place. 

Theorem 10.1 (Explicit Quadratic Convergence of Newton’s Method). 
¯ ¯Suppose that (X, y, is a β-approximate solution of BSDP (θ) and β < 1.¯ S)

′ ′ 

Let (D , y ) be the solution to the Normal Equations (8), and let 

′ ′ ¯X = X + D 

and 
′ ′ 

S = θX̄−1 − θX̄−1D X̄−1 . 
′ ′ ′ 

Then (X , y , S ) is a β2-approximate solution of BSDP (θ). 

Proof: Our current point X̄ satisfies: 

Ai X̄ = bi, i = 1, . . . ,m, X̄ = L̄L̄T ≻ 0• 
m 

ȳiAi + S̄ = C 
i=1 

1 ‖I − 
θ
L̄T S̄L̄‖ ≤ β < 1. 

′ ′ 

Furthermore the Newton direction D and multipliers y satisfy: 

′ 

Ai • D = 0, i = 1, . . . ,m 

m 
′ ′ 

yiAi + S = C 
i=1 

′ ′ ′ 

X = X̄ + D = L̄(I + L̄−1D L̄−T )L̄T 
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∑ ∑ 

( ) 

′ ′ ′ 

S = θX̄−1 − θX̄−1D X̄−1 = θL̄−T (I − L̄−1D L̄−T )L̄−1 . 

We will first show that ‖L̄−1D 
′ 

L̄−T ‖ ≤ β. It turns out that this is the 
crucial fact from which everything will follow nicely. To prove this, note 
that 

m m m 
′ ′ 

∑ 
′ ′ 

ȳiAi + S̄ = C = yiAi + S = yiAi + θL̄−T (I − L̄−1D L̄−T )L̄−1 . 
i=1 i=1 i=1 

′ 

Taking the inner product with D yields: 

′ ′ ′ ′ 

S̄ D = θL̄−T L̄−1 D − θL̄−T L̄−1D L̄−T L̄−1 D , 

which we can rewrite as: 

′ ′ ′ ′ 

L̄T S̄L̄ L̄−1D L̄−T = θI L̄−1D L̄−T − θL̄−1D L̄−T L̄−1D L̄−T , 

which we finally rewrite as: 

‖L̄−1D 
′ 

L̄−T ‖ 2 = I − 
θ 

1 
L̄T S̄L̄ • L̄−1D 

′ 

L̄−T . 

Invoking the Cauchy-Schwartz inequality we obtain: 

‖L̄−1D 
′ 

L̄−T ‖2 ≤ ‖I − 
θ 

1 
L̄T S̄L̄‖‖ L̄−1D 

′ 

L̄−T ‖ ≤ β‖L̄−1D 
′ 

L̄−T ‖, 

from which we see that ‖L̄−1D 
′ 

L̄−T ‖ ≤ β. 

It therefore follows that 

′ ′ 

X = L̄(I + L̄−1D L̄−T )L̄T ≻ 0 

and 
′ ′ 

S = θL̄−T (I − L̄−1D L̄−T )L̄−1 ≻ 0, 

since ‖L̄−1D 
′ 

L̄−T ‖ ≤ β < 1, which guarantees that I ± L̄−1D 
′ 

L̄−T ≻ 0. 

Next, factorize 
′ 

I + L̄−1D L̄−T = M2 , 

(where M = MT ) and note that 

′ ′ ′ ¯X = LMML̄T = L (L )T 
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∥ ∥ 

∥ ∥ ∣ ∣ 

′ ¯where we define L = LM . Then note that 

1 ′ ′ 1 ′ ¯ ¯I − 
θ
(L )T S ′ L = I − 

θ
MLT S LM 

1 ′ ′ 

= I − 
θ
M ¯ L−T (I − ¯ L̄−T )¯ LM I − M(I − L̄−1DLT (θ¯ L−1D L−1)¯ = L̄−T )M 

′ 

= I−MM+M(L̄−1D L̄−T )M = I−MM+M(MM−I)M = (I−MM)(I−MM) 
′ ′ 

= (L̄−1D L̄−T )(L̄−1D L̄−T ). 

From this we next have: 

1 ′ ′ ′ ′ ′ ‖I − 
θ
(L )T S ′ L ‖ = ‖(L̄−1D L̄−T )(L̄−1D L̄−T )‖ ≤ ‖(L̄−1D L̄−T )‖ 2 ≤ β2 . 

′ ′ ′ 

This shows that (X , y , S ) is a β2-approximate solution of BSDP (θ). 
q.e.d. 

10.3 Complexity Analysis of the Algorithm 

¯ ¯Theorem 10.2 (Relaxation Theorem). Suppose that (X, y, S) is a β¯
approximate solution of BSDP (θ) and β < 1. Let 

√
β − β 

α = 1− √
β + 
√

n 

′ ′¯ ¯and let θ = αθ. Then (X, y, S) is a 
√

β-approximate solution of BSDP (θ ).¯

¯ ¯ ¯ ¯Proof: The triplet ( X, y, S) satisfies Ai X = bi, i = 1, . . . ,m, X ≻ 0, and ¯
m 

• 
ȳiAi + S̄ = C, and so it remains to show that 

i=1 

∥ 1 ∥
√ 

∥ L̄T ¯¯ ∥ 
∥ θ ′ 

SL− I 
∥ ≤ β, 

where X̄ = L̄L̄T . We have 
∥ ∥ ∥ ∥ ∥ ( ) ( ) ∥ 
∥ 
∥ 
∥ 

1 

θ ′ 
L̄T S̄L̄− I 

∥ 
∥ 
∥ = 

∥ 
∥ 
∥ 

1 

αθ 
L̄T S̄L̄− I 

∥ 
∥ 
∥ = 

∥ 
∥ 
∥ 

1 

α 

1 

θ 
L̄T S̄L̄− I − 1− 

1 

α 
I 
∥ 
∥ 
∥ 

( 
1 
) ∥ 
∥ 
∥ 1 L̄T S̄ ¯

∥ 
∥ 
∥ + 

∣ 
∣ 
∣ 1− α 

∣ 
∣ 
∣≤ L− I ‖I‖


α θ α 
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√ √ 

≤ 
α

β 
+

1− 
α

α √
n = 

β + 

α 

√
n −
√

n 

= β + 
√

n −
√

n = β. 

q.e.d. 

Theorem 10.3 (Convergence Theorem). Suppose that (X0, y0, S0) is a 
β-approximate solution of BSDP (θ0) and β < 1. Then for all k = 1, 2, 3, ..., 
(Xk, yk, Sk) is a β-approximate solution of BSDP (θk). 

Proof: By induction, suppose that the theorem is true for iterates 0, 1, 2, ..., k. 

Then (Xk, yk, Sk) is a β-approximate solution of BSDP (θk). 

From the Relaxation Theorem, (Xk, yk, Sk) is a 
√

β-approximate solution 
of BSDP (θk+1) where θk+1 = αθk . 

From the Quadratic Convergence Theorem, (Xk+1, yk+1, Sk+1) is a β-approximate 
solution of BSDP (θk+1). 

Therefore, by induction, the theorem is true for all values of k. 
q.e.d. 
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A better picture of this algorithm looks something like this: 
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⌈ ( )⌉ 

∑ 

( ) 

( ) 

( ) 

( ) 
( ) 

∑ 

Theorem 10.4 (Complexity Theorem). Suppose that (X0, y0, S0) is a 
β = 1

4-approximate solution of BSDP (θ0). In order to obtain primal and 
dual feasible solutions (Xk, yk, Sk) with a duality gap of at most ǫ, one needs 
to run the algorithm for at most 

k = 6
√

n ln 
1.25 X0 • S0 

0.75 ǫ 

iterations. 

Proof: Let k be as defined above. Note that 

1 1 

α = 1− √
√

β

β 

+ 

−√β
n 

= 1− ( 2 

+ 

−
√4 

n 
) = 1− 

2 + 4

1 √
n 
≤ 1− 

6
√1 

n
. 

1 
2 

Therefore 

θk ≤ 
( 

1− 
6
√1 

n 

)k 

θ0 . 

This implies that 

C • Xk − 
m 

biyi
k = Xk • Sk ≤ θk n(1 + β) ≤ 

( 

1− 
6
√1 

n 

)k 

(1.25nθ0) 
i=1 

( )k1 X0 S0 

≤ 1− 
6
√

n 
(1.25n)

0.75

• 
n

, 

from (5). Taking logarithms, we obtain 

m ( ) ( ) 

ln C Xk 
∑ 

biy 
k ≤ k ln 

1 
+ ln 

1.25 
X0 S0 • − i 1− 

6
√

n 0.75 
• 

i=1 

1.25 
X0≤ 

6

−√k
n 

+ ln 
0.75 

• S0 

1.25 X0 S0 1.25 ≤ − ln 
0.75 ǫ 

• 
+ ln 

0.75 
X0 • S0 = ln(ǫ). 

m 

Therefore C • Xk − 
i=1 

biyi
k ≤ ǫ. 

q.e.d. 
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10.4 How to Start the Method from a Strictly Feasible Point 

The algorithm and its performance relies on having a starting point (X0, y0, S0) 
that is a β-approximate solution of the problem BSDP (θ0). In this subsec
tion, we show how to obtain such a starting point, given a positive definite 
feasible solution X0 of SDP . 

We suppose that we are given a target value θ0 of the barrier param
eter, and we are given X = X0 that is feasible for BSDP (θ0), that is, 
Ai X0 = bi, i = 1, . . . ,m, and X0 ≻ 0. We will attempt to approximately • 
solve BSDP (θ0) starting at X = X0, using the Newton direction at each 
iteration. The formal statement of the algorithm is as follows: 

Step 0 . Initialization. Data is (X0, θ0). k = 0. Assume that X0 satisfies 
Ai X0 = bi, i = 1, . . . ,m,X0 ≻ 0. • 

Step 1. Set Current values. X̄ = Xk . Factor X̄ = L̄L̄T . 

Step 2. Compute Newton Direction and Multipliers. Compute the 
Newton step D 

′ 

for BSDP (θ0) at X = X̄ by solving the following system 
of equations in the variables (D, y): 

 m 
 X−1 + θ0X̄−1DX̄−1 
 C − θ0 ¯ = yiAi 
 

i=1 (10) 
 
 
 

Ai D = 0, i = 1, . . . ,m. • 

′ ′ 

Denote the solution to this system by (D , y ). Set 

m 
′ 

∑ 
′ 

S = C − yiAi. 
i=1 

Step 3. Test the Current Point. If ‖L̄−1D 
′ 

L̄−T‖ ≤ 1 , stop. In this 4
case, X̄ is a 1

4 -approximate solution of BSDP (θ0), along with the dual val
′ ′ 

ues (y , S ). 
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∑ 

∥ ∥ 
∥ ∥ 

∑ 

Step 4. Update Primal Point. 

′ ′ ¯X = X + αD 

where 
0.2 

α = . ‖L̄−1D ′ L̄−T

¯ ′ 

Alternatively, α can be computed by a line-search of fθ0 (X + αD ). 

′ 

Step 5. Reset Counter and Continue. Xk+1 X , k k + 1. ← ←
Go to Step 1. 

The following proposition validates Step 3 of the algorithm: 

′ ′ 

Proposition 10.1 Suppose that (D , y ) is the solution of the Normal equa
tions (10) for the point X̄ for the given value θ0 of the barrier parameter, 
and that 

′ 1 ‖L̄−1D L̄−T ‖ ≤ 
4 
. 

Then X̄ is a 1
4-approximate solution of BSDP (θ0). 

m 

Proof: We must exhibit values (y, S) that satisfy yiAi + S = C and 
i=1 

∥ 1 
L̄T SL̄∥ 1 

. 
∥ I − 

θ0 ∥ ≤ 
4 

m 
′ ′ ′ ′ 

Let (D , y ) solve the Normal equations (10), and let S = C− yiAi. Then 
i=1 

we have from (10) that 

1 ′ 1 ′ ′ 

I− 
θ0

L̄T S L̄ = I− 
θ0

L̄T (θ0(L̄−T L̄−1 −L̄−T L̄−1D L̄−T L̄−1))L̄ = L̄−1D L̄−T , 

whereby 

‖I − 
θ

1 
0
L̄T S 

′ 

L̄‖ = ‖L̄−1D 
′ 

L̄−T ‖ ≤ 
4

1 
. 

q.e.d. 
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The next proposition shows that whenever the algorithm proceeds to 
Step 4, then the objective function fθ0 (X) decreases by at least 0.025θ0: 

Proposition 10.2 Suppose that X̄ satisfies Ai X̄ = bi, i = 1, . . . ,m, and 
′ ′ 

• 
X̄ ≻ 0. Suppose that (D , y ) is the solution of the Normal equations (10) 
for the point X̄ for a given value θ0 of the barrier parameter, and that 

′ 1 ‖L̄−1D L̄−T ‖ > . 
4 

Then for all γ ∈ [0, 1), 

γ ′ ′ γ2 

fθ0 X̄ + ‖L̄−1D ′ L̄−T ‖ D ≤ fθ0 (X̄) + θ0 −γ‖L̄−1D L̄−T ‖ +
2(1− γ) 

. 

In particular, 

0.2 ′ 

fθ0 X̄ + 
L−1D ′ L̄−T

D ≤ fθ0 (X̄)− 0.025θ0 . (11) ‖ ̄ ‖ 
In order to prove this proposition, we will need two powerful facts about the 
logarithm function: 

Fact 1. Suppose that |x| ≤ δ < 1. Then 

2x
ln(1 + x) ≥ x − 

2(1 − δ) 
. 

Proof: We have: 
2 3 4 

ln(1 + x) = x − x2 + x3 − x4 + . . . 

|x|2 |x|3 |x|4 ≥ x − 2 − 3 − 4 − . . . 

|x|2 |x|3 |x|4 ≥ x − 2 − 2 − 2 − . . . 

= x − x2 
2 ( 

1 + |x| + |x|2 + |x|3 + . . . 
) 

2x= x − 2(1−|x|) 

2x≥ x − 2(1−δ) . 
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( ) 

q.e.d. 

Fact 2. Suppose that R ∈ Sn and that ‖R‖ ≤ γ < 1. Then 

γ2 

ln(det(I + R)) ≥ I R− 
2(1− γ) 

.• 

Proof: Factor R = QDQT where Q is orthonormal and D is a diagonal 
n 

matrix of the eigenvalues of R. Then first note that ‖R‖ = D2 We jj. 
j=1 

then have: 
ln(det(I + R)) = ln(det(I + QDQT )) 

= ln(det(I + D)) 
n 

= ln(1 + Djj) 
j=1 
n 
∑ D2 

2(1−γ)≥ 
j=1 

Djj − jj 

‖R‖2 
= I • D − 2(1−γ) 

2(1−γ)≥ I • QT RQ− γ2 

γ2 
= I • R− 2(1−γ) 

q.e.d. 

Proof of Proposition 10.2. Let 

γ 
α = 

L−1D ′ L̄−T
, ‖ ̄ ‖ 

and notice that 
′ ‖αL̄−1D L̄−T ‖ = γ. 
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• • 

• • 

• • 

• • 

( ) ( ) 

∑ 

Then 

fθ0 X̄ + 
‖L̄−1D

γ 
′ 
L̄−T ‖ 

D 
′ 

= fθ0 X̄ + αD 
′ 

= C X̄ + αC D 
′ − θ0 ln(det(L̄(I + αL̄−1D 

′ 

L̄−T )L̄T )) 

= C X̄ − θ0 ln(det( X̄)) + αC D 
′ − θ0 ln(det(I + αL̄−1D 

′ 

L̄−T )) 

≤ fθ0 (X̄) + αC • D 
′ − θ0αI • L̄−1D 

′ 

L̄−T + θ0 γ2 

2(1−γ) 

= fθ0 (X̄) + αC D 
′ − θ0αL̄−T L̄−1 D 

′ 

+ θ0
2(1

γ
−

2 

γ) 

= fθ0 (X̄) + α 
( 
C − θ0X̄−1

) 
D 

′ 

+ θ0 γ2 • 2(1−γ) . 

′ ′ 

Now, (D , y ) solve the Normal equations: 

 m 
 X−1 + θ0X̄−1D X̄−1 
 C − θ0 ¯ ′ 

= y 
′ 

Ai 
 i

i=1 (12) 
 
 

′  
Ai D = 0, i = 1, . . . ,m. • 

′ 

Taking the inner product of both sides of the first equation above with D 
and rearranging yields: 

′ ′ ′ 

θ0X̄−1D X̄−1D = −(C − θ0X̄−1) D . 

Substituting this in our inequality above yields: 
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( ) 

( ) 

⌈ ⌉ 

⌈ ⌉ 

fθ0 X̄ + 
‖L̄−1D

γ 
′ 
L̄−T ‖ 

D 
′ ≤ fθ0 (X̄)− αθ0X̄−1D 

′ • X̄−1D 
′ 

+ θ0
2(1

γ
−

2 

γ) 

= fθ0 (X̄)− αθ0L̄−1D 
′ 

L̄−T L̄−1D 
′ 

L̄−T + θ0
2(1

γ
−

2 

γ)• 

= fθ0 (X̄)− αθ0‖L̄−1D 
′ 

L̄−T ‖2 + θ0
2(1

γ
−

2 

γ) 

= fθ0 (X̄)− θ0γ‖L̄−1D 
′ 

L̄−T ‖ + θ0 γ2 

2(1−γ) 

= fθ0 (X̄) + θ0 −γ‖L̄−1D 
′ 

L̄−T ‖ + 2(1
γ
−

2 

γ) . 

Subsituting γ = 0.2 and and ‖L̄−1D 
′ 

L̄−T ‖ > 14 yields the final result. 
q.e.d. 

Last of all, we prove a bound on the number of iterations that the algo
rithm will need in order to find a 1

4 -approximate solution of BSDP (θ0): 

Proposition 10.3 Suppose that X0 satisfies Ai X0 = bi, i = 1, . . . ,m, and •
X0 ≻ 0. Let θ0 be given and let f

θ
∗ 
0 be the optimal objective function value 

of BSDP (θ0). Then the algorithm initiated at X0 will find a 1
4-approximate 

solution of BSDP (θ0) in at most 

fθ0 (X0)− f∗ 

k = θ0 

0.025θ0 

iterations. 

Proof: This follows immediately from (11). Each iteration that is not a 1
4 

approximate solution decreases the objective function fθ0 (X) of BSDP (θ0) 
by at least 0.025θ0 . Therefore, there cannot be more than 

fθ0 (X0)− f∗ 
θ0 

0.025θ0 

iterations that are not 1
4 -approximate solutions of BSDP (θ0). 

q.e.d. 
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√ 

√ √ 

∑ ∑ 
√ 
√ 

√ 

√ ∑ ∑ ∑ 

10.5 Some Properties of the Frobenius Norm 

Proposition 10.4 If M ∈ Sn, then 

n 

1. ‖M‖ = 
∑ 

(λj(M))2 , where λ1(M), λ2(M), . . . , λn(M) is an enu
j=1 

meration of the n eigenvalues of M . 

2. If λ is any eigenvalue of M , then |λ| ≤ ‖M‖. 

3. |trace(M)| ≤ √n‖M‖. 

4. If ‖M‖ < 1, then I + M ≻ 0. 

Proof: We can factorize M = QDQT where Q is orthonormal and D is a 
diagonal matrix of the eigenvalues of M . Then 

√
M‖M‖ = • M = QDQT • QDQT = trace(QDQT QDQT ) 

√ 
√ √ √ n 

∑ 
√ 

trace(QT QDQTQD) (λj(M))2= = trace(DD) = √ . 
j=1 

This proves the first two assertions. To prove the third assertion, note that 

trace(M) = trace(QDQT ) = trace(QT QD) 

n √ n 

= trace(D) = λj(M) ≤
√

n√ (λj(M))2 = 
√

n‖M‖. 
j=1 j=1 

′ 

To prove the fourth assertion, let λ be an eigenvalue of I + M . Then 
′ 

λ = 1 + λ where λ is an eigenvalue of M . However, from the second asser
′ 

tion, λ = 1 + λ ≥ 1− ‖M‖ > 0, and so M ≻ 0. 
q.e.d. 

Proposition 10.5 If A,B ∈ Sn, then ‖AB‖ ≤ ‖A‖‖B‖. 

Proof: We have 
√

( )2 
√ n n n 

‖AB‖ = √ AikBkj 

i=1 j=1 k=1 
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√ 
√ ∑ ∑ ∑ ∑ 

√ 
√ 
( ) 
∑ ∑ ∑ ∑ 

{	 } 
∑ 

∑

∑ ∑

(( )( )) 
√ n	 n n n 

ik kj ≤ √ A2 B2 

i=1 j=1 k=1 k=1 

  
√ n n n n 

= √	 = 
√ 

A2 
 B2 

 
ik kj ‖A‖‖B‖. 

i=1 k=1 j=1 k=1 

q.e.d. 

11	 Issues in Solving SDP using the Ellipsoid Al

gorithm 

To see how the ellipsoid algorithm is used to solve a semidefinite program, 
assume for convenience that the format of the problem is that of the dual 
problem SDD. Then the feasible region of the problem can be written as: 

m 

F = (y1, . . . , ym) ∈ ℜm | C − 
i=1 

yiAi � 0 , 

and the objective function is m
i=1 yibi. Note that F is just a convex re

gion in ℜm . 

Recall that at any iteration of the ellipsoid algorithm, the set of solutions 
of SDD is known to lie in the current ellipsoid, and the center of the current 
ellipsoid is, say, ȳ = (ȳ1, . . . , ȳm). If ȳ ∈ F , then we perform an optimality 

m mcut of the form i=1 yibi ≥ i=1 ȳibi, and use standard formulas to update 
the ellipsoid and its new center. If ¯ ∈ F , then we perform a feasibility cut y /
by computing a vector h̄ ∈ ℜm such that h̄T y > h̄T ȳ for all y ∈ F . 

There are four issues that must be resolved in order to implement the 
above version of the ellipsoid algorithm to solve SDD: 
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∑

∑ ∑ 
( ) 

( ) 
∑ ∑ 

¯1. Testing if ȳ ∈ F . This is done by computing the matrix S = C −
m 
i=1 ȳiAi. If S̄ � 0, then ȳ ∈ F . Testing if the matrix S̄ � 0 can 

be done by computing an exact Cholesky factorization of S̄, which 
takes O(n3) operations, assuming that computing square roots can be 
performed (exactly) in one operation. 

2. Computing a feasibility cut. As above, testing if S̄ � 0 can be com
puted in O(n3) operations. If S̄ 6� 0, then again assuming exact arith
metic, we can find an n-vector v̄ such that ¯T S̄¯ 3) operv v < 0 in O(n
ations as well. Then the feasiblity cut vector h̄ is computed by the 
formula: 

¯ ¯T Ai ¯hi = v v, i = 1, . . . ,m, 

whose computation requires O(mn2) operations. Notice that for any 
y ∈ F , that 

m m 

y T h̄ = yiv̄
T Aiv̄ = v̄T yiAi v̄

i=1 i=1 

m m 
T C¯ T T ¯≤ v̄ v < v̄ ȳiAi v̄ = ȳiv̄

T Aiv̄ = ȳ h, 
i=1 i=1 

thereby showing h̄ indeed provides a feasibility cut for F at y = ȳ. 

3. Starting the ellipsoid algorithm. We need to determine an upper bound 
∗R on the distance of some optimal solution y from the origin. This 

cannot be done by examining the input length of the data, as is the case 
in linear programming. One needs to know some special information 
about the specific problem at hand in order to determine R before 
solving the semidefinite program. 

4. Stopping the ellipsoid algorithm. Suppose that we seek an ǫ-optimal 
solution of SDD. In order to prove a complexity bound on the number 
of iterations needed to find an ǫ-optimal solution, we need to know 
beforehand the radius r of a Euclidean ball that is contained in the 
set of ǫ-optimal solutions of SDD. The value of r also cannot be 
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determined by examining the input length of the data, as is the case 
in linear programming. One needs to know some special information 
about the specific problem at hand in order to determine r before 
solving the semidefinite program. 

12 Current Research in SDP 

There are many very active research areas in semidefinite programming in 
nonlinear (convex) programming, in combinatorial optimization, and in con
trol theory. In the area of convex analysis, recent research topics include 
the geometry and the boundary structure of SDP feasible regions (including 
notions of degeneracy) and research related to the computational complex
ity of SDP such as decidability questions, certificates of infeasibility, and 
duality theory. In the area of combinatorial optimization, there has been 
much research on the practical and the theoretical use of SDP relaxations of 
hard combinatorial optimization problems. As regards interior point meth
ods, there are a host of research issues, mostly involving the development 
of different interior point algorithms and their properties, including rates of 
convergence, performance guarantees, etc. 

13 Computational State of the Art of SDP 

Because SDP has so many applications, and because interior point methods 
show so much promise, perhaps the most exciting area of research on SDP 
has to do with computation and implementation of interior point algorithms 
for solving SDP . Much research has focused on the practical efficiency of 
interior point methods for SDP . However, in the research to date, com
putational issues have arisen that are much more complex than those for 
linear programming, and these computational issues are only beginning to 
be well-understood. They probably stem from a variety of factors, including 
the fact that SDP is not guaranteed to have strictly complementary optimal 
solutions (as is the case in linear programming). Finally, because SDP is 
such a new field, there is no representative suite of practical problems on 
which to test algorithms, i.e., there is no equivalent version of the netlib 
suite of industrial linear programming problems. 
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A good website for semidefinite programming is: 
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