15.081J/6.251J Introduction to Mathematical Programming

Lecture 16: Network Flows, I

1 Networks

- Electrical \& Power Networks
- Road Networks
- Airline Routes
- Internet Backbone
- Printed Circuit Board
- Social Networks

2 Common Thrust

Move some entity (electricity, a consumer product, a person, a vehicle, a message, ...) from one point to another in the underlying network, as efficiently as possible.

1. Learn how to model application settings as network flow problems.
2. Study ways to solve the resulting models.

3 Shortest Path

3.1 Description

- Identify a shortest path from a given source node to a given sink node.
- Finding a path of minimum length.
- Finding a path taking minimum time.
- Finding a path of maximum reliability.

4 Maximum Flow

4.1 Description

- Determine the maximum flow that can be sent from a given source node to a sink node in a capacitated network.
- Determining maximum steady-state flow of
- petroleum products in a pipeline network
- cars in a road network
- messages in a telecommunication network
- electricity in an electrical network

5 Min-Cost Flow

5.1 Description

- Determine a least cost shipment of a commodity through a network in order to satisfy demands at certain nodes from available supplies at other nodes. Arcs have capacities and cost associated with them
- Distribution of products
- Flow of items in a production line
- Routing of cars through street networks
- Routing of telephone calls

5.2 In LOP Form

- Network $G=(N, A)$.
- Arc costs $c: A \rightarrow \mathcal{R}$.
- Arc capacities $u: A \rightarrow \mathcal{N}$.
- Node balances $b: N \rightarrow \mathcal{R}$.

$$
\begin{array}{rlrl}
\text { min } & \sum_{(i, j) \in A} c_{i j} x_{i j} & & \\
\text { s.t. } \quad \sum_{j:(i, j) \in A} x_{i j}-\sum_{j:(j, i) \in A} x_{j i} & =b_{i} & \text { for all } i \in N \\
x_{i j} & \leq u_{i j} & \text { for all }(i, j) \in A \\
x_{i j} & \geq 0 & \text { for all }(i, j) \in A
\end{array}
$$

6 Outline

- Shortest path applications
- Maximum Flow applications
- Minimum cost flow applications

7 Shortest Path

7.1 Interword Spacing in $\mathrm{ET}_{\mathrm{E}} \mathrm{X}$

The spacing between words and characters is normally set automatically by $\mathrm{A}^{\mathrm{A}} \mathrm{T}_{\mathrm{E}} \mathrm{X}$. Interword spacing within one line is uniform. ${ }^{4} T_{E} \mathrm{X}$ also attempts to keep the word spacing for different lines as nearly the same as possible.

> The spacing between words and characters is normally set automatically by $\mathrm{ET}_{\mathrm{E}} \mathrm{X}$. Interword spacing within one line is uniform. ${ }^{\mathrm{A}} \mathrm{T}_{\mathrm{E}} \mathrm{X}$ also attempts to keep the word spacing for different lines as nearly the same as possible.

7.2 Interword Spacing in $\mathrm{EA}_{\mathrm{E}} \mathrm{X}$ (2)

- The paragraph consists of n words, indexed by $1,2, \ldots, n$.
- $c_{i j}$ is the attractiveness of a line if it begins with i and ends with $j-1$.
- ($\mathrm{I}_{\mathrm{A}} \mathrm{TEX}_{\mathrm{E}}$ uses a formula to compute the value of each $c_{i j}$.)

For instance,

$$
\begin{aligned}
c_{12}=-10,000 & c_{13}=-1,000 \\
c_{14}=100 & c_{1,37}=-100,000
\end{aligned}
$$

7.3 Interword Spacing in $\mathrm{AT}_{\mathrm{E}} \mathrm{X}$ (3)

- The problem of decomposing a paragraph into several lines of text to maximize total attractiveness can be formulated as a shortest path problem.
- Nodes? Arcs? Costs?

7.4 Project Management

- A project consists of a set of jobs and a set of precedence relations
- Given a set A of job pairs (i, j) indicating that job i cannot start before job j is completed.
- c_{i} duration of job i
- Find the least possible duration of the project

7.4.1 Formulation

- Introduce two artificial jobs s and t, of zero duration, that signify the beginning and the completion of the project
- Add (s, i) and (i, t) to A
- p_{i} time that job i begins
- $(i, j) \in A: p_{j} \geq p_{i}+c_{i}$
- Project duration: $p_{t}-p_{s}$
-

$$
\begin{aligned}
\min & p_{t}-p_{s} \\
\text { s.t } & p_{j}-p_{i} \geq c_{i}, \quad \forall(i, j) \in A .
\end{aligned}
$$

- Dual

$$
\begin{array}{ll}
\max & \sum_{(i, j) \in A} c_{i} f_{i j} \\
\text { s.t. } & \sum_{\{j \mid(j, i) \in A\}} f_{j i}-\sum_{\{j \mid(i, j) \in A\}} f_{i j}=b_{i} \\
& f_{i j} \geq 0
\end{array}
$$

- $b_{s}=-1, b_{t}=1$, and $b_{i}=0$ for $i \neq s, t$.
- Shortest path problem, where each precedence relation $(i, j) \in A$ corresponds to an arc with cost of $-c_{i}$.

Activity	Immediate Predecessor	Time $\left(c_{i}\right)$
S		0
A	S	14
B	S	3
C	A, B	5
D	A	7
E	E	10
D		0

7.5 DNA Sequencing

- Given two sequences of letters, say

$$
B=b_{1} \cdots b_{p} \text { and } D=d_{1} \cdots d_{q}
$$

- How similar are the two sequences?
- What is the min cost of transforming B to D ?

7.5.1 Transformation costs

- $\alpha=$ cost of inserting a letter in B
- $\beta=$ cost of deleting a letter from B
- $g\left(b_{i}, d_{j}\right)=$ cost of mutating a letter b_{i} into d_{j}

7.5.2 Transformation steps

1. Add or delete letters from B so as to make $\left|B^{\prime}\right|=|D|$.
2. Align B^{\prime} and D
3. Mutate letters of B^{\prime} so that $B^{\prime \prime}=D$.

7.5.3 Algorithm

- $f\left(b_{1} \cdots b_{p}, d_{1} \cdots d_{q}\right)$: the min cost of transforming B into D by the three steps above. We obtain this cost by a recursive way.
\bullet

$$
\begin{aligned}
& f\left(\emptyset \cdots \emptyset, d_{1} \cdots d_{j}\right)=j \alpha, \quad j=1, \ldots, q \\
& f\left(b_{1} \cdots b_{i}, \emptyset \cdots \emptyset\right)=i \beta, \quad i=1, \ldots, p
\end{aligned}
$$

Substitution

$$
\begin{gathered}
B^{\prime}= \\
\hline b_{1} \\
\hline
\end{gathered} \left\lvert\, \begin{array}{c|c|}
& b_{i} \\
\hline D= & d_{1} \\
\cdots & d_{j} \\
f\left(b_{1} \cdots b_{i}, d_{1} \cdots d_{j}\right) \\
=f\left(b_{1} \cdots b_{i-1}, d_{1} \cdots d_{j-1}\right)+g\left(b_{i}, d_{j}\right)
\end{array}\right.
$$

- Addition of d_{j}

$$
\begin{array}{r|c|c|c|c|c|}
B^{\prime}= & b_{1} & \cdots & b_{i} & \cdots & \emptyset \\
\hline D= & d_{1} & \cdots & & \cdots & d_{j} \\
f\left(b_{1} \cdots b_{i}, d_{1} \cdots d_{j}\right)=f\left(b_{1} \cdots b_{i}, d_{1} \cdots d_{j-1}\right)+\alpha .
\end{array}
$$

- Deletion of b_{i} :

$$
f\left(b_{1} \cdots b_{i}, d_{1} \cdots d_{j}\right)=f\left(b_{1} \cdots b_{i-1}, d_{1} \cdots d_{j}\right)+\beta
$$

Recursion

$$
\begin{aligned}
& f\left(b_{1} \cdots b_{i}, d_{1} \cdots d_{j}\right) \\
= & \min \left\{f\left(b_{1} \cdots b_{i-1}, d_{1} \cdots d_{j-1}\right)+g\left(b_{i}, d_{j}\right),\right. \\
& f\left(b_{1} \cdots b_{i}, d_{1} \cdots d_{j-1}\right)+\alpha \\
& \left.f\left(b_{1} \cdots b_{i-1}, d_{1} \cdots d_{j}\right)+\beta\right\}
\end{aligned}
$$

The shortest path from 00 to 32

8 Maximum Flow

8.1 The tournament problem

- Each of n teams plays against every other team a total of k games.
- Each game ends in a win or a loss (no draws)
- x_{i} : the number of wins of team i.
- X set of all possible outcome vectors $\left(x_{1}, \ldots, x_{n}\right)$
- Given $\boldsymbol{x}=\left(x_{1}, \ldots, x_{n}\right)$ decide whether $\boldsymbol{x} \in X$

8.1.1 Formulation

- Supply nodes T_{1}, \ldots, T_{n} represent teams with supply x_{1}, \ldots, x_{n}
- Since total number of wins total number of games, we must have

$$
\sum x_{i}=n(n-1) k / 2
$$

- Demand nodes

$$
G_{12}, \ldots, G_{1 n}, G_{23}, \ldots, G_{2 n}, \ldots, G_{i j}, \ldots, G_{n-1, n}
$$

denote games between T_{i} and T_{j} with demand k.

- Arcs: $\left(T_{i}, G_{i j}\right),\left(T_{j}, G_{i j}\right)$. The flow from T_{i} to $G_{i j}$ represents the total number of games between i and j won by i
- Transportation model feasible if and only if $\boldsymbol{x} \in X$

8.2 Preemptive Scheduling

- m identical machines to process n jobs
- Job j must be processed for p_{j} periods, $j=1, \ldots, n$
- It can not start before period r_{j} and must be competed before period d_{j}
- We allow preemption, i.e., we can disrupt the processing of one job with another
- Problem Find a schedule (which job is processed by which machine at which period) such that all jobs are processed after their release times and completed before their deadlines
- C_{j} : completion time of job j : We need to have

$$
r_{j}+p_{j} \leq C_{j} \leq d_{j} \text { for all } j
$$

8.3 Formulation

- Rank all release times and deadlines in ascending order. The ordered list of numbers divides the time horizon into a number of nonoverlapping intervals.
- $T_{k l}$ be the interval that starts in the period k and ends in period l. During $T_{k l}$, we can process any job j that has been released $\left(r_{j} \leq k\right)$ and its deadline has not yet been reached $\left(l \leq d_{j}\right)$.

8.3.1 Example

- 4 jobs with release times $3,1,3,5$, and deadlines $5,4,7,9$.
- The ascending list of release times and deadlines is $1,3,4,5,7,9$.
- Five intervals: $T_{13}, T_{34}, T_{45}, T_{57}, T_{79}$.

8.3.2 Network

- Nodes: source $s, \operatorname{sink} t$, a node corresponding to each job j, and a node corresponding to each interval $T_{k l}$.
- Arcs: (s, j), with capacity p_{j}. Flow represents the number of periods of processing that job j receives.
- Arcs: $\left(T_{k l}, t\right)$, with capacity $m(l-k)$. Flow represents the total number of machine-periods of processing during $T_{k l}$.
- Arcs: $\left(j, T_{k l}\right)$ if $r_{j} \leq k \leq l \leq d_{j}$ with capacity $l-k$. Flow represents the number of periods that job j is processed during $T_{k l}$.

9 Min-Cost Flow

9.1 Passenger Routing

- United Airlines has seven daily flights from BOS to SFO, every two hours, starting at 7am.
- Capacities are $100,100,100,150,150,150$, and ∞.
- Passengers suffering from overbooking are diverted to later flights.
- Delayed passengers get $\$ 200$ plus $\$ 20$ for every hour of delay.
- Suppose that today the first six flighs have 110, 160, 103, 149, 175, and 140 confirmed reservations.

Determine the most economical passenger routing strategy!

MIT OpenCourseWare
http://ocw.mit.edu

6.251J / 15.081J Introduction to Mathematical Programming Fall 2009

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

