15.081J/6.251J Introduction to Mathematical Programming

Lecture 19: Problems with exponentially many constraints

1 Outline

- Problems with exponentially many constraints
- The separation problem
- Polynomial solvability
- Examples: MST, TSP, Probability
- Conclusions

2 Problems

2.1 Example

$$\min \sum_{i} c_{i} x_{i}$$
$$\sum_{i \in S} a_{i} x_{i} \ge |S|, \quad \text{for all subsets } S \text{ of } \{1, \dots, n\}$$

- There are 2^n constraints, but are described concisely in terms of the n scalar parameters a_1, \ldots, a_n
- Question: Suppose we apply the ellipsoid algorithm. Is it polynomial?
- In what?

2.2 The input

- Consider min c'x s.t. $x \in P$
- ${\cal P}$ belongs to a family of polyhedra of special structure
- A typical polyhedron is described by specifying the dimension n and an integer vector \mathbf{h} of primary data, of dimension $O(n^k)$, where $k \ge 1$ is some constant.
- In example, $\boldsymbol{h} = (a_1, \dots, a_n)$ and k = 1
- U_0 be the largest entry of h
- Given n and h, P is described as $Ax \ge b$
- \boldsymbol{A} has an arbitrary number of rows
- U largest entry in \boldsymbol{A} and \boldsymbol{b} . We assume

$$\log U \le C n^\ell \log^\ell U_0$$

SLIDE 4

SLIDE 2

SLIDE 3

3 The separation problem

Given a polyhedron $P \subset \Re^n$ and a vector $\boldsymbol{x} \in \Re^n$, the **separation problem** is to:

- Either decide that $\boldsymbol{x} \in P$, or
- Find a vector d such that d'x < d'y for all $y \in P$

What is the separation problem for

$$\sum_{i \in S} a_i x_i \ge |S|, \quad \text{for all subsets } S \text{ of } \{1, \dots, n\}?$$

4 Polynomial solvability

4.1 Theorem

If we can solve the separation problem (for a family of polyhedra) in time polynomial in n and $\log U$, then we can also solve linear optimization problems in time polynomial in n and $\log U$. If $\log U \leq Cn^{\ell} \log^{\ell} U_0$, then it is also polynomial in $\log U_0$

- Proof ?
- Converse is also true
- Separation and optimization are polynomially equivalent

4.2 Minimum Spanning Tree (MST)

- How do telephone companies bill you?
- It used to be that rate/minute: Boston \rightarrow LA proportional to distance in MST
- Other applications: Telecommunications, Transportation (good lower bound for TSP)
- Given a graph G = (V, E) undirected and Costs $c_e, e \in E$.
- Find a tree of minimum cost spanning all the nodes.

• Decision variables
$$x_e = \begin{cases} 1, & \text{if edge } e \text{ is included in the tree} \\ 0, & \text{otherwise} \end{cases}$$

• The tree should be connected. How can you model this requirement?

SLIDE 6

SLIDE 5

SLIDE 7

SLIDE 8

• Let S be a set of vertices. Then S and $V \setminus S$ should be connected

• Let
$$\delta(S) = \{e = (i, j) \in E : i \in S \ j \in V \setminus S \}$$

• Then,

$$\sum_{e \in \delta(S)} x_e \ge 1$$

• What is the number of edges in a tree?

• Then,
$$\sum_{e \in E} x_e = n - 1$$

4.2.1 Formulation

$$\begin{split} IZ_{MST} = & \min \sum_{e \in E} c_e x_e \\ H & \begin{cases} \sum_{e \in \delta(S)} x_e \geq 1 & \forall \ S \subseteq V, S \neq \emptyset, V \\ \sum_{e \in E} x_e = n - 1 \\ x_e \in \{0, 1\}. \end{cases} \end{split}$$

How can you solve the LP relaxation?

4.3 The Traveling Salesman Problem

SLIDE 11Given G = (V, E) an undirected graph. $V = \{1, \ldots, n\}$, costs $c_e \forall e \in E$. Find a tour that minimizes total length.

4.3.1 Formulation

 $x_e = \begin{cases} 1, & \text{if edge } e \text{ is included in the tour.} \\ 0, & \text{otherwise.} \end{cases}$

$$\begin{array}{ll} \min & \sum\limits_{e \in E} c_e x_e \\ \text{s.t.} & \sum\limits_{e \in \delta(S)} x_e \geq 2, \quad S \subseteq E \\ & \sum\limits_{e \in \delta(i)} x_e = 2, \quad i \in V \\ & x_e \in \{0, 1\} \end{array}$$

How can you solve the LP relaxation?

SLIDE 12

4.4**Probability Theory**

- Events A_1, A_2
- $P(A_1) = 0.5, P(A_2) = 0.7, P(A_1 \cap A_2) \le 0.1$
- Are these beliefs consistent?
- General problem: Given n events $A_i \ i \in N = \{1, \ldots, n\}$, beliefs

$$P(A_i) \le p_i, \qquad i \in N,$$
$$P(A_i \cap A_j) \ge p_{ij}, \qquad i, j \in N, \ i < j.$$

• Given the numbers p_i and p_{ij} , which are between 0 and 1, are these beliefs consistent?

4.4.1 Formulation

SLIDE 14

$$x(S) = P\left(\left(\cap_{i \in S} A_{i}\right) \cap \left(\cap_{i \notin S} \overline{A}_{i}\right)\right),$$

$$\sum_{\{S \mid i \in S\}} x(S) \leq p_{i}, \quad i \in N,$$

$$\sum_{\{S \mid i, j \in S\}} x(S) \geq p_{ij}, \quad i, j \in N, \ i < j,$$

$$\sum_{S} x(S) = 1,$$

$$x(S) \geq 0, \quad \forall S.$$
SLIDE 15

The previous LP is feasible if and only if there does not exist a vector (u, y, z) such that

$$\sum_{\substack{i,j \in S, i < j \\ i,j \in N, i < j}} y_{ij} + \sum_{i \in S} u_i + z \ge 0, \quad \forall S,$$

$$\sum_{\substack{i,j \in N, i < j \\ i,j \in N, i < j}} p_{ij} y_{ij} + \sum_{i \in N} p_i u_i + z \le -1,$$

$$y_{ij} \le 0, \quad u_i \ge 0, \quad i,j \in N, \ i < j.$$
Since 16

Separation problem:

$$z^* + \min_{S} f(S) = \sum_{i,j \in S, i < j} y^*_{ij} + \sum_{i \in S} u^*_i \ge 0?$$

Example: $y_{12}^* = -2$, $y_{13}^* = -4$, $y_{14}^* = -4$, $y_{23}^* = -4$, $y_{24}^* = -1$, $y_{34}^* = -7$, $u_1^* = 9$, $u_2^* = 6$, $u_3^* = 4$, $u_4^* = 2$, and $z^* = 2$ SLIDE 17 SLIDE 18

- The minimum cut corresponds to $S_0 = \{3, 4\}$ with value $c(S_0) = 21$.
- $f(S_0) = \sum_{i,j \in S_0, i < j} y_{ij}^* + \sum_{i \in S_0} u_i^* = -7 + 4 + 2 = -1$
- $f(S) + z^* \ge f(S_0) + z^* = -1 + 2 = 1 > 0, \quad \forall S$
- Given solution (y^*, u^*, z^*) is feasible

SLIDE 13

5 Conclusions

- Ellipsoid algorithm can characterize the complexity of solving LOPs with an exponential number of constraints
- For practical purposes use dual simplex
- Ellipsoid method is an important theoretical development, not a practical one

6.251J / 15.081J Introduction to Mathematical Programming Fall 2009

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.