15.081J/6.251J Introduction to Mathematical Programming

Lecture 19: Problems with exponentially many constraints

1 Outline

- Problems with exponentially many constraints
- The separation problem
- Polynomial solvability
- Examples: MST, TSP, Probability
- Conclusions

2 Problems

2.1 Example

$$
\begin{gathered}
\min \sum_{i} c_{i} x_{i} \\
\sum_{i \in S} a_{i} x_{i} \geq|S|, \quad \text { for all subsets } S \text { of }\{1, \ldots, n\}
\end{gathered}
$$

- There are 2^{n} constraints, but are described concisely in terms of the n scalar parameters a_{1}, \ldots, a_{n}
- Question: Suppose we apply the ellipsoid algorithm. Is it polynomial?
- In what?

2.2 The input

- Consider min $\boldsymbol{c}^{\prime} \boldsymbol{x}$ s.t. $\boldsymbol{x} \in P$
- P belongs to a family of polyhedra of special structure
- A typical polyhedron is described by specifying the dimension n and an integer vector \boldsymbol{h} of primary data, of dimension $O\left(n^{k}\right)$, where $k \geq 1$ is some constant.
- In example, $\boldsymbol{h}=\left(a_{1}, \ldots, a_{n}\right)$ and $k=1$
- U_{0} be the largest entry of \boldsymbol{h}
- Given n and \boldsymbol{h}, P is described as $\boldsymbol{A} \boldsymbol{x} \geq \boldsymbol{b}$
- \boldsymbol{A} has an arbitrary number of rows
- U largest entry in \boldsymbol{A} and \boldsymbol{b}. We assume

$$
\log U \leq C n^{\ell} \log ^{\ell} U_{0}
$$

3 The separation problem

Given a polyhedron $P \subset \Re^{n}$ and a vector $\boldsymbol{x} \in \Re^{n}$, the separation problem is to:

- Either decide that $\boldsymbol{x} \in P$, or
- Find a vector \boldsymbol{d} such that $\boldsymbol{d}^{\prime} \boldsymbol{x}<\boldsymbol{d}^{\prime} \boldsymbol{y}$ for all $\boldsymbol{y} \in P$

What is the separation problem for

$$
\sum_{i \in S} a_{i} x_{i} \geq|S|, \quad \text { for all subsets } S \text { of }\{1, \ldots, n\} ?
$$

4 Polynomial solvability

4.1 Theorem

If we can solve the separation problem (for a family of polyhedra) in time polynomial in n and $\log U$, then we can also solve linear optimization problems in time polynomial in n and $\log U$. If $\log U \leq C n^{\ell} \log ^{\ell} U_{0}$, then it is also polynomial in $\log U_{0}$

- Proof?
- Converse is also true
- Separation and optimization are polynomially equivalent

4.2 Minimum Spanning Tree (MST)

- How do telephone companies bill you?
- It used to be that rate/minute: Boston \rightarrow LA proportional to distance in MST
- Other applications: Telecommunications, Transportation (good lower bound for TSP)
- Given a graph $G=(V, E)$ undirected and Costs $c_{e}, e \in E$.
- Find a tree of minimum cost spanning all the nodes.
- Decision variables $x_{e}= \begin{cases}1, & \text { if edge } e \text { is included in the tree } \\ 0, & \text { otherwise }\end{cases}$
- The tree should be connected. How can you model this requirement?
- Let S be a set of vertices. Then S and $V \backslash S$ should be connected
- Let $\delta(S)=\left\{e=(i, j) \in E: \begin{array}{l}i \in S \\ j \in V \backslash S\end{array}\right\}$
- Then,

$$
\sum_{e \in \delta(S)} x_{e} \geq 1
$$

- What is the number of edges in a tree?
- Then, $\sum_{e \in E} x_{e}=n-1$

4.2.1 Formulation

$$
\begin{aligned}
I Z_{M S T}= & \min \sum_{e \in E} c_{e} x_{e} \\
H & \left\{\begin{array}{l}
\sum_{e \in \delta(S)} x_{e} \geq 1 \\
\sum_{e \in E} x_{e}=n-1 \\
x_{e} \in\{0,1\}
\end{array}\right.
\end{aligned}
$$

How can you solve the LP relaxation?

4.3 The Traveling Salesman
 Problem

Given $G=(V, E)$ an undirected graph. $V=\{1, \ldots, n\}$, costs $c_{e} \forall e \in E$. Find a tour that minimizes total length.

4.3.1 Formulation

$x_{e}=\left\{\begin{array}{lc}1, & \text { if edge } e \text { is included in the tour. } \\ 0, & \text { otherwise. }\end{array}\right.$

$$
\begin{array}{ll}
\min & \sum_{e \in E} c_{e} x_{e} \\
\text { s.t. } & \sum_{e \in \delta(S)} x_{e} \geq 2, \quad S \subseteq E \\
& \sum_{e \in \delta(i)} x_{e}=2, \quad i \in V \\
& x_{e} \in\{0,1\}
\end{array}
$$

How can you solve the LP relaxation?

4.4 Probability Theory

- Events A_{1}, A_{2}
- $P\left(A_{1}\right)=0.5, P\left(A_{2}\right)=0.7, P\left(A_{1} \cap A_{2}\right) \leq 0.1$
- Are these beliefs consistent?
- General problem: Given n events $A_{i} i \in N=\{1, \ldots, n\}$, beliefs

$$
\begin{gathered}
\mathrm{P}\left(A_{i}\right) \leq p_{i}, \quad i \in N, \\
\mathrm{P}\left(A_{i} \cap A_{j}\right) \geq p_{i j}, \quad i, j \in N, i<j .
\end{gathered}
$$

- Given the numbers p_{i} and $p_{i j}$, which are between 0 and 1 , are these beliefs consistent?

4.4.1 Formulation

$$
\begin{array}{rlrl}
x(S)=\mathrm{P}\left(\left(\cap_{i \in S} A_{i}\right) \cap\left(\cap_{i \notin S} \bar{A}_{i}\right)\right), \\
\sum_{\{S \mid i \in S\}} x(S) & \leq p_{i}, & i \in N, \\
\sum_{\{S \mid i, j \in S\}} x(S) & \geq p_{i j}, & i, j \in N, i<j, \\
\sum_{S} x(S) & =1, & \\
x(S) & \geq 0, & \forall S .
\end{array}
$$

The previous LP is feasible if and only if there does not exist a vector ($\boldsymbol{u}, \boldsymbol{y}, z$) such that

$$
\begin{aligned}
& \sum_{i, j \in S, i<j} y_{i j}+\sum_{i \in S} u_{i}+z \geq 0, \quad \forall S, \\
& \sum_{i, j \in N, i<j} p_{i j} y_{i j}+\sum_{i \in N} p_{i} u_{i}+z \leq-1, \\
& y_{i j} \leq 0, u_{i} \geq 0,
\end{aligned} \quad i, j \in N, i<j .
$$

Separation problem:

$$
z^{*}+\min _{S} f(S)=\sum_{i, j \in S, i<j} y_{i j}^{*}+\sum_{i \in S} u_{i}^{*} \geq 0 ?
$$

Example: $y_{12}^{*}=-2, y_{13}^{*}=-4, y_{14}^{*}=-4, y_{23}^{*}=-4, y_{24}^{*}=-1, y_{34}^{*}=-7$, $u_{1}^{*}=9, u_{2}^{*}=6, u_{3}^{*}=4, u_{4}^{*}=2$, and $z^{*}=2$

- The minimum cut corresponds to $S_{0}=\{3,4\}$ with value $c\left(S_{0}\right)=21$.
- $f\left(S_{0}\right)=\sum_{i, j \in S_{0}, i<j} y_{i j}^{*}+\sum_{i \in S_{0}} u_{i}^{*}=-7+4+2=-1$
- $f(S)+z^{*} \geq f\left(S_{0}\right)+z^{*}=-1+2=1>0, \quad \forall S$
- Given solution $\left(\boldsymbol{y}^{*}, \boldsymbol{u}^{*}, z^{*}\right)$ is feasible

5 Conclusions

- Ellipsoid algorithm can characterize the complexity of solving LOPs with an exponential number of constraints
- For practical purposes use dual simplex
- Ellipsoid method is an important theoretical development, not a practical one

MIT OpenCourseWare
http://ocw.mit.edu

6.251J / 15.081J Introduction to Mathematical Programming Fall 2009

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

