
6.252 NONLINEAR PROGRAMMING 

LECTURE 3: GRADIENT METHODS 

LECTURE OUTLINE 

• Quadratic Unconstrained Problems 

• Existence of Optimal Solutions 

• Iterative Computational Methods 

• Gradient Methods - Motivation 

• Principal Gradient Methods 

• Gradient Methods - Choices of Direction 



QUADRATIC UNCONSTRAINED PROBLEMS


min f(x) =  1 2 x′Qx − b′x, 
x∈�n 

where Q is n × n symmetric, and b ∈ �n. 

• Necessary conditions: 

∇f(x ∗) =  Qx∗ − b = 0, 

∇2f(x ∗) =  Q ≥ 0 : positive semidefinite. 

• Q ≥ 0 ⇒ f : convex, nec. conditions are also 
sufficient, and local minima are also global 

• Conclusions: 

− Q : not ≥ 0 ⇒ f has no local minima 

−	 If Q >  0 (and hence invertible), x ∗ = Q−1b 
is the unique global minimum. 

−	 If Q ≥ 0 but not invertible, either no solution 
or ∞ number of solutions 
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Illustration of the isocost surfaces of the quadratic cost 

function f : �2 �→ �  given by 

f(x, y) =  1 αx2 + βy2 − x2 

for various values of α and β.




{ } 

{ } 

EXISTENCE OF OPTIMAL SOLUTIONS•

Consider 
min f(x) 
x∈X 

Two possibilities: 

• The set f(x) | x ∈ X is unbounded below, 
and there is no optimal solution 

• The set f(x) | x ∈ X is bounded below 

− A global minimum exists if f is continuous 
and X is compact (Weierstrass theorem) 

−	 A global minimum exists if X is closed, and 
f is coercive, that is, f(x) → ∞  when ‖x‖ →  
∞ 
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GRADIENT METHODS - MOTIVATION•

f(x) = 1 

f(x) = 2 < c1 

f(x) = 3 < c2 
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x - δ∇f(x) 

xα = x + αd 

x + δd 
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f(x) = 1 

f(x) = 2 < c1 

f(x) = 3 < c2 
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∇f(x) 

xα = x - α∇f(x) 
If ∇f(x) �= 0, there is an 

interval (0, δ) of stepsizes 

such that 

f x − α∇f(x) < f  (x)


for all α ∈ (0, δ). 

If d makes an angle with 

∇f(x) that is greater than 

90 degrees, 

∇f (x)�d <  0, 

there is an interval (0, δ) 

of stepsizes such that f (x+ 

αd) < f  (x) for all α ∈ 
(0, δ). 
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PRINCIPAL GRADIENT METHODS•

xk+1 = xk + αkdk , k = 0, 1, . . .  

where, if ∇f(xk) 	= 0, the direction dk satisfies 

∇f(xk)′dk < 0, 

and αk is a positive stepsize. Principal example: 

xk+1 = xk − αkDk∇f(xk), 

where Dk is a positive definite symmetric matrix 

•	 Simplest method: Steepest descent 

xk+1 = xk − αk∇f(xk), k = 0, 1, . . .  

• Most sophisticated method: Newton’s method 

xk+1 = xk−αk
 ∇2f(xk) 
)−1 ∇f(xk), k = 0, 1, . . . 




STEEPEST DESCENT AND NEWTON’S METHOD•
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f(x) = 1 

f(x) = 3 < c2 

f(x) = 2 < c1 
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Quadratic Approximation of f at x0 

Quadratic Approximation of f at x1 
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Slow convergence of steep

est descent 

Fast convergence of New-

ton’s method w/ αk = 1. 

Given xk , the method ob

tains xk+1 as the minimum 

of a quadratic approxima

tion of f based on a sec

ond order Taylor expansion 

around xk . 
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OTHER CHOICES OF DIRECTION 

• Diagonally Scaled Steepest Descent 

Dk = Diagonal approximation to

)−1 ∇2f(xk) 

•	 Modified Newton’s Method 

Dk = (∇2f(x0))−1 
, k = 0, 1, . . . ,  

• Discretized Newton’s Method 

Dk =

)−1 

H(xk) , k = 0, 1, . . . ,  

where H(xk) is a finite-difference based approxi-
mation of ∇2f(xk), 

•	 Gauss-Newton method for least squares prob-
1lems minx∈�n 2 ‖g(x)‖2. Here 

)−1 ∇g(xk)∇g(xk)′ , k = 0, 1, . . .Dk =



