6.252 NONLINEAR PROGRAMMING

LECTURE 8

OPTIMIZATION OVER A CONVEX SET;

OPTIMALITY CONDITIONS

Problem: $\min _{x \in X} f(x)$, where:
(a) $X \subset \Re^{n}$ is nonempty, convex, and closed.
(b) f is continuously differentiable over X.

- Local and global minima. If f is convex local minima are also global.

OPTIMALITY CONDITION

Proposition (Optimality Condition)
 (a) If x^{*} is a local minimum of f over X, then
 $$
\nabla f\left(x^{*}\right)^{\prime}\left(x-x^{*}\right) \geq 0, \quad \forall x \in X .
$$

(b) If f is convex over X, then this condition is also sufficient for x^{*} to minimize f over X.

At a local minimum x^{*}, the gradient $\nabla f\left(x^{*}\right)$ makes an angle less than or equal to 90 degrees with all feasible variations $x-x^{*}, x \in$ X.

Illustration of failure of the optimality condition when X is not convex. Here x^{*} is a local min but we have $\nabla f\left(x^{*}\right)^{\prime}\left(x-x^{*}\right)<0$ for the feasible vector x shown.

PROOF

Proof: (a) Suppose that $\nabla f\left(x^{*}\right)^{\prime}\left(x-x^{*}\right)<0$ for some $x \in X$. By the Mean Value Theorem, for every $\epsilon>0$ there exists an $s \in[0,1]$ such that
$f\left(x^{*}+\epsilon\left(x-x^{*}\right)\right)=f\left(x^{*}\right)+\epsilon \nabla f\left(x^{*}+s \epsilon\left(x-x^{*}\right)\right)^{\prime}\left(x-x^{*}\right)$.
Since ∇f is continuous, for suff. small $\epsilon>0$,

$$
\nabla f\left(x^{*}+s \epsilon\left(x-x^{*}\right)\right)^{\prime}\left(x-x^{*}\right)<0
$$

so that $f\left(x^{*}+\epsilon\left(x-x^{*}\right)\right)<f\left(x^{*}\right)$. The vector $x^{*}+\epsilon\left(x-x^{*}\right)$ is feasible for all $\epsilon \in[0,1]$ because X is convex, so the local optimality of x^{*} is contradicted.
(b) Using the convexity of f

$$
f(x) \geq f\left(x^{*}\right)+\nabla f\left(x^{*}\right)^{\prime}\left(x-x^{*}\right)
$$

for every $x \in X$. If the condition $\nabla f\left(x^{*}\right)^{\prime}\left(x-x^{*}\right) \geq$ 0 holds for all $x \in X$, we obtain $f(x) \geq f\left(x^{*}\right)$, so x^{*} minimizes f over X. Q.E.D.

OPTIMIZATION SUBJECT TO BOUNDS

- Let $X=\{x \mid x \geq 0\}$. Then the necessary condition for $x^{*}=\left(x_{1}^{*}, \ldots, x_{n}^{*}\right)$ to be a local min is

$$
\sum_{i=1}^{n} \frac{\partial f\left(x^{*}\right)}{\partial x_{i}}\left(x_{i}-x_{i}^{*}\right) \geq 0, \quad \forall x_{i} \geq 0, i=1, \ldots, n .
$$

- Fix i. Let $x_{j}=x_{j}^{*}$ for $j \neq i$ and $x_{i}=x_{i}^{*}+1$:

$$
\frac{\partial f\left(x^{*}\right)}{\partial x_{i}} \geq 0, \quad \forall i
$$

- If $x_{i}^{*}>0$, let also $x_{j}=x_{j}^{*}$ for $j \neq i$ and $x_{i}=\frac{1}{2} x_{i}^{*}$. Then $\partial f\left(x^{*}\right) / \partial x_{i} \leq 0$, so

$$
\frac{\partial f\left(x^{*}\right)}{\partial x_{i}}=0, \quad \text { if } x_{i}^{*}>0
$$

OPTIMIZATION OVER A SIMPLEX

$$
X=\left\{x \mid x \geq 0, \sum_{i=1}^{n} x_{i}=r\right\}
$$

where $r>0$ is a given scalar.

- Necessary condition for $x^{*}=\left(x_{1}^{*}, \ldots, x_{n}^{*}\right)$ to be a local min:
$\sum_{i=1}^{n} \frac{\partial f\left(x^{*}\right)}{\partial x_{i}}\left(x_{i}-x_{i}^{*}\right) \geq 0, \quad \forall x_{i} \geq 0$ with $\sum_{i=1}^{n} x_{i}=r$.
- Fix i with $x_{i}^{*}>0$ and let j be any other index. Use x with $x_{i}=0, x_{j}=x_{j}^{*}+x_{i}^{*}$, and $x_{m}=x_{m}^{*}$ for all $m \neq i, j$:

$$
\begin{array}{r}
\left(\frac{\partial f\left(x^{*}\right)}{\partial x_{j}}-\frac{\partial f\left(x^{*}\right)}{\partial x_{i}}\right) x_{i}^{*} \geq 0 \\
x_{i}^{*}>0 \quad \Longrightarrow \quad \frac{\partial f\left(x^{*}\right)}{\partial x_{i}} \leq \frac{\partial f\left(x^{*}\right)}{\partial x_{j}}
\end{array}
$$

$$
\forall j
$$

OPTIMAL ROUTING

- Given a data net, and a set W of OD pairs $w=(i, j)$. Each OD pair w has input traffic r_{w}.

- Optimal routing problem:

subject to $\sum_{p \in P_{w}} x_{p}=r_{w}, \quad \forall w \in W$,

$$
x_{p} \geq 0, \quad \forall p \in P_{w}, w \in W
$$

- Optimality condition

$$
x_{p}^{*}>0 \quad \Longrightarrow \quad \frac{\partial D\left(x^{*}\right)}{\partial x_{p}} \leq \frac{\partial D\left(x^{*}\right)}{\partial x_{p^{\prime}}}, \quad \forall p^{\prime} \in P_{w}
$$

TRAFFIC ASSIGNMENT

- Transportation network with OD pairs w. Each w has paths $p \in P_{w}$ and traffic r_{w}. Let x_{p} be the flow of path p and let $T_{i j}\left(\sum_{p \text { : }}\right.$ crossing $\left.(i, j) x_{p}\right)$ be the travel time of link (i, j).
- User-optimization principle: Traffic equilibrium is established when each user of the network chooses, among all available paths, a path requiring minimum travel time, i.e., for all $w \in W$ and paths $p \in P_{w}$,
$x_{p}^{*}>0 \quad \Longrightarrow \quad t_{p}\left(x^{*}\right) \leq t_{p^{\prime}}\left(x^{*}\right), \quad \forall p^{\prime} \in P_{w}, \forall w \in W$
where $t_{p}(x)$, is the travel time of path p

$$
t_{p}(x)=\quad \sum T_{i j}\left(F_{i j}\right), \quad \forall p \in P_{w}, \forall w \in W .
$$

Identical with the optimality condition of the routing problem if we identify the arc travel time $T_{i j}\left(F_{i j}\right)$ with the cost derivative $D_{i j}^{\prime}\left(F_{i j}\right)$.

PROJECTION OVER A CONVEX SET

- Let $z \in \Re^{n}$ and a closed convex set X be given. Problem:
minimize $f(x)=\|z-x\|^{2}$
subject to $x \in X$.
Proposition (Projection Theorem) Problem has a unique solution $[z]+$ (the projection of z).

Necessary and sufficient condition for x^{*} to be the projection. The angle between $z-x^{*}$ and $x-x^{*}$ should be greater or equal to 90 degrees for all $x \in X$, or $\left(z-x^{*}\right)^{\prime}\left(x-x^{*}\right) \leq 0$

- If X is a subspace, $z-x^{*} \perp X$.
- The mapping $f: \Re^{n} \mapsto X$ defined by $f(x)=$ $[x]+$ is continuous and nonexpansive, that is,

$$
\left\|[x]^{+}-[y]^{+}\right\| \leq\|x-y\|, \quad \forall x, y \in \Re^{n} .
$$

