
6.252 NONLINEAR PROGRAMMING


LECTURE 8


OPTIMIZATION OVER A CONVEX SET;


OPTIMALITY CONDITIONS


Problem: minx∈X f(x), where: 

(a) X ⊂ �n is nonempty, convex, and closed. 

(b) f is continuously differentiable over X. 

• Local and global minima. If f is convex local 
minima are also global. 

f(x) 

x 

Local Minima Global Minimum 

X 



OPTIMALITY CONDITION


Proposition (Optimality Condition) 

(a) If x ∗ is a local minimum of f over X, then 

∇f(x ∗)′(x − x ∗) ≥ 0, ∀ x ∈ X. 

(b)	 If f is convex over X, then this condition is 
also sufficient for x ∗ to minimize f over X. 
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∗At a local minimum x , 

the gradient ∇f (x ∗) makes 

an angle less than or equal 

to 90 degrees with all fea-
∗sible variations x−x , x ∈


X. 

Illustration of failure of the 

optimality condition when 
∗X is not convex. Here x 

is a local min but we have 

∇f(x ∗)′(x − x ∗) < 0 for 

the feasible vector x shown. 
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PROOF


Proof: (a) Suppose that ∇f(x ∗)′(x − x ∗) < 0 for 
some x ∈ X. By the Mean Value Theorem, for 
every ε >  0 there exists an s ∈ [0, 1] such that 

(x−x x ∗ +ε(x−x ∗ ) = f(x ∗ )+ε∇f x ∗ +sε(x−x ∗ ) ∗ ). f 

Since ∇f is continuous, for suff. small ε >  0,


x ∗ + sε(x − x ∗) 
)′(x − x ∗) < 0 ∇f 

< f(x ∗). The vector
∗ + ε(x − x ∗)so that f x 
x ∗ + ε(x − x ∗) is feasible for all ε ∈ [0, 1] because 
X is convex, so the local optimality of x ∗ is con-
tradicted. 

(b) Using the convexity of f 

f(x) ≥ f(x ∗) +  ∇f(x ∗)′(x − x ∗) 

for every x ∈ X. If the condition ∇f(x ∗)′(x−x ∗) ≥ 
0 holds for all x ∈ X, we obtain f(x) ≥ f(x ∗), so 
x ∗ minimizes f over X. Q.E.D. 



OPTIMIZATION SUBJECT TO BOUNDS

• Let X = {x | x ≥ 0}. Then the necessary
condition for x∗ = (x∗

1, . . . , x
∗
n) to be a local min is

n∑

i=1

∂f(x∗)

∂xi
(xi − x∗

i ) ≥ 0, ∀ xi ≥ 0, i = 1, . . . , n.

• Fix i. Let xj = x∗
j for j �= i and xi = x∗

i + 1:

∂f(x∗)
∂xi

≥ 0, ∀ i.

• If x∗
i > 0, let also xj = x∗

j for j �= i and xi = 1
2x∗

i .
Then ∂f(x∗)/∂xi ≤ 0, so

∂f(x∗)
∂xi

= 0, if x∗
i > 0.

x* x* = 0

∇f(x*)∇f(x*)



OPTIMIZATION OVER A SIMPLEX

X =

{

x
∣
∣
∣ x ≥ 0,

n∑

i=1

xi = r

}

where r > 0 is a given scalar.

• Necessary condition for x∗ = (x∗
1, . . . , x

∗
n) to be

a local min:

n∑

i=1

∂f(x∗)

∂xi
(xi−x∗

i ) ≥ 0, ∀ xi ≥ 0 with

n∑

i=1

xi = r.

• Fix i with x∗
i > 0 and let j be any other index.

Use x with xi = 0, xj = x∗
j + x∗

i , and xm = x∗
m for

all m �= i, j:

(
∂f(x∗)

∂xj
− ∂f(x∗)

∂xi

)
x∗

i ≥ 0,

x∗
i > 0 =⇒ ∂f(x∗)

∂xi
≤ ∂f(x∗)

∂xj
, ∀ j.



OPTIMAL ROUTING

• Given a data net, and a set W of OD pairs
w = (i, j). Each OD pair w has input traffic rw.

Origin of 
OD pair w

Destination of 
OD pair w

rw rw
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x4
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x2

• Optimal routing problem:

minimize D(x) =
∑

(i,j)

Dij






∑

all paths p
containing (i,j)

xp






subject to
∑

p∈Pw

xp = rw, ∀ w ∈ W,

xp ≥ 0, ∀ p ∈ Pw, w ∈ W

• Optimality condition

x∗
p > 0 =⇒ ∂D(x∗)

∂xp
≤ ∂D(x∗)

∂xp′
, ∀ p′ ∈ Pw.



TRAFFIC ASSIGNMENT

• Transportation network with OD pairs w. Each
w has paths p ∈ Pw and traffic rw. Let xp be the

flow of path p and let Tij

(∑
p: crossing (i,j)

xp

)

be the travel time of link (i, j).

• User-optimization principle: Traffic equilibrium
is established when each user of the network chooses,
among all available paths, a path requiring mini-
mum travel time, i.e., for all w ∈ W and paths
p ∈ Pw,

x∗
p > 0 =⇒ tp(x

∗) ≤ tp′(x∗), ∀ p′ ∈ Pw, ∀ w ∈ W

where tp(x), is the travel time of path p

tp(x) =
∑

all arcs (i,j)
on path p

Tij(Fij), ∀ p ∈ Pw, ∀ w ∈ W.

Identical with the optimality condition of the rout-
ing problem if we identify the arc travel time Tij(Fij)
with the cost derivative D′

ij(Fij).



PROJECTION OVER A CONVEX SET

• Let z ∈ �n and a closed convex set X be given.
Problem:

minimize f(x) = ‖z − x‖2

subject to x ∈ X.

Proposition (Projection Theorem) Problem
has a unique solution [z]+ (the projection of z).

z

x

Constraint set X

x*

x - x*

z - x*

Necessary and sufficient con-

dition for x∗ to be the pro-

jection. The angle between

z − x∗ and x − x∗ should

be greater or equal to 90

degrees for all x ∈ X, or

(z − x∗)′(x − x∗) ≤ 0

• If X is a subspace, z − x∗ ⊥ X.

• The mapping f : �n �→ X defined by f(x) =
[x]+ is continuous and nonexpansive, that is,

‖[x]+ − [y]+‖ ≤ ‖x − y‖, ∀ x, y ∈ �n.


