6.252 NONLINEAR PROGRAMMING

LECTURE 12: SUFFICIENCY CONDITIONS

LECTURE OUTLINE

- Equality Constrained Problems/Sufficiency Conditions
- Convexification Using Augmented Lagrangians
- Proof of the Sufficiency Conditions
- Sensitivity

Equality constrained problem

minimize f(x)subject to $h_i(x) = 0, \qquad i = 1, \dots, m.$

where $f : \Re^n \mapsto \Re$, $h_i : \Re^n \mapsto \Re$, are continuously differentiable. To obtain sufficiency conditions, assume that f and h_i are *twice* continuously differentiable.

SUFFICIENCY CONDITIONS

Second Order Sufficiency Conditions: Let $x^* \in \Re^n$ and $\lambda^* \in \Re^m$ satisfy

 $\nabla_x L(x^*, \lambda^*) = 0, \qquad \nabla_\lambda L(x^*, \lambda^*) = 0,$

 $y' \nabla_{xx}^2 L(x^*, \lambda^*) y > 0, \quad \forall \ y \neq 0 \text{ with } \nabla h(x^*)' y = 0.$

Then x^* is a strict local minimum.

Example: Minimize $-(x_1x_2 + x_2x_3 + x_1x_3)$ subject to $x_1 + x_2 + x_3 = 3$. We have that $x_1^* = x_2^* = x_3^* = 1$ and $\lambda^* = 2$ satisfy the 1st order conditions. Also

$$\nabla_{xx}^2 L(x^*, \lambda^*) = \begin{pmatrix} 0 & -1 & -1 \\ -1 & 0 & -1 \\ -1 & -1 & 0 \end{pmatrix}$$

We have for all $y \neq 0$ with $\nabla h(x^*)'y = 0$ or $y_1 + y_2 + y_3 = 0$,

$$y' \nabla_{xx}^2 L(x^*, \lambda^*) y = -y_1(y_2 + y_3) - y_2(y_1 + y_3) - y_3(y_1 + y_2)$$
$$= y_1^2 + y_2^2 + y_3^2 > 0.$$

Hence, x^* is a strict local minimum.

A BASIC LEMMA

Lemma: Let *P* and *Q* be two symmetric matrices. Assume that $Q \ge 0$ and P > 0 on the nullspace of *Q*, i.e., x'Px > 0 for all $x \ne 0$ with x'Qx = 0. Then there exists a scalar \overline{c} such that

P + cQ: positive definite, $\forall c > \overline{c}$.

Proof: Assume the contrary. Then for every k, there exists a vector x^k with $||x^k|| = 1$ such that

$$x^{k'}Px^k + kx^{k'}Qx^k \le 0.$$

Consider a subsequence $\{x^k\}_{k \in K}$ converging to some \overline{x} with $\|\overline{x}\| = 1$. Taking the limit superior,

$$\overline{x}' P \overline{x} + \limsup_{k \to \infty, \ k \in K} (k x^{k'} Q x^k) \le 0.$$
 (*)

We have $x^{k'}Qx^{k} \ge 0$ (since $Q \ge 0$), so $\{x^{k'}Qx^{k}\}_{k\in K} \rightarrow 0$. Therefore, $\overline{x'}Q\overline{x} = 0$ and using the hypothesis, $\overline{x'}P\overline{x} > 0$. This contradicts (*).

PROOF OF SUFFICIENCY CONDITIONS

Consider the *augmented* Lagrangian function

$$L_{c}(x,\lambda) = f(x) + \lambda' h(x) + \frac{c}{2} ||h(x)||^{2},$$

where c is a scalar. We have

$$\nabla_x L_c(x,\lambda) = \nabla_x L(x,\tilde{\lambda}),$$

 $\nabla_{xx}^2 L_c(x,\lambda) = \nabla_{xx}^2 L(x,\tilde{\lambda}) + c\nabla h(x)\nabla h(x)'$

where $\tilde{\lambda} = \lambda + ch(x)$. If (x^*, λ^*) satisfy the suff. conditions, we have using the lemma,

$$\nabla_x L_c(x^*, \lambda^*) = 0, \qquad \nabla_{xx}^2 L_c(x^*, \lambda^*) > 0,$$

for suff. large c. Hence for some $\gamma > 0$, $\epsilon > 0$,

$$L_c(x,\lambda^*) \ge L_c(x^*,\lambda^*) + \frac{\gamma}{2} ||x - x^*||^2, \quad \text{if } ||x - x^*|| < \epsilon.$$

Since $L_c(x, \lambda^*) = f(x)$ when h(x) = 0,

$$f(x) \ge f(x^*) + \frac{\gamma}{2} ||x - x^*||^2$$
, if $h(x) = 0$, $||x - x^*|| < \epsilon$.

SENSITIVITY - GRAPHICAL DERIVATION

Sensitivity theorem for the problem $\min_{a'x=b} f(x)$. If b is changed to $b + \Delta b$, the minimum x^* will change to $x^* + \Delta x$. Since $b + \Delta b = a'(x^* + \Delta x) = a'x^* + a'\Delta x = b + a'\Delta x$, we have $a'\Delta x = \Delta b$. Using the condition $\nabla f(x^*) = -\lambda^* a$,

$$\Delta \text{cost} = f(x^* + \Delta x) - f(x^*) = \nabla f(x^*)' \Delta x + o(\|\Delta x\|)$$
$$= -\lambda^* a' \Delta x + o(\|\Delta x\|)$$

Thus $\Delta \text{cost} = -\lambda^* \Delta b + o(||\Delta x||)$, so up to first order $\lambda^* = -\frac{\Delta \text{cost}}{\Delta b}$.

For multiple constraints $a'_i x = b_i$, i = 1, ..., n, we have $\Delta \text{cost} = -\sum_{i=1}^{m} \lambda_i^* \Delta b_i + o(\|\Delta x\|).$

SENSITIVITY THEOREM

Sensitivity Theorem: Consider the family of problems

$$\min_{h(x)=u} f(x) \tag{*}$$

parameterized by $u \in \Re^m$. Assume that for u = 0, this problem has a local minimum x^* , which is regular and together with its unique Lagrange multiplier λ^* satisfies the sufficiency conditions.

Then there exists an open sphere *S* centered at u = 0 such that for every $u \in S$, there is an x(u) and a $\lambda(u)$, which are a local minimum-Lagrange multiplier pair of problem (*). Furthermore, $x(\cdot)$ and $\lambda(\cdot)$ are continuously differentiable within *S* and we have $x(0) = x^*$, $\lambda(0) = \lambda^*$. In addition,

$$\nabla p(u) = -\lambda(u), \qquad \forall \ u \in S$$

where p(u) is the *primal function*

$$p(u) = f(x(u)).$$

Illustration of the primal function p(u) = f(x(u))for the two-dimensional problem

minimize
$$f(x) = \frac{1}{2} (x_1^2 - x_2^2) - x_2$$

subject to $h(x) = x_2 = 0$.

Here,

$$p(u) = \min_{h(x)=u} f(x) = -\frac{1}{2}u^2 - u$$

and $\lambda^* = -\nabla p(0) = 1$, consistently with the sensitivity theorem.

• Need for regularity of x^* : Change constraint to $h(x) = x_2^2 = 0$. Then $p(u) = -u/2 - \sqrt{u}$ for $u \ge 0$ and is undefined for u < 0.

PROOF OUTLINE OF SENSITIVITY THEOREM

Apply implicit function theorem to the system

$$\nabla f(x) + \nabla h(x)\lambda = 0, \qquad h(x) = u.$$

For u = 0 the system has the solution (x^*, λ^*) , and the corresponding $(n + m) \times (n + m)$ Jacobian

$$J = \begin{pmatrix} \nabla^2 f(x^*) + \sum_{\substack{i=1\\\nabla h(x^*)'}}^m \lambda_i^* \nabla^2 h_i(x^*) & \nabla h(x^*) \\ 0 \end{pmatrix}$$

is shown nonsingular using the sufficiency conditions. Hence, for all u in some open sphere Scentered at u = 0, there exist x(u) and $\lambda(u)$ such that $x(0) = x^*$, $\lambda(0) = \lambda^*$, the functions $x(\cdot)$ and $\lambda(\cdot)$ are continuously differentiable, and

$$\nabla f(x(u)) + \nabla h(x(u))\lambda(u) = 0, \quad h(x(u)) = u.$$

For *u* close to u = 0, using the sufficiency conditions, x(u) and $\lambda(u)$ are a local minimum-Lagrange multiplier pair for the problem $\min_{h(x)=u} f(x)$.

To derive $\nabla p(u)$, differentiate h(x(u)) = u, to obtain $I = \nabla x(u) \nabla h(x(u))$, and combine with the relations $\nabla x(u) \nabla f(x(u)) + \nabla x(u) \nabla h(x(u)) \lambda(u) = 0$ and $\nabla p(u) = \nabla_u \{f(x(u))\} = \nabla x(u) \nabla f(x(u)).$