6.252 NONLINEAR PROGRAMMING

LECTURE 7: ADDITIONAL METHODS

LECTURE OUTLINE

- Least-Squares Problems and Incremental Gradient Methods
- Conjugate Direction Methods
- The Conjugate Gradient Method
- Quasi-Newton Methods
- Coordinate Descent Methods
- Recall the least-squares problem:
minimize $\quad f(x)=\frac{1}{2}\|g(x)\|^{2}=\frac{1}{2} \sum_{i=1}^{m}\left\|g_{i}(x)\right\|^{2}$
subject to $\quad x \in \Re^{n}$,
where $g=\left(g_{1}, \ldots, g_{m}\right), g_{i}: \Re^{n} \rightarrow \Re^{r_{i}}$.

INCREMENTAL GRADIENT METHODS

- Steepest descent method

$$
x^{k+1}=x^{k}-\alpha^{k} \nabla f\left(x^{k}\right)=x^{k}-\alpha^{k} \sum_{i=1}^{m} \nabla g_{i}\left(x^{k}\right) g_{i}\left(x^{k}\right)
$$

- Incremental gradient method:

$$
\begin{gathered}
\psi_{i}=\psi_{i-1}-\alpha^{k} \nabla g_{i}\left(\psi_{i-1}\right) g_{i}\left(\psi_{i-1}\right), \quad i=1, \ldots, m \\
\psi_{0}=x^{k}, \quad x^{k+1}=\psi_{m}
\end{gathered}
$$

Advantage of incrementalism

VIEW AS GRADIENT METHOD W/ ERRORS

- Can write incremental gradient method as

$$
\begin{aligned}
x^{k+1} & =x^{k}-\alpha^{k} \sum_{i=1}^{m} \nabla g_{i}\left(x^{k}\right) g_{i}\left(x^{k}\right) \\
& +\alpha^{k} \sum_{i=1}^{m}\left(\nabla g_{i}\left(x^{k}\right) g_{i}\left(x^{k}\right)-\nabla g_{i}\left(\psi_{i-1}\right) g_{i}\left(\psi_{i-1}\right)\right)
\end{aligned}
$$

- Error term is proportional to stepsize α^{k}
- Convergence (generically) for a diminishing stepsize (under a Lipschitz condition on $\nabla g_{i} g_{i}$)
- Convergence to a "neighborhood" for a constant stepsize

CONJUGATE DIRECTION METHODS

- Aim to improve convergence rate of steepest descent, without incurring the overhead of Newton's method
- Analyzed for a quadratic model. They require n iterations to minimize $f(x)=(1 / 2) x^{\prime} Q x-b^{\prime} x$ with Q an $n \times n$ positive definite matrix $Q>0$.
- Analysis also applies to nonquadratic problems in the neighborhood of a nonsingular local min
- Directions d^{1}, \ldots, d^{k} are Q-conjugate, if $d^{i^{\prime}} Q d{ }^{j}=$ 0 for all $i \neq j$
- Generic conjugate direction method: $x^{k+1}=$ $x^{k}+\alpha^{k} d^{k}$ where the d^{k} s are Q-conjugate and α^{k} is obtained by line minimization

Expanding Subspace Theorem

GENERATING Q-CONJUGATE DIRECTIONS

- Given set of linearly independent vectors ξ^{0}, \ldots, ξ^{k}, we can construct a set of Q-conjugate directions d^{0}, \ldots, d^{k} s.t. $\operatorname{Span}\left(d^{0}, \ldots, d^{i}\right)=\operatorname{Span}\left(\xi^{0}, \ldots, \xi^{i}\right)$
- Gram-Schmidt procedure. Start with $d^{0}=\xi^{0}$. If for some $i<k, d^{0}, \ldots, d^{i}$ are Q-conjugate and the above property holds, take

$$
d^{i+1}=\xi^{i+1}+\sum_{m=0}^{i} c^{(i+1) m} d^{m}
$$

choose $c^{(i+1) m}$ so d^{i+1} is Q-conjugate to d^{0}, \ldots, d^{i},

$$
d^{i+1^{\prime}} Q d^{j}=\xi^{i+1^{\prime}} Q d^{j}+\left(\sum_{m=0}^{i} c^{(i+1) m} d^{m}\right)^{\prime} Q d^{j}=0 .
$$

CONJUGATE GRADIENT METHOD

- Apply Gram-Schmidt to the vectors $\xi^{k}=g^{k}=$ $\nabla f\left(x^{k}\right), k=0,1, \ldots, n-1$

$$
d^{k}=-g^{k}+\sum_{j=0}^{k-1} \frac{g^{k^{\prime}} Q d^{j}}{d j^{\prime} Q d^{j}} d^{j}
$$

- Key fact: Direction formula can be simplified.

Proposition : The directions of the CGM are generated by $d^{0}=-g^{0}$, and

$$
d^{k}=-g^{k}+\beta^{k} d^{k-1}, \quad k=1, \ldots, n-1
$$

where β^{k} is given by

$$
\beta^{k}=\frac{g^{k^{\prime}} g^{k}}{g^{k-1^{\prime}} g^{k-1}} \quad \text { or } \quad \beta^{k}=\frac{\left(g^{k}-g^{k-1}\right)^{\prime} g^{k}}{g^{k-1^{\prime}} g^{k-1}}
$$

Furthermore, the method terminates with an optimal solution after at most n steps.

- Extension to nonquadratic problems.

QUASI-NEWTON METHODS

- $x^{k+1}=x^{k}-\alpha^{k} D^{k} \nabla f\left(x^{k}\right)$, where D^{k} is an inverse Hessian approximation
- Key idea: Successive iterates x^{k}, x^{k+1} and gradients $\nabla f\left(x^{k}\right), \nabla f\left(x^{k+1}\right)$, yield curvature info

$$
\begin{gathered}
q^{k} \approx \nabla^{2} f\left(x^{k+1}\right) p^{k} \\
p^{k}=x^{k+1}-x^{k}, \quad q^{k}=\nabla f\left(x^{k+1}\right)-\nabla f\left(x^{k}\right) \\
\nabla^{2} f\left(x^{n}\right) \approx\left[q^{0} \cdots q^{n-1}\right]\left[p^{0} \cdots p^{n-1}\right]^{-1}
\end{gathered}
$$

- Most popular Quasi-Newton method is a clever way to implement this idea

$$
\begin{aligned}
& D^{k+1}=D^{k}+\frac{p^{k} p^{k^{\prime}}}{p^{k^{\prime}} q^{k}}-\frac{D^{k} q^{k} q^{k^{\prime}} D^{k}}{q^{k^{\prime}} D^{k} q^{k}}+\xi^{k} \tau^{k} v^{k} v^{k^{\prime}} \\
& v^{k}=\frac{p^{k}}{p^{k^{\prime}} q^{k}}-\frac{D^{k} q^{k}}{\tau^{k}}, \quad \tau^{k}=q^{k^{\prime}} D^{k} q^{k}, \quad 0 \leq \xi^{k} \leq 1
\end{aligned}
$$

and $D^{0}>0$ is arbitrary, α^{k} by line minimization, and $D^{n}=Q^{-1}$ for a quadratic.

NONDERIVATIVE METHODS

- Finite difference implementations
- Forward and central difference formulas

$$
\begin{gathered}
\frac{\partial f\left(x^{k}\right)}{\partial x^{i}} \approx \frac{1}{h}\left(f\left(x^{k}+h e_{i}\right)-f\left(x^{k}\right)\right) \\
\frac{\partial f\left(x^{k}\right)}{\partial x^{i}} \approx \frac{1}{2 h}\left(f\left(x^{k}+h e_{i}\right)-f\left(x^{k}-h e_{i}\right)\right)
\end{gathered}
$$

- Use central difference for more accuracy near convergence

- Coordinate descent. Applies also to the case where there are bound constraints on the variables.
- Direct search methods. Nelder-Mead method.

PROOF OF CONJUGATE GRADIENT RESULT

- Use induction to show that all gradients g^{k} generated up to termination are linearly independent. True for $k=1$. Suppose no termination after k steps, and g^{0}, \ldots, g^{k-1} are linearly independent. Then, $\operatorname{Span}\left(d^{0}, \ldots, d^{k-1}\right)=\operatorname{Span}\left(g^{0}, \ldots, g^{k-1}\right)$ and there are two possibilities:
$-g^{k}=0$, and the method terminates.
$-g^{k} \neq 0$, in which case from the expanding manifold property

$$
\begin{aligned}
& g^{k} \text { is orthogonal to } d^{0}, \ldots, d^{k-1} \\
& g^{k} \text { is orthogonal to } g^{0}, \ldots, g^{k-1}
\end{aligned}
$$

so g^{k} is linearly independent of g^{0}, \ldots, g^{k-1}, completing the induction.

- Since at most n lin. independent gradients can be generated, $g^{k}=0$ for some $k \leq n$.
- Algebra to verify the direction formula.

