6.252 NONLINEAR PROGRAMMING

LECTURE 21: DUAL COMPUTATIONAL METHODS LECTURE OUTLINE

- Dual Methods
- Nondifferentiable Optimization

• Consider the primal problem

minimize f(x)subject to $x \in X$, $g_j(x) \le 0$, $j = 1, \dots, r$,

assuming $-\infty < f^* < \infty$.

• Dual problem: Maximize

$$q(\mu) = \inf_{x \in X} L(x, \mu) = \inf_{x \in X} \{ f(x) + \mu' g(x) \}$$

subject to $\mu \ge 0$.

PROS AND CONS FOR SOLVING THE DUAL

• The dual is concave.

• The dual may have smaller dimension and/or simpler constraints.

• If there is no duality gap and the dual is solved exactly for a Lagrange multiplier μ^* , all optimal primal solutions can be obtained by minimizing the Lagrangian $L(x, \mu^*)$ over $x \in X$.

• Even if there is a duality gap, $q(\mu)$ is a lower bound to the optimal primal value for every $\mu \ge 0$.

• Evaluating $q(\mu)$ requires minimization of $L(x, \mu)$ over $x \in X$.

• The dual function is often nondifferentiable.

• Even if we find an optimal dual solution μ^* , it may be difficult to obtain a primal optimal solution.

STRUCTURE

- Separability: Classical duality structure (Lagrangian relaxation).
- Partitioning: The problem

minimize F(x) + G(y)subject to Ax + By = c, $x \in X$, $y \in Y$

can be written as

minimize
$$F(x) + \inf_{By=c-Ax, y \in Y} G(y)$$

subject to $x \in X$.

With no duality gap, this problem is written as minimize F(x) + Q(Ax)subject to $x \in X$,

where

$$Q(Ax) = \max_{\lambda} q(\lambda, Ax)$$

$$q(\lambda, Ax) = \inf_{y \in Y} \left\{ G(y) + \lambda' (Ax + By - c) \right\}$$

DUAL DERIVATIVES

Let

$$x_{\mu} = \arg\min_{x \in X} L(x,\mu) = \arg\min_{x \in X} \left\{ f(x) + \mu' g(x) \right\}.$$

Then for all $\overline{\mu} \in \Re^r$,

$$q(\tilde{\mu}) = \inf_{x \in X} \left\{ f(x) + \tilde{\mu}' g(x) \right\}$$

$$\leq f(x_{\mu}) + \tilde{\mu}' g(x_{\mu})$$

$$= f(x_{\mu}) + \mu' g(x_{\mu}) + (\tilde{\mu} - \mu)' g(x_{\mu})$$

$$= q(\mu) + (\tilde{\mu} - \mu)' g(x_{\mu}).$$

• Thus $g(x_{\mu})$ is a subgradient of q at μ .

• Proposition: Let *X* be compact, and let *f* and *g* be continuous over *X*. Assume also that for every μ , $L(x,\mu)$ is minimized over $x \in X$ at a unique point x_{μ} . Then, *q* is everywhere continuously differentiable and

$$\nabla q(\mu) = g(x_{\mu}), \qquad \forall \ \mu \in \Re^r.$$

NONDIFFERENTIABLE DUAL

• If there exists a duality gap, the dual function is nondifferentiable at every dual optimal solution.

• Important nondifferentiable case: When q is polyhedral, that is,

$$q(\mu) = \min_{i \in I} \left\{ a'_i \mu + b_i \right\},\,$$

where *I* is a finite index set, and $a_i \in \Re^r$ and b_i are given (arises when *X* is a discrete set, as in integer programming).

• Proposition: Let q be polyhedral as above, and let I_{μ} be the set of indices attaining the minimum

$$I_{\mu} = \left\{ i \in I \mid a'_{i}\mu + b_{i} = q(\mu) \right\}.$$

The set of all subgradients of q at μ is

$$\partial q(\mu) = \left\{ g \mid g = \sum_{i \in I_{\mu}} \xi_i a_i, \, \xi_i \ge 0, \, \sum_{i \in I_{\mu}} \xi_i = 1 \right\}.$$

NONDIFFERENTIABLE OPTIMIZATION

- Consider maximization of $q(\mu)$ over $M = \{ \mid \mu \ge 0, q(\mu) > -\infty \}$
- Subgradient method:

$$\mu^{k+1} = \left[\mu^k + s^k g^k\right]^+,$$

where g^k is the subgradient $g(x_{\mu^k})$, $[\cdot]^+$ denotes projection on the closed convex set M, and s^k is a positive scalar stepsize.

KEY SUBGRADIENT METHOD PROPERTY

• For a small stepsize it reduces the Euclidean distance to the optimum.

• Proposition: For any dual optimal solution μ^* , we have

$$\|\mu^{k+1} - \mu^*\| < \|\mu^k - \mu^*\|,$$

for all stepsizes s^k such that

$$0 < s^k < \frac{2\left(q(\mu^*) - q(\mu^k)\right)}{\|g^k\|^2}$$

STEPSIZE RULES

- Diminishing stepsize is one possibility.
- More common method:

$$s^{k} = \frac{\alpha^{k} \left(q^{k} - q(\mu^{k}) \right)}{\|g^{k}\|^{2}},$$

where $q^k \approx q^*$ and

$$0 < \alpha^k < 2.$$

- Some possibilities:
 - q^k is the best known upper bound to q^* ; $\alpha^0 = 1$ and α^k decreased by a certain factor every few iterations.
 - $\alpha^k = 1$ for all k and

$$q^k = \left(1 + \beta(k)\right)\hat{q}^k,$$

where $\hat{q}^k = \max_{0 \le i \le k} q(\mu^i)$, and $\beta(k) > 0$ is adjusted depending on algorithmic progress of the algorithm.