6.252 NONLINEAR PROGRAMMING

LECTURE 21: DUAL COMPUTATIONAL METHODS

LECTURE OUTLINE

- Dual Methods
- Nondifferentiable Optimization

- Consider the primal problem
minimize $f(x)$
subject to $x \in X, \quad g_{j}(x) \leq 0, \quad j=1, \ldots, r$,
assuming $-\infty<f^{*}<\infty$.
- Dual problem: Maximize

$$
q(\mu)=\inf _{x \in X} L(x, \mu)=\inf _{x \in X}\left\{f(x)+\mu^{\prime} g(x)\right\}
$$

subject to $\mu \geq 0$.

PROS AND CONS FOR SOLVING THE DUAL

- The dual is concave.
- The dual may have smaller dimension and/or simpler constraints.
- If there is no duality gap and the dual is solved exactly for a Lagrange multiplier μ^{*}, all optimal primal solutions can be obtained by minimizing the Lagrangian $L\left(x, \mu^{*}\right)$ over $x \in X$.
- Even if there is a duality gap, $q(\mu)$ is a lower bound to the optimal primal value for every $\mu \geq 0$.
- Evaluating $q(\mu)$ requires minimization of $L(x, \mu)$ over $x \in X$.
- The dual function is often nondifferentiable.
- Even if we find an optimal dual solution μ^{*}, it may be difficult to obtain a primal optimal solution.

STRUCTURE

- Separability: Classical duality structure (Lagrangian relaxation).
- Partitioning: The problem

$$
\text { minimize } F(x)+G(y)
$$

subject to $A x+B y=c, \quad x \in X, \quad y \in Y$
can be written as
minimize $F(x)+\inf _{B y=c-A x, y \in Y} G(y)$
subject to $x \in X$.
With no duality gap, this problem is written as
minimize $F(x)+Q(A x)$
subject to $x \in X$,
where

$$
\begin{gathered}
Q(A x)=\max _{\lambda} q(\lambda, A x) \\
q(\lambda, A x)=\inf _{y \in Y}\left\{G(y)+\lambda^{\prime}(A x+B y-c)\right\}
\end{gathered}
$$

DUAL DERIVATIVES

- Let

$$
x_{\mu}=\arg \min _{x \in X} L(x, \mu)=\arg \min _{x \in X}\left\{f(x)+\mu^{\prime} g(x)\right\} .
$$

Then for all $\bar{\mu} \in \Re^{r}$,

$$
\begin{aligned}
q(\tilde{\mu}) & =\inf _{x \in X}\left\{f(x)+\tilde{\mu}^{\prime} g(x)\right\} \\
& \leq f\left(x_{\mu}\right)+\tilde{\mu}^{\prime} g\left(x_{\mu}\right) \\
& =f\left(x_{\mu}\right)+\mu^{\prime} g\left(x_{\mu}\right)+(\tilde{\mu}-\mu)^{\prime} g\left(x_{\mu}\right) \\
& =q(\mu)+(\tilde{\mu}-\mu)^{\prime} g\left(x_{\mu}\right) .
\end{aligned}
$$

- Thus $g\left(x_{\mu}\right)$ is a subgradient of q at μ.
- Proposition: Let X be compact, and let f and g be continuous over x. Assume also that for every $\mu, L(x, \mu)$ is minimized over $x \in X$ at a unique point x_{μ}. Then, q is everywhere continuously differentiable and

$$
\nabla q(\mu)=g\left(x_{\mu}\right), \quad \forall \mu \in \Re^{r} .
$$

NONDIFFERENTIABLE DUAL

- If there exists a duality gap, the dual function is nondifferentiable at every dual optimal solution.
- Important nondifferentiable case: When q is polyhedral, that is,

$$
q(\mu)=\min _{i \in I}\left\{a_{i}^{\prime} \mu+b_{i}\right\},
$$

where I is a finite index set, and $a_{i} \in \Re^{r}$ and b_{i} are given (arises when x is a discrete set, as in integer programming).

- Proposition: Let q be polyhedral as above, and let I_{μ} be the set of indices attaining the minimum

$$
I_{\mu}=\left\{i \in I \mid a_{i}^{\prime} \mu+b_{i}=q(\mu)\right\} .
$$

The set of all subgradients of q at μ is

$$
\partial q(\mu)=\left\{g \mid g=\sum_{i \in I_{\mu}} \xi_{i} a_{i}, \xi_{i} \geq 0, \sum_{i \in I_{\mu}} \xi_{i}=1\right\} .
$$

NONDIFFERENTIABLE OPTIMIZATION

- Consider maximization of $q(\mu)$ over $M=\{\mid \mu \geq$ $0, q(\mu)>-\infty\}$
- Subgradient method:

$$
\mu^{k+1}=\left[\mu^{k}+s^{k} g^{k}\right]^{+},
$$

where g^{k} is the subgradient $\left.g\left(x_{\mu^{k}}\right),[\cdot]\right]^{+}$denotes projection on the closed convex set M, and s^{k} is a positive scalar stepsize.

KEY SUBGRADIENT METHOD PROPERTY

- For a small stepsize it reduces the Euclidean distance to the optimum.

- Proposition: For any dual optimal solution μ^{*}, we have

$$
\left\|\mu^{k+1}-\mu^{*}\right\|<\left\|\mu^{k}-\mu^{*}\right\|,
$$

for all stepsizes s^{k} such that

$$
0<s^{k}<\frac{2\left(q\left(\mu^{*}\right)-q\left(\mu^{k}\right)\right)}{\left\|g^{k}\right\|^{2}} .
$$

STEPSIZE RULES

- Diminishing stepsize is one possibility.
- More common method:

$$
s^{k}=\frac{\alpha^{k}\left(q^{k}-q\left(\mu^{k}\right)\right)}{\left\|g^{k}\right\|^{2}},
$$

where $q^{k} \approx q^{*}$ and

$$
0<\alpha^{k}<2 .
$$

- Some possibilities:
- q^{k} is the best known upper bound to $q^{*} ; \alpha^{0}=1$ and α^{k} decreased by a certain factor every few iterations.
$-\alpha^{k}=1$ for all k and

$$
q^{k}=(1+\beta(k)) \hat{q}^{k},
$$

where $\hat{q}^{k}=\max _{0<i<k} q\left(\mu^{i}\right)$, and $\beta(k)>0$ is adjusted depending on algorithmic progress of the algorithm.

