6.252 NONLINEAR PROGRAMMING

LECTURE 10

ALTERNATIVES TO GRADIENT PROJECTION

LECTURE OUTLINE

- Three Alternatives/Remedies for Gradient Projection
 - Two-Metric Projection Methods
 - Manifold Suboptimization Methods
 - Affine Scaling Methods

Scaled GP method with scaling matrix $H^k > 0$:

$$x^{k+1} = x^k + \alpha^k (\overline{x}^k - x^k),$$

$$\overline{x}^k = \arg\min_{x \in X} \left\{ \nabla f(x^k)'(x - x^k) + \frac{1}{2s^k} (x - x^k)' H^k(x - x^k) \right\}.$$

- The QP direction subproblem is complicated by:
 - Difficult inequality (e.g., nonorthant) constraints
 - Nondiagonal H^k , needed for Newton scaling

THREE WAYS TO DEAL W/ THE DIFFICULTY

Two-metric projection methods:

$$x^{k+1} = \left[x^k - \alpha^k D^k \nabla f(x^k) \right]^+$$

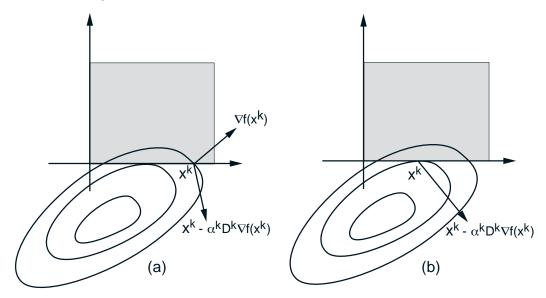
- Use Newton-like scaling but use a standard projection
- Suitable for bounds, simplexes, Cartesian products of simple sets, etc
- Manifold suboptimization methods:
 - Use (scaled) gradient projection on the manifold of active inequality constraints
 - Need strategies to cope with changing active manifold (add-drop constraints)
 - Each QP subproblem is equality-constrained
- Affine Scaling Methods
 - Go through the interior of the feasible set
 - Each QP subproblem is equality-constrained,
 AND we don't have to deal with changing active manifold

TWO-METRIC PROJECTION METHODS

- In their simplest form, apply to constraint: $x \ge 0$, but generalize to bound and other constraints
- Like unconstr. gradient methods except for [·]+

$$x^{k+1} = \left[x^k - \alpha^k D^k \nabla f(x^k) \right]^+, \qquad D^k > 0$$

• Major difficulty: Descent is not guaranteed for D^k : arbitrary



• Remedy: Use D^k that is diagonal w/ respect to indices that "are active and want to stay active"

$$I^{+}(x^{k}) = \left\{ i \mid x_{i}^{k} = 0, \, \partial f(x^{k}) / \partial x_{i} > 0 \right\}$$

PROPERTIES OF 2-METRIC PROJECTION

• Suppose D^k is diagonal with respect to $I^+(x^k)$, i.e., $d^k_{ij}=0$ for $i,j\in I^+(x^k)$ with $i\neq j$, and let

$$x^k(a) = \left[x^k - \alpha D^k \nabla f(x^k) \right]^+$$

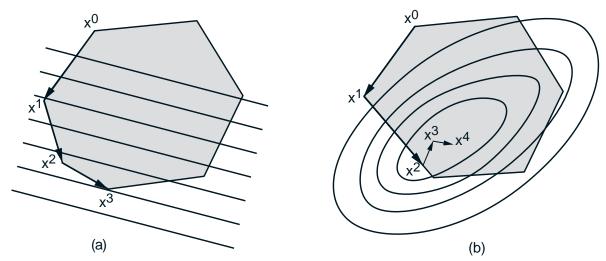
- If x^k is stationary, $x^k = x^k(\alpha)$ for all $\alpha > 0$.
- Otherwise $f(x(\alpha)) < f(x^k)$ for all sufficiently small $\alpha > 0$ (can use Armijo rule).
- Because $I^+(x)$ is discontinuous w/ respect to x, to guarantee convergence we need to include in $I^+(x)$ constraints that are " ϵ -active" [those w/ $x_i^k \in [0, \epsilon]$ and $\partial f(x^k)/\partial x_i > 0$].
- The constraints in $I^+(x^*)$ eventually become active and don't matter.
- Method reduces to unconstrained Newton-like method on the manifold of active constraints at x^* .
- Thus, superlinear convergence is possible w/simple projections.

MANIFOLD SUBOPTIMIZATION METHODS

Feasible direction methods for

$$\min f(x)$$
 subject to $a'_j x \leq b_j, \ j = 1, \dots, r$

Gradient is projected on a linear manifold of active constraints rather than on the entire constraint set (linearly constrained QP).



- Searches through sequence of manifolds, each differing by at most one constraint from the next.
- Potentially many iterations to identify the active manifold; then method reduces to (scaled) steepest descent on the active manifold.
- Well-suited for a small number of constraints, and for quadratic programming.

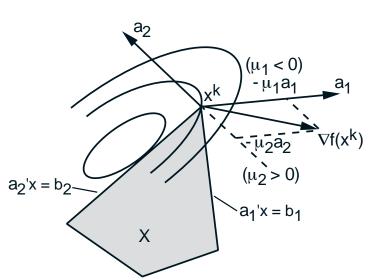
OPERATION OF MANIFOLD METHODS

• Let $A(x) = \{j \mid a'_j x = b_j\}$ be the active index set at x. Given x^k , we find

$$d^{k} = \arg\min_{a'_{j}d=0, j \in A(x^{k})} \nabla f(x^{k})'d + \frac{1}{2}d'H^{k}d$$

- If $d^k \neq 0$, then d^k is a feasible descent direction. Perform feasible descent on the current manifold.
- If $d^k = 0$, either (1) x^k is stationary or (2) we enlarge the current manifold (drop an active constraint). For this, use the scalars μ_i such that

$$\nabla f(x^k) + \sum_{j \in A(x^k)} \mu_j a_j = 0$$



If $\mu_j \geq 0$ for all j, x^k is stationary, since for all feasible $x, \nabla f(x^k)'(x-x^k)$ is equal to

$$-\sum_{j\in A(x^k)}\mu_j a_j'(x-x^k) \ge 0$$

Else, drop a constraint j with $\mu_j < 0$.

AFFINE SCALING METHODS FOR LP

• Focus on the LP $\min_{Ax=b, x\geq 0} c'x$, and the scaled gradient projection $x^{k+1} = x^k + \alpha^k(\overline{x}^k - x^k)$, with

$$\overline{x}^k = \arg\min_{Ax=b, x \ge 0} c'(x-x^k) + \frac{1}{2s^k} (x-x^k)' H^k(x-x^k)$$

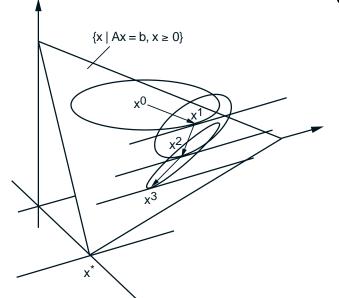
• If $x^k>0$ then $\overline{x}^k>0$ for s^k small enough, so $\overline{x}^k=x^k-s^k(H^k)^{-1}(c-A'\lambda^k)$ with

$$\lambda^k = (A(H^k)^{-1}A')^{-1}A(H^k)^{-1}c$$

Lumping s^k into α^k :

$$x^{k+1} = x^k - \alpha^k (H^k)^{-1} (c - A'\lambda^k),$$

where α^k is small enough to ensure that $x^{k+1} > 0$



Importance of using timevarying H^k (should bend $\overline{x}^k - x^k$ away from the boundary)

AFFINE SCALING

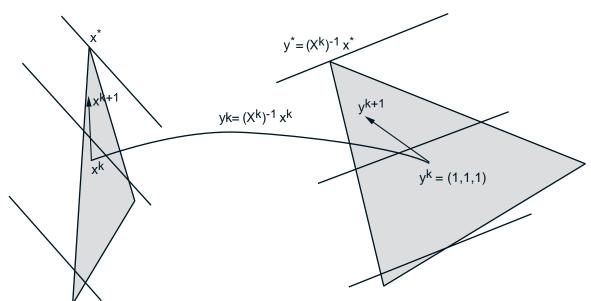
Particularly interesting choice (affine scaling)

$$H^k = (X^k)^{-2},$$

where X^k is the diagonal matrix having the (positive) coordinates x_i^k along the diagonal:

$$x^{k+1} = x^k - \alpha^k (X^k)^2 (c - A'\lambda^k), \quad \lambda^k = (A(X^k)^2 A')^{-1} A(X^k)^2 c$$

• Corresponds to unscaled gradient projection iteration in the variables $y = (X^k)^{-1}x$. The vector x^k is mapped onto the unit vector $y^k = (1, ..., 1)$.



Extensions, convergence, practical issues.