
6.252 NONLINEAR PROGRAMMING


LECTURE 9: FEASIBLE DIRECTION METHODS


LECTURE OUTLINE


• Conditional Gradient Method 

• Gradient Projection Methods 

A feasible direction at an x ∈ X is a vector d �= 0  
such that x + αd is feasible for all suff. small α >  0 

x1 

x2 

d 

Constraint set X 

Feasible 
directions at x 

x 

• Note: the set of feasible directions at x is the 
set of all α(z − x) where z ∈ X, z �= x, and α >  0 
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FEASIBLE DIRECTION METHODS


• A feasible direction method: 

xk+1 = xk + αkdk, 

where dk: feasible descent direction [∇f(xk)′dk < 
0], and αk > 0 and such that xk+1 ∈ X. 

•	 Alternative definition: 

xk+1 = xk + αk(xk − xk), 

where αk ∈ (0, 1] and if xk is nonstationary, 

xk ∈ X, ∇f(xk)′(xk − xk) < 0. 

• Stepsize rules: Limited minimization, Constant 
αk = 1, Armijo: αk = βmk s, where mk is the first 
nonnegative m for which 

f(xk)−f xk+βm(xk−xk) ≥ −σβm∇f(xk)′(xk−xk) 



CONVERGENCE ANALYSIS


• Similar to the one for (unconstrained) gradient 
methods. 

• The direction sequence {dk} is gradient related 
to {xk} if the following property can be shown: 
For any subsequence {xk}k∈K that converges to 
a nonstationary point, the corresponding subse-
quence {dk}k∈K is bounded and satisfies 

lim sup ∇f(xk)′dk < 0. 
k→∞, k∈K


Proposition (Stationarity of Limit Points) 
Let {xk} be a sequence generated by the feasible 
direction method xk+1 = xk +αkdk. Assume that: 

− {dk} is gradient related 

− αk is chosen by the limited minimization rule 
or the Armijo rule. 

Then every limit point of {xk} is a stationary point. 

• Proof: Nearly identical to the unconstrained 
case. 



CONDITIONAL GRADIENT METHOD


•	 xk+1 = xk + αk(xk − xk), where 

xk = arg min ∇f(xk)′(x − xk). 
x∈X 

• Assume that X is compact, so xk is guaranteed 
to exist by Weierstrass. 
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CONVERGENCE OF CONDITIONAL GRADIENT 

• Show that the direction sequence of the condi-
tional gradient method is gradient related, so the 
generic convergence result applies. 

• Suppose that {xk}k∈K converges to a nonsta-
tionary point x̃. We must prove that 

‖x k−x k‖ : bounded, lim sup ∇f (x k)′(x k−x k) < 0. 
k∈K 

k→∞, k∈K 

• 1st relation: Holds because xk ∈ X, xk ∈ X, 
and X is assumed compact. 

• 2nd relation: Note that by definition of xk , 

∇f(xk)′(xk − xk) ≤ ∇f(xk)′(x− xk), ∀ x ∈ X 

Taking limit as k → ∞, k  ∈ K, and min of the RHS 
over x ∈ X, and using the nonstationarity of x̃, 

lim sup ∇f(xk)′(xk−xk) ≤ min ∇f(˜ x) < 0,x)′(x−˜ 
k→∞, k∈K x∈X 

thereby proving the 2nd relation.




GRADIENT PROJECTION METHODS

• Gradient projection methods determine the fea-
sible direction by using a quadratic cost subprob-
lem. Simplest variant:

xk+1 = xk + αk(xk − xk)

xk =
[
xk − sk∇f(xk)

]+

where, [·]+ denotes projection on the set X, αk ∈
(0, 1] is a stepsize, and sk is a positive scalar.
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Gradient projection itera-

tions for the case

αk ≡ 1, xk+1 ≡ xk

If αk < 1, xk+1 is in the

line segment connecting xk

and xk.

• Stepsize rules for αk (assuming sk ≡ s): Limited
minimization, Armijo along the feasible direction,
constant stepsize. Also, Armijo along the projec-
tion arc (αk ≡ 1, sk: variable).



CONVERGENCE

• If αk is chosen by the limited minimization rule
or by the Armijo rule along the feasible direction,
every limit point of {xk} is stationary.

• Proof: Show that the direction sequence {xk −
xk} is gradient related. Assume{xk}k∈K converges
to a nonstationary x̃. Must prove

{
‖xk−xk‖

}
k∈K

: bounded, lim sup
k→∞, k∈K

∇f(xk)′(xk−xk) < 0.

1st relation holds because
{
‖xk − xk‖

}
k∈K

con-
verges to ‖[x̃−s∇f(x̃)]+−x̃‖. By optimality condi-
tion for projections,

(
xk−s∇f(xk)−xk

)′(x−xk) ≤
0 for all x ∈ X. Applying this relation with x = xk,
and taking limit,

lim sup
k→∞, k∈K

∇f(xk)′(xk−xk) ≤ −1

s

∥
∥x̃−

[
x̃−s∇f(x̃)

]+∥
∥2

< 0

• Similar conclusion for constant stepsize αk = 1,
sk = s (under a Lipschitz condition on ∇f ).

• Similar conclusion for Armijo rule along the pro-
jection arc.



CONVERGENCE RATE – VARIANTS

• Assume f(x) = 1
2x

′Qx − b′x, with Q > 0, and
a constant stepsize (ak ≡ 1, sk ≡ s). Using the
nonexpansiveness of projection

∥
∥xk+1 − x∗

∥
∥ =

∥
∥[

xk − s∇f(xk)
]+

−
[
x∗ − s∇f(x∗)

]+∥
∥

≤
∥
∥(

xk − s∇f(xk)
)
−

(
x∗ − s∇f(x∗)

)∥∥

=
∥
∥(I − sQ)(xk − x∗)

∥
∥

≤ max
{
|1 − sm|, |1 − sM |

}∥
∥xk − x∗

∥
∥

where m, M : min and max eigenvalues of Q.

• Scaled version: xk+1 = xk +αk(xk−xk), where

xk = arg min
x∈X

{
∇f(xk)′(x − xk) +

1

2sk
(x − xk)′Hk(x − xk)

}
,

and Hk > 0. Since the minimum value above is
negative when xk is nonstationary, ∇f(xk)′(xk −
xk) < 0. Newton’s method for Hk = ∇2f(xk).

• Variants: Projecting on an expanded constraint
set, projecting on a restricted constraint set, com-
binations with unconstrained methods, etc.


