6.252 NONLINEAR PROGRAMMING

LECTURE 9: FEASIBLE DIRECTION METHODS

LECTURE OUTLINE

- Conditional Gradient Method
- Gradient Projection Methods

A *feasible direction* at an $x \in X$ is a vector $d \neq 0$ such that $x + \alpha d$ is feasible for all suff. small $\alpha > 0$

• Note: the set of feasible directions at x is the set of all $\alpha(z-x)$ where $z \in X$, $z \neq x$, and $\alpha > 0$

FEASIBLE DIRECTION METHODS

• A feasible direction method:

$$x^{k+1} = x^k + \alpha^k d^k,$$

where d^k : feasible descent direction [$\nabla f(x^k)'d^k < 0$], and $\alpha^k > 0$ and such that $x^{k+1} \in X$.

• Alternative definition:

$$x^{k+1} = x^k + \alpha^k (\overline{x}^k - x^k),$$

where $\alpha^k \in (0, 1]$ and if x^k is nonstationary,

$$\overline{x}^k \in X, \qquad \nabla f(x^k)'(\overline{x}^k - x^k) < 0.$$

• Stepsize rules: Limited minimization, Constant $\alpha^k = 1$, Armijo: $\alpha^k = \beta^{m_k} s$, where m_k is the first nonnegative m for which

$$f(x^k) - f\left(x^k + \beta^m (\overline{x}^k - x^k)\right) \ge -\sigma\beta^m \nabla f(x^k)' (\overline{x}^k - x^k)$$

CONVERGENCE ANALYSIS

• Similar to the one for (unconstrained) gradient methods.

• The direction sequence $\{d^k\}$ is gradient related to $\{x^k\}$ if the following property can be shown: For any subsequence $\{x^k\}_{k \in \mathcal{K}}$ that converges to a nonstationary point, the corresponding subsequence $\{d^k\}_{k \in \mathcal{K}}$ is bounded and satisfies

 $\limsup_{k \to \infty, \, k \in \mathcal{K}} \nabla f(x^k)' d^k < 0.$

Proposition (Stationarity of Limit Points) Let $\{x^k\}$ be a sequence generated by the feasible direction method $x^{k+1} = x^k + \alpha^k d^k$. Assume that:

- $\{d^k\}$ is gradient related
- α^k is chosen by the limited minimization rule or the Armijo rule.

Then every limit point of $\{x^k\}$ is a stationary point.

• Proof: Nearly identical to the unconstrained case.

CONDITIONAL GRADIENT METHOD

•
$$x^{k+1} = x^k + \alpha^k (\overline{x}^k - x^k)$$
, where

$$\overline{x}^k = \arg\min_{x \in X} \nabla f(x^k)'(x - x^k).$$

• Assume that X is compact, so \overline{x}^k is guaranteed to exist by Weierstrass.

Illustration of the direction of the conditional gradient method.

Operation of the method. Slow (sublinear) convergence.

CONVERGENCE OF CONDITIONAL GRADIENT

• Show that the direction sequence of the conditional gradient method is gradient related, so the generic convergence result applies.

• Suppose that $\{x^k\}_{k \in K}$ converges to a nonstationary point \tilde{x} . We must prove that

 $\Big\{ \|\overline{x}^k - x^k\| \Big\}_{k \in K} : \text{bounded}, \quad \limsup_{k \to \infty, \ k \in K} \nabla f(x^k)' (\overline{x}^k - x^k) < 0.$

• 1st relation: Holds because $\overline{x}^k \in X$, $x^k \in X$, and X is assumed compact.

• 2nd relation: Note that by definition of \overline{x}^k ,

 $\nabla f(x^k)'(\overline{x}^k - x^k) \le \nabla f(x^k)'(x - x^k), \qquad \forall x \in X$

Taking limit as $k \to \infty$, $k \in K$, and min of the RHS over $x \in X$, and using the nonstationarity of \tilde{x} ,

 $\limsup_{k \to \infty, \, k \in K} \nabla f(x^k)'(\overline{x}^k - x^k) \le \min_{x \in X} \nabla f(\tilde{x})'(x - \tilde{x}) < 0,$

thereby proving the 2nd relation.

GRADIENT PROJECTION METHODS

 Gradient projection methods determine the feasible direction by using a quadratic cost subproblem. Simplest variant:

$$x^{k+1} = x^k + \alpha^k (\overline{x}^k - x^k)$$

$$\overline{x}^k = \left[x^k - s^k \nabla f(x^k)\right]^+$$

where, $[\cdot]^+$ denotes projection on the set X, $\alpha^k \in (0, 1]$ is a stepsize, and s^k is a positive scalar.

Gradient projection iterations for the case

$$\alpha^k \equiv 1, \quad x^{k+1} \equiv \overline{x}^k$$

If $\alpha^k < 1$, x^{k+1} is in the line segment connecting x^k and \overline{x}^k .

• Stepsize rules for α^k (assuming $s^k \equiv s$): Limited minimization, Armijo along the feasible direction, constant stepsize. Also, Armijo along the projection arc ($\alpha^k \equiv 1, s^k$: variable).

CONVERGENCE

• If α^k is chosen by the limited minimization rule or by the Armijo rule along the feasible direction, every limit point of $\{x^k\}$ is stationary.

• Proof: Show that the direction sequence $\{\overline{x}^k - x^k\}$ is gradient related. Assume $\{x^k\}_{k \in K}$ converges to a nonstationary \tilde{x} . Must prove

$$\Big\{ \|\overline{x}^k - x^k\| \Big\}_{k \in K} : \text{bounded}, \quad \limsup_{k \to \infty, \ k \in K} \nabla f(x^k)'(\overline{x}^k - x^k) < 0.$$

1st relation holds because $\{\|\overline{x}^k - x^k\|\}_{k \in K}$ converges to $\|[\tilde{x} - s \nabla f(\tilde{x})]^+ - \tilde{x}\|$. By optimality condition for projections, $(x^k - s \nabla f(x^k) - \overline{x}^k)'(x - \overline{x}^k) \leq 0$ for all $x \in X$. Applying this relation with $x = x^k$, and taking limit,

 $\limsup_{k \to \infty, \ k \in K} \nabla f(x^k)'(\overline{x}^k - x^k) \le -\frac{1}{s} \left\| \tilde{x} - \left[\tilde{x} - s \nabla f(\tilde{x}) \right]^+ \right\|^2 < 0$

• Similar conclusion for constant stepsize $\alpha^k = 1$, $s^k = s$ (under a Lipschitz condition on ∇f).

• Similar conclusion for Armijo rule along the projection arc.

CONVERGENCE RATE – VARIANTS

• Assume $f(x) = \frac{1}{2}x'Qx - b'x$, with Q > 0, and a constant stepsize ($a^k \equiv 1$, $s^k \equiv s$). Using the nonexpansiveness of projection

$$\begin{aligned} \left\| x^{k+1} - x^* \right\| &= \left\| \left[x^k - s \nabla f(x^k) \right]^+ - \left[x^* - s \nabla f(x^*) \right]^+ \right\| \\ &\leq \left\| \left(x^k - s \nabla f(x^k) \right) - \left(x^* - s \nabla f(x^*) \right) \right\| \\ &= \left\| (I - sQ)(x^k - x^*) \right\| \\ &\leq \max \left\{ |1 - sm|, |1 - sM| \right\} \left\| x^k - x^* \right\| \end{aligned}$$

where m, M: min and max eigenvalues of Q.

• Scaled version: $x^{k+1} = x^k + \alpha^k (\overline{x}^k - x^k)$, where

$$\overline{x}^k = \arg\min_{x \in X} \left\{ \nabla f(x^k)'(x - x^k) + \frac{1}{2s^k}(x - x^k)'H^k(x - x^k) \right\},$$

and $H^k > 0$. Since the minimum value above is negative when x^k is nonstationary, $\nabla f(x^k)'(\overline{x}^k - x^k) < 0$. Newton's method for $H^k = \nabla^2 f(x^k)$.

• Variants: Projecting on an expanded constraint set, projecting on a restricted constraint set, combinations with unconstrained methods, etc.