6.252 NONLINEAR PROGRAMMING LECTURE 20: STRONG DUALITY LECTURE OUTLINE

- Strong Duality Theorem
- Linear equality constraints. Fenchel Duality.

• Consider the problem

minimize f(x)subject to $x \in X$, $g_j(x) \le 0$, $j = 1, \dots, r$,

assuming $-\infty < f^* < \infty$.

• μ^* is a Lagrange multiplier if $\mu^* \ge 0$ and $f^* = \inf_{x \in X} L(x, \mu^*)$.

• Dual problem: Maximize $q(\mu) = \inf_{x \in X} L(x, \mu)$ subject to $\mu \ge 0$.

DUALITY THEOREM FOR INEQUALITIES

• Assume that X is convex and the functions $f: \Re^n \mapsto \Re, g_j: \Re^n \mapsto \Re$ are convex over X. Furthermore, the optimal value f^* is finite and there exists a vector $\bar{x} \in X$ such that

$$g_j(\bar{x}) < 0, \qquad \forall \ j = 1, \dots, r.$$

 Strong Duality Theorem: There exists at least one Lagrange multiplier and there is no duality gap.

PROOF OUTLINE

• Show that *A* is convex. [Consider vectors $(z, w) \in A$ and $(\tilde{z}, \tilde{w}) \in A$, and show that their convex combinations lie in *A*.]

• Observe that $(0, f^*)$ is not an interior point of A.

• Hence, there is hyperplane passing through $(0, f^*)$ and containing A in one of the two corresponding halfspaces; i.e., a $(\mu, \beta) \neq (0, 0)$ with

$$\beta f^* \leq \beta w + \mu' z, \qquad \forall (z, w) \in A.$$

This implies that $\beta \ge 0$, and $\mu_j \ge 0$ for all *j*.

- Prove that hyperplane is nonvertical, i.e., $\beta > 0$.
- Normalize ($\beta = 1$), take the infimum over $x \in X$, and use the fact $\mu \ge 0$, to obtain

$$f^* \le \inf_{x \in X} \left\{ f(x) + \mu' g(x) \right\} = q(\mu) \le \sup_{\mu \ge 0} q(\mu) = q^*.$$

Using the weak duality theorem, μ is a Lagrange multiplier and there is no duality gap.

LINEAR EQUALITY CONSTRAINTS

• Suppose we have the additional constraints

$$e_i'x - d_i = 0, \qquad i = 1, \dots, m$$

• We need the notion of the *affine hull* of a convex set X [denoted aff(X)]. This is the intersection of all hyperplanes containing X.

• The *relative interior* of *X*, denoted ri(X), is the set of all $x \in X$ s.t. there exists $\epsilon > 0$ with

$$\left\{z \mid ||z - x|| < \epsilon, \ z \in aff(X)\right\} \subset X,$$

that is, ri(X) is the interior of X relative to aff(X).

• Every nonempty convex set has a nonempty relative interior.

DUALITY THEOREM FOR EQUALITIES

- Assumptions:
 - The set X is convex and the functions f, g_j are convex over X.
 - The optimal value f^* is finite and there exists a vector $\bar{x} \in ri(X)$ such that

$$g_j(\bar{x}) < 0, \qquad j = 1, \dots, r,$$

$$e'_i \bar{x} - d_i = 0, \qquad i = 1, \dots, m.$$

• Under the preceding assumptions there exists at least one Lagrange multiplier and there is no duality gap.

COUNTEREXAMPLE

Consider

minimize $f(x) = x_1$ subject to $x_2 = 0$, $x \in X = \{(x_1, x_2) \mid x_1^2 \le x_2\}.$

- The optimal solution is $x^* = (0,0)$ and $f^* = 0$.
- The dual function is given by

$$q(\lambda) = \inf_{x_1^2 \le x_2} \{x_1 + \lambda x_2\} = \begin{cases} -\frac{1}{4\lambda}, & \text{if } \lambda > 0, \\ -\infty, & \text{if } \lambda \le 0. \end{cases}$$

- No dual optimal solution and therefore there is no Lagrange multiplier. (Even though there is no duality gap.)
- Assumptions are violated (the feasible set and the relative interior of *X* have no common point).

FENCHEL DUALITY FRAMEWORK

• Consider the problem

minimize $f_1(x) - f_2(x)$ subject to $x \in X_1 \cap X_2$,

where f_1 and f_2 are real-valued functions on \Re^n , and X_1 and X_2 are subsets of \Re^n .

- Assume that $-\infty < f^* < \infty$.
- Convert problem to

minimize $f_1(y) - f_2(z)$ subject to z = y, $y \in X_1$, $z \in X_2$,

and dualize the constraint z = y.

$$q(\lambda) = \inf_{y \in X_1, z \in X_2} \left\{ f_1(y) - f_2(z) + (z - y)'\lambda \right\}$$

=
$$\inf_{z \in X_2} \left\{ z'\lambda - f_2(z) \right\} - \sup_{y \in X_1} \left\{ y'\lambda - f_1(y) \right\}$$

=
$$g_2(\lambda) - g_1(\lambda)$$

- Assume that
 - X_1 and X_2 are convex
 - f_1 and f_2 are convex and concave over X_1 and X_2 , respectively
 - The relative interiors of X_1 and X_2 intersect

 The duality theorem for equalities applies and shows that

$$f^* = \max_{\lambda \in \Re^n} \left\{ g_2(\lambda) - g_1(\lambda) \right\}$$

and that the maximum above is attained.