6.252 NONLINEAR PROGRAMMING

LECTURE 2

UNCONSTRAINED OPTIMIZATION -

OPTIMALITY CONDITIONS

LECTURE OUTLINE

- Unconstrained Optimization
- Local Minima
- Necessary Conditions for Local Minima
- Sufficient Conditions for Local Minima
- The Role of Convexity

LOCAL AND GLOBAL MINIMA

Unconstrained local and global minima in one dimension.

NECESSARY CONDITIONS FOR A LOCAL MIN

- Zero slope at a local minimum x^{*}

$$
\nabla f\left(x^{*}\right)=0
$$

- Nonnegative curvature at a local minimum x^{*}

$\nabla^{2} f\left(x^{*}\right)$: Positive Semidefinite

First and second order necessary optimality conditions for functions of one variable.

PROOFS OF NECESSARY CONDITIONS

- 1st order condition $\nabla f\left(x^{*}\right)=0$. Fix $d \in \Re^{n}$. Then (since x^{*} is a local min)

$$
d^{\prime} \nabla f\left(x^{*}\right)=\lim _{\alpha \downarrow 0} \frac{f\left(x^{*}+\alpha d\right)-f\left(x^{*}\right)}{\alpha} \geq 0
$$

Replace d with $-d$, to obtain

$$
d^{\prime} \nabla f\left(x^{*}\right)=0, \quad \forall d \in \Re^{n}
$$

- 2nd order condition $\nabla^{2} f\left(x^{*}\right) \geq 0$.

$$
f\left(x^{*}+\alpha d\right)-f\left(x^{*}\right)=\alpha \nabla f\left(x^{*}\right)^{\prime} d+\frac{\alpha^{2}}{2} d^{\prime} \nabla^{2} f\left(x^{*}\right) d+o\left(\alpha^{2}\right)
$$

Since $\nabla f\left(x^{*}\right)=0$ and x^{*} is local min, there is sufficiently small $\epsilon>0$ such that for all $\alpha \in(0, \epsilon)$,

$$
0 \leq \frac{f\left(x^{*}+\alpha d\right)-f\left(x^{*}\right)}{\alpha^{2}}=\frac{1}{2} d^{\prime} \nabla^{2} f\left(x^{*}\right) d+\frac{o\left(\alpha^{2}\right)}{\alpha^{2}}
$$

Take the limit as $\alpha \rightarrow 0$.

SUFFICIENT CONDITIONS FOR A LOCAL MIN

- Zero slope

$$
\nabla f\left(x^{*}\right)=0
$$

- Positive curvature

$\nabla^{2} f\left(x^{*}\right)$: Positive Definite

- Proof: Let $\lambda>0$ be the smallest eigenvalue of $\nabla^{2} f\left(x^{*}\right)$. Using a second order Taylor expansion, we have for all d

$$
\begin{aligned}
f\left(x^{*}+d\right)-f\left(x^{*}\right)= & \nabla f\left(x^{*}\right)^{\prime} d+\frac{1}{2} d^{\prime} \nabla^{2} f\left(x^{*}\right) d \\
& +o\left(\|d\|^{2}\right) \\
\geq & \frac{\lambda}{2}\|d\|^{2}+o\left(\|d\|^{2}\right) \\
= & \left(\frac{\lambda}{2}+\frac{o\left(\|d\|^{2}\right)}{\|d\|^{2}}\right)\|d\|^{2}
\end{aligned}
$$

For $\|d\|$ small enough, $o\left(\|d\|^{2}\right) /\|d\|^{2}$ is negligible relative to $\lambda / 2$.

CONVEXITY

Convex Sets

Nonconvex Sets

Convex and nonconvex sets.

A convex function.

MINIMA AND CONVEXITY

- Local minima are also global under convexity

Illustration of why local minima of convex functions are also global. Suppose that f is convex and that x^{*} is a local minimum of f. Let \bar{x} be such that $f(\bar{x})<f\left(x^{*}\right)$. By convexity, for all $\alpha \in(0,1)$,

$$
f\left(\alpha x^{*}+(1-\alpha) \bar{x}\right) \leq \alpha f\left(x^{*}\right)+(1-\alpha) f(\bar{x})<f\left(x^{*}\right)
$$

Thus, f takes values strictly lower than $f\left(x^{*}\right)$ on the line segment connecting x^{*} with \bar{x}, and x^{*} cannot be a local minimum which is not global.

OTHER PROPERTIES OF CONVEX FUNCTIONS

- f is convex if and only if the linear approximation at a point x^{*} based on the gradient, that is,

$$
f(x) \geq f\left(x^{*}\right)+\nabla f\left(x^{*}\right)^{\prime}\left(x-x^{*}\right), \quad \forall x
$$

- Implication:

$$
\nabla f\left(x^{*}\right)=0 \quad \Rightarrow x^{*} \text { is a global minimum }
$$

- f is convex if and only if $\nabla^{2} f(x)$ is positive semidefinite for all x

