
6.252 NONLINEAR PROGRAMMING


LECTURE 11


CONSTRAINED OPTIMIZATION;


LAGRANGE MULTIPLIERS


LECTURE OUTLINE


• Equality Constrained Problems 

• Basic Lagrange Multiplier Theorem 

• Proof 1: Elimination Approach 

• Proof 2: Penalty Approach 

Equality constrained problem 

minimize f (x)


subject to hi(x) = 0, i = 1, . . . , m.


where f : �n �→ �, hi : �n �→ �, i = 1, . . . , m, are con-
tinuously differentiable functions. (Theory also 
applies to case where f and hi are cont. differ-
entiable in a neighborhood of a local minimum.) 
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LAGRANGE MULTIPLIER THEOREM


• Let x ∗ be a local min and a regular point [∇hi(x ∗): 
linearly independent]. Then there exist unique 
scalars λ∗ 

1, . . . , λ∗ such thatm 

∗ ) + 


m 

i=1 

λ
∇f (x
 ∗ 
i ∇hi(x ∗ ) = 0.


If in addition f and h are twice cont. differentiable,


y
 ∗ ∇2f (x ) +  

m 

i=1 

λ
 y ≥ 0, ∀ y s.t. ∇h(x
∗ ∗ 
i ∇2hi(x ) ∗ )′ y = 0  

x1 

x2 

x * = (-1,-1) 

∇h(x*) = (-2,-2) 

∇f(x *) = (1,1) 0 

2 

2 

h(x) = 0 

x1 

x2 

∇f(x *) = (1,1) 
∇h1(x*) = (-2,0) 

∇h2(x*) = (-4,0) 

h1(x) = 0 

h2(x) = 0 

21 

minimize x1 + x2 

subject to x 2 2 
1 + x2 = 2. 

The Lagrange multiplier is 

λ = 1/2. 

minimize x1 + x2 

2 s. t. (x1 − 1)2 + x2 − 1 = 0  

2(x1 − 2)2 + x2 − 4 = 0  
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PROOF VIA ELIMINATION APPROACH


• Consider the linear constraints case 
minimize f(x) 

subject to Ax = b 

where A is an m × n matrix with linearly indepen-
dent rows and b ∈ �m is a given vector. 

• Partition A = (  B R ) , where B is m×m invertible, 
and x = (  xB xR )

′ . Equivalent problem: 

minimize F (xR) ≡ f
 B−1(b − RxR), xR


subject to xR ∈ �n−m . 

• Unconstrained optimality condition: 

∗ ∗ 
R) =  −R′(B′)−1∇B f(x ) +  ∇Rf(x ∗ ) (1)
0 =  ∇F (x


By defining 
λ ∗ ∗ = −(B′)−1∇B f (x ), 

we have ∇B f (x ∗)+B′λ∗ = 0, while Eq. (1) is written 
∇Rf (x ∗) +  R′λ∗ = 0. Combining: 

∇f (x
∗ ∗ ) +  A′λ = 0  
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ELIMINATION APPROACH - CONTINUED 

• Second order condition: For all d ∈ �n−m 

∗ 0 ≤ d′∇2F (xR)d = d′∇2 f
 B−1(b − RxR), xR
 d. (2) 

• After calculation we obtain 

∗ ∇2F (xR) =  R′(B′)−1∇2 
BB f(x ∗ )B−1R 

− R′(B′)−1∇2 
BRf(x ∗ ) −∇2 

RB f(x ∗ )B−1R + ∇2 
RRf(x ∗ ).


• Eq. (2) and the linearity of the constraints [im-
plying that ∇2hi(x ∗) = 0], yields for all d ∈ �n−m 

∗ 0 ≤ d′∇2F (x ∗ 
R)d = y ′∇2f(x )y


∗ ∇2f (x ) +  y,


m 

i=1 

λ
∗ ∗ 
i ∇2hi(x )= y


where y = (  yB yR )
′ = (  −B−1Rd d )′ . 

• y has this form iff 

0 =  ByB + RyR = ∇h(x
∗ )′ y. 
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PROOF VIA PENALTY APPROACH 

• Introduce, for k = 1, 2, . . ., the cost function 

k α 
F k(x) =  f (x) +  

2 
||h(x)||2 +

2 
||x − x ∗ ||2 , 

where α >  0 and x ∗ is a local minimum. 

• Let � >  0 be such that f(x ∗) ≤ f (x) for all feasible 
x in the closed sphere S = x | ||x − x ∗|| ≤ � , and let 
xk = arg minx∈S F k(x). Have 

k α 
F k(x k) =  f(x k)+

2 
||h(x k)||2+

2 
||x k−x ∗ ||2 ≤ F k(x ∗ ) =  f (x ∗ ) 

Hence, limk→∞ ||h(xk)|| = 0, so for every limit point 
x of {xk}, h(x) = 0. 

• Furthermore, f (xk) + (α/2)||xk − x ∗||2 ≤ f (x ∗) for 
all k, so by taking lim, 

α 
f (x) +  

2 
||x − x ∗ ||2 ≤ f(x ∗ ). 

Combine with f(x ∗) ≤ f(x) [since x ∈ S and h(x) = 0] 
to obtain ||x−x ∗|| = 0  so that x = x ∗ . Thus {xk} →  x ∗ . 
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PENALTY APPROACH - CONTINUED 

• Since xk → x ∗, for large k, xk is interior to S, and 
is an unconstrained local minimum of F k(x). 

• From 1st order necessary condition, 

∗ 0 =  ∇F k(x k) =  ∇f (x k)+k∇h(x k)h(x k)+α(x k −x ). (3) 

Since ∇h(x ∗) has rank m, ∇h(xk) also has rank 
m for large k, so ∇h(xk)′∇h(xk): invertible. Thus, 
multiplying Eq. (3) w/ ∇h(xk)′ 

)−1 ∗ kh(x k) =  − ∇h(x k)′∇h(x k) ∇h(x k)′ ∇f(x k)+α(x k−x ) . 

Taking limit as k → ∞  and xk → x ∗ , 

k ∗ ∗ 
)−1 ∗ ∗ ∗ kh(x� ) → − ∇h(x� ) ′∇h(x� ) ∇h(x� ) ′∇f(x� ) ≡ λ .�

Taking limit as k → ∞  in Eq. (3), we obtain 

∗ ∗ ∗ ∇f(x ) +  ∇h(x )λ = 0. 

• 2nd order L-multiplier condition: Use 2nd order 
unconstrained condition for xk, and algebra. 
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LAGRANGIAN FUNCTION


•	 Define the Lagrangian function 
m 

L(x, λ) =  f (x) +  λihi(x). 

i=1 

Then, if x ∗ is a local minimum which is regular, the 
Lagrange multiplier conditions are written 

∗ ∗ ∗ ∗ ∇xL(x , λ  ) = 0, ∇λL(x , λ  ) = 0, 

System of n + m equations with n + m unknowns. 

∗ ∗ ∗ y ′∇2 
xxL(x , λ  )y ≥ 0, ∀ y s.t. ∇h(x )′ y = 0. 

•	 Example 
2 2 2minimize 1 x1 + x2 + x32 

subject to x1 + x2 + x3 = 3. 

Necessary conditions 

∗ ∗ x1 + λ = 0, 

∗ ∗ x3 + λ = 0, 

∗ ∗ x2 + λ = 0, 

∗ ∗ ∗ x1 + x2 + x3 = 3. 
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EXAMPLE - PORTFOLIO SELECTION


• Investment of 1 unit of wealth among n assets 
with random rates of return ei, and given means 
ei, and covariance matrix Q = E{(ei − ei)(ej − ej )} . 

• If xi: amount invested in asset i, we want to 

minimize Variance of return y = eixi = x ′Qx 

i 

subject to 
i 
xi = 1, and given mean eixi = m 

i 

• Let λ1 and λ2 be the L-multipliers. Have 2Qx∗ + 

λ1u+λ2e = 0, where u = (1, . . . ,  1)′ and e = (e1, . . . , en)′. 
This yields 

∗ x = mv + w, σ2 = (αm + β)2 + γ, 

where v and w are vectors, and α, β, and γ are 
some scalars that depend on Q and e. 

m 

If riskless asset exists, γ = 

0. Efficient frontier is a 

line (CAPM model).ef 
-

Efficient Frontier σ = αm + β 


