6.252 NONLINEAR PROGRAMMING

LECTURE 16: PENALTY METHODS

LECTURE OUTLINE

- Quadratic Penalty Methods
- Introduction to Multiplier Methods

- Consider the equality constrained problem
minimize $f(x)$
subject to $x \in X, \quad h(x)=0$,
where $f: \Re^{n} \rightarrow \Re$ and $h: \Re^{n} \rightarrow \Re^{m}$ are continuous, and X is closed.
- The quadratic penalty method:

$$
x^{k}=\arg \min _{x \in X} L_{c^{k}}\left(x, \lambda^{k}\right) \equiv f(x)+\lambda^{k^{\prime}} h(x)+\frac{c^{k}}{2}\|h(x)\|^{2}
$$

where the $\left\{\lambda^{k}\right\}$ is a bounded sequence and $\left\{c^{k}\right\}$ satisfies $0<c^{k}<c^{k+1}$ for all k and $c^{k} \rightarrow \infty$.

TWO CONVERGENCE MECHANISMS

- Taking λ^{k} close to a Lagrange multiplier vector - Assume $X=\Re^{n}$ and $\left(x^{*}, \lambda^{*}\right)$ is a local minLagrange multiplier pair satisfying the 2nd order sufficiency conditions
- For c suff. large, x^{*} is a strict local min of $L_{c}\left(\cdot, \lambda^{*}\right)$
- Taking c^{k} very large
- For large c and any λ

$$
L_{c}(\cdot, \lambda) \approx \begin{cases}f(x) & \text { if } x \in X \text { and } h(x)=0 \\ \infty & \text { otherwise }\end{cases}
$$

- Example:
minimize $f(x)=\frac{1}{2}\left(x_{1}^{2}+x_{2}^{2}\right)$
subject to $x_{1}=1$

$$
\begin{gathered}
L_{c}(x, \lambda)=\frac{1}{2}\left(x_{1}^{2}+x_{2}^{2}\right)+\lambda\left(x_{1}-1\right)+\frac{c}{2}\left(x_{1}-1\right)^{2} \\
x_{1}(\lambda, c)=\frac{c-\lambda}{c+1}, \quad x_{2}(\lambda, c)=0
\end{gathered}
$$

EXAMPLE CONTINUED

$$
\min _{x_{1}=1} x_{1}^{2}+x_{2}^{2}, \quad x^{*}=1, \quad \lambda^{*}=-1
$$

GLOBAL CONVERGENCE

- Every limit point of $\left\{x^{k}\right\}$ is a global min.

Proof: The optimal value of the problem is $f^{*}=$ $\inf _{h(x)=0, x \in X} L_{c^{k}}\left(x, \lambda^{k}\right)$. We have

$$
L_{c^{k}}\left(x^{k}, \lambda^{k}\right) \leq L_{c^{k}}\left(x, \lambda^{k}\right), \quad \forall x \in X
$$

so taking the inf of the RHS over $x \in X, h(x)=0$

$$
L_{c^{k}}\left(x^{k}, \lambda^{k}\right)=f\left(x^{k}\right)+\lambda^{k^{\prime}} h\left(x^{k}\right)+\frac{c^{k}}{2}\left\|h\left(x^{k}\right)\right\|^{2} \leq f^{*} .
$$

Let $(\bar{x}, \bar{\lambda})$ be a limit point of $\left\{x^{k}, \lambda^{k}\right\}$. Without loss of generality, assume that $\left\{x^{k}, \lambda^{k}\right\} \rightarrow(\bar{x}, \bar{\lambda})$. Taking the limsup above

$$
\begin{equation*}
f(\bar{x})+\bar{\lambda}^{\prime} h(\bar{x})+\limsup _{k \rightarrow \infty} \frac{c^{k}}{2}\left\|h\left(x^{k}\right)\right\|^{2} \leq f^{*} . \tag{*}
\end{equation*}
$$

Since $\left\|h\left(x^{k}\right)\right\|^{2} \geq 0$ and $c^{k} \rightarrow \infty$, it follows that $h\left(x^{k}\right) \rightarrow 0$ and $h(\bar{x})=0$. Hence, \bar{x} is feasible, and since from Eq. (*) we have $f(\bar{x}) \leq f^{*}, \bar{x}$ is optimal. Q.E.D.

LAGRANGE MULTIPLIER ESTIMATES

- Assume that $X=\Re^{n}$, and f and h are cont. differentiable. Let $\left\{\lambda^{k}\right\}$ be bounded, and $c^{k} \rightarrow \infty$. Assume x^{k} satisfies $\nabla_{x} L_{c^{k}}\left(x^{k}, \lambda^{k}\right)=0$ for all k, and that $x^{k} \rightarrow x^{*}$, where x^{*} is such that $\nabla h\left(x^{*}\right)$ has rank m. Then $h\left(x^{*}\right)=0$ and $\tilde{\lambda}^{k} \rightarrow \lambda^{*}$, where

$$
\tilde{\lambda}^{k}=\lambda^{k}+c^{k} h\left(x^{k}\right), \quad \nabla_{x} L\left(x^{*}, \lambda^{*}\right)=0 .
$$

Proof: We have

$$
\begin{aligned}
0=\nabla_{x} L_{c^{k}}\left(x^{k}, \lambda^{k}\right) & =\nabla f\left(x^{k}\right)+\nabla h\left(x^{k}\right)\left(\lambda^{k}+c^{k} h\left(x^{k}\right)\right) \\
& =\nabla f\left(x^{k}\right)+\nabla h\left(x^{k}\right) \tilde{\lambda}^{k} .
\end{aligned}
$$

Multiply with

$$
\left(\nabla h\left(x^{k}\right)^{\prime} \nabla h\left(x^{k}\right)\right)^{-1} \nabla h\left(x^{k}\right)^{\prime}
$$

and take lim to obtain $\tilde{\lambda}^{k} \rightarrow \lambda^{*}$ with

$$
\lambda^{*}=-\left(\nabla h\left(x^{*}\right)^{\prime} \nabla h\left(x^{*}\right)\right)^{-1} \nabla h\left(x^{*}\right)^{\prime} \nabla f\left(x^{*}\right) .
$$

We also have $\nabla_{x} L\left(x^{*}, \lambda^{*}\right)=0$ and $h\left(x^{*}\right)=0$ (since $\tilde{\lambda}^{k}$ converges).

PRACTICAL BEHAVIOR

- Three possibilities:
- The method breaks down because an x^{k} with $\nabla_{x} L_{c^{k}}\left(x^{k}, \lambda^{k}\right) \approx 0$ cannot be found.
- A sequence $\left\{x^{k}\right\}$ with $\nabla_{x} L_{c^{k}}\left(x^{k}, \lambda^{k}\right) \approx 0$ is obtained, but it either has no limit points, or for each of its limit points x^{*} the matrix $\nabla h\left(x^{*}\right)$ has rank $<m$.
- A sequence $\left\{x^{k}\right\}$ with with $\nabla_{x} L_{c^{k}}\left(x^{k}, \lambda^{k}\right) \approx 0$ is found and it has a limit point x^{*} such that $\nabla h\left(x^{*}\right)$ has rank m. Then, x^{*} together with λ^{*} [the corresp. limit point of $\left\{\lambda^{k}+c^{k} h\left(x^{k}\right)\right\}$] satisfies the first-order necessary conditions.
- III-conditioning: The condition number of the Hessian $\nabla_{x x}^{2} L_{c^{k}}\left(x^{k}, \lambda^{k}\right)$ tends to increase with c^{k}.
- To overcome ill-conditioning:
- Use Newton-like method (and double precision).
- Use good starting points.
- Increase c^{k} at a moderate rate (if c^{k} is increased at a fast rate, $\left\{x^{k}\right\}$ converges faster, but the likelihood of ill-conditioning is greater).

INEQUALITY CONSTRAINTS

- Convert them to equality constraints by using squared slack variables that are eliminated later.
- Convert inequality constraint $g_{j}(x) \leq 0$ to equality constraint $g_{j}(x)+z_{j}^{2}=0$.
- The penalty method solves problems of the form

$$
\begin{aligned}
& \min _{x, z} \bar{L}_{c}(x, z, \lambda, \mu)=f(x) \\
& \quad+\sum_{j=1}^{r}\left\{\mu_{j}\left(g_{j}(x)+z_{j}^{2}\right)+\frac{c}{2}\left|g_{j}(x)+z_{j}^{2}\right|^{2}\right\}
\end{aligned}
$$

for various values of μ and c.

- First minimize $\bar{L}_{c}(x, z, \lambda, \mu)$ with respect to z,

$$
\begin{aligned}
& L_{c}(x, \lambda, \mu)=\min _{z} \bar{L}_{c}(x, z, \lambda, \mu)=f(x) \\
& \quad+\sum_{j=1}^{r} \min _{z_{j}}\left\{\mu_{j}\left(g_{j}(x)+z_{j}^{2}\right)+\frac{c}{2}\left|g_{j}(x)+z_{j}^{2}\right|^{2}\right\}
\end{aligned}
$$

and then minimize $L_{c}(x, \lambda, \mu)$ with respect to x.

MULTIPLIER METHODS

- Recall that if $\left(x^{*}, \lambda^{*}\right)$ is a local min-Lagrange multiplier pair satisfying the 2nd order sufficiency conditions, then for c suff. large, x^{*} is a strict local min of $L_{c}\left(\cdot, \lambda^{*}\right)$.
- This suggests that for $\lambda^{k} \approx \lambda^{*}, x^{k} \approx x^{*}$.
- Hence it is a good idea to use $\lambda^{k} \approx \lambda^{*}$, such as

$$
\lambda^{k+1}=\tilde{\lambda}^{k}=\lambda^{k}+c^{k} h\left(x^{k}\right)
$$

This is the (1st order) method of multipliers.

- Key advantages to be shown:
- Less ill-conditioning: It is not necessary that $c^{k} \rightarrow \infty$ (only that c^{k} exceeds some threshold).
- Faster convergence when λ^{k} is updated than when λ^{k} is kept constant (whether $c^{k} \rightarrow \infty$ or not).

