6.252 NONLINEAR PROGRAMMING

LECTURE 6

NEWTON AND GAUSS-NEWTON METHODS

LECTURE OUTLINE

- Newton's Method
- Convergence Rate of the Pure Form
- Global Convergence
- Variants of Newton's Method
- Least Squares Problems
- The Gauss-Newton Method

NEWTON'S METHOD

$$
x^{k+1}=x^{k}-\alpha^{k}\left(\nabla^{2} f\left(x^{k}\right)\right)^{-1} \nabla f\left(x^{k}\right)
$$

assuming that the Newton direction is defined and is a direction of descent

- Pure form of Newton's method $($ stepsize $=1)$

$$
x^{k+1}=x^{k}-\left(\nabla^{2} f\left(x^{k}\right)\right)^{-1} \nabla f\left(x^{k}\right)
$$

- Very fast when it converges (how fast?)
- May not converge (or worse, it may not be defined) when started far from a nonsingular local min
- Issue: How to modify the method so that it converges globally, while maintaining the fast convergence rate

CONVERGENCE RATE OF PURE FORM

- Consider solution of nonlinear system $g(x)=0$ where $g: \Re^{n} \mapsto \Re^{n}$, with method

$$
x^{k+1}=x^{k}-\left(\nabla g\left(x^{k}\right)^{\prime}\right)^{-1} g\left(x^{k}\right)
$$

- If $g(x)=\nabla f(x)$, we get pure form of Newton
- Quick derivation: Suppose $x^{k} \rightarrow x^{*}$ with $g\left(x^{*}\right)=$ 0 and $\nabla g\left(x^{*}\right)$ is invertible. By Taylor
$0=g\left(x^{*}\right)=g\left(x^{k}\right)+\nabla g\left(x^{k}\right)^{\prime}\left(x^{*}-x^{k}\right)+o\left(\left\|x^{k}-x^{*}\right\|\right)$.
Multiply with $\left(\nabla g\left(x^{k}\right)^{\prime}\right)^{-1}$:

$$
x^{k}-x^{*}-\left(\nabla g\left(x^{k}\right)^{\prime}\right)^{-1} g\left(x^{k}\right)=o\left(\left\|x^{k}-x^{*}\right\|\right)
$$

SO

$$
x^{k+1}-x^{*}=o\left(\left\|x^{k}-x^{*}\right\|\right)
$$

implying superlinear convergence and capture.

CONVERGENCE BEHAVIOR OF PURE FORM

MODIFICATIONS FOR GLOBAL CONVERGENCE

- Use a stepsize
- Modify the Newton direction when:
- Hessian is not positive definite
- When Hessian is nearly singular (needed to improve performance)
- Use

$$
d^{k}=-\left(\nabla^{2} f\left(x^{k}\right)+\Delta^{k}\right)^{-1} \nabla f\left(x^{k}\right)
$$

whenever the Newton direction does not exist or is not a descent direction. Here Δ^{k} is a diagonal matrix such that

$$
\nabla^{2} f\left(x^{k}\right)+\Delta^{k} \geq 0
$$

- Modified Cholesky factorization
- Trust region methods

LEAST-SQUARES PROBLEMS

minimize $\quad f(x)=\frac{1}{2}\|g(x)\|^{2}=\frac{1}{2} \sum_{i=1}^{m}\left\|g_{i}(x)\right\|^{2}$
subject to $\quad x \in \Re^{n}$,
where $g=\left(g_{1}, \ldots, g_{m}\right), g_{i}: \Re^{n} \rightarrow \Re^{r_{i}}$.

- Many applications:
- Model Construction - Curve Fitting
- Neural Networks
- Pattern Classification

THE GAUSS-NEWTON METHOD

- Idea: Linearize around the current point x^{k}

$$
\tilde{g}\left(x, x^{k}\right)=g\left(x^{k}\right)+\nabla g\left(x^{k}\right)^{\prime}\left(x-x^{k}\right)
$$

and minimize the norm of the linearized function \tilde{g} :

$$
\begin{aligned}
x^{k+1} & =\arg \min _{x \in \Re^{n}} \frac{1}{2}\left\|\tilde{g}\left(x, x^{k}\right)\right\|^{2} \\
& =x^{k}-\left(\nabla g\left(x^{k}\right) \nabla g\left(x^{k}\right)^{\prime}\right)^{-1} \nabla g\left(x^{k}\right) g\left(x^{k}\right)
\end{aligned}
$$

- The direction

$$
-\left(\nabla g\left(x^{k}\right) \nabla g\left(x^{k}\right)^{\prime}\right)^{-1} \nabla g\left(x^{k}\right) g\left(x^{k}\right)
$$

is a descent direction since

$$
\begin{gathered}
\nabla g\left(x^{k}\right) g\left(x^{k}\right)=\nabla\left((1 / 2)\|g(x)\|^{2}\right) \\
\nabla g\left(x^{k}\right) \nabla g\left(x^{k}\right)^{\prime}>0
\end{gathered}
$$

MODIFICATIONS OF THE GAUSS-NEWTON

- Similar to those for Newton's method:
$x^{k+1}=x^{k}-\alpha^{k}\left(\nabla g\left(x^{k}\right) \nabla g\left(x^{k}\right)^{\prime}+\Delta^{k}\right)^{-1} \nabla g\left(x^{k}\right) g\left(x^{k}\right)$
where α^{k} is a stepsize and Δ^{k} is a diagonal matrix such that

$$
\nabla g\left(x^{k}\right) \nabla g\left(x^{k}\right)^{\prime}+\Delta^{k}>0
$$

- Incremental version of the Gauss-Newton method:
- Operate in cycles
- Start a cycle with ψ_{0} (an estimate of x)
- Update ψ using a single component of g

$$
\psi_{i}=\arg \min _{x \in \Re^{n}} \sum_{j=1}^{i}\left\|\tilde{g}_{j}\left(x, \psi_{j-1}\right)\right\|^{2}, i=1, \ldots, m
$$

where \tilde{g}_{j} are the linearized functions

$$
\tilde{g}_{j}\left(x, \psi_{j-1}\right)=g_{j}\left(\psi_{j-1}\right)+\nabla g_{j}\left(\psi_{j-1}\right)^{\prime}\left(x-\psi_{j-1}\right)
$$

MODEL CONSTRUCTION

- Given set of m input-output data pairs $\left(y_{i}, z_{i}\right)$, $i=1, \ldots, m$, from the physical system
- Hypothesize an input/output relation $z=h(x, y)$, where x is a vector of unknown parameters, and h is known
- Find x that matches best the data in the sense that it minimizes the sum of squared errors

$$
\frac{1}{2} \sum_{i=1}^{m}\left\|z_{i}-h\left(x, y_{i}\right)\right\|^{2}
$$

- Example of a linear model: Fit the data pairs by a cubic polynomial approximation. Take

$$
h(x, y)=x_{3} y^{3}+x_{2} y^{2}+x_{1} y+x_{0}
$$

where $x=\left(x_{0}, x_{1}, x_{2}, x_{3}\right)$ is the vector of unknown coefficients of the cubic polynomial.

NEURAL NETS

- Nonlinear model construction with multilayer perceptrons
- x of the vector of weights
- Universal approximation property

PATTERN CLASSIFICATION

- Objects are presented to us, and we wish to classify them in one of s categories $1, \ldots, s$, based on a vector y of their features.
- Classical maximum posterior probability approach: Assume we know
$p(j \mid y)=P($ object $\mathbf{w} /$ feature vector y is of category $j)$
Assign object with feature vector y to category

$$
j^{*}(y)=\arg \max _{j=1, \ldots, s} p(j \mid y) .
$$

- If $p(j \mid y)$ are unknown, we can estimate them using functions $h_{j}\left(x_{j}, y\right)$ parameterized by vectors x_{j}. Obtain x_{j} by minimizing
where

$$
\frac{1}{2} \sum_{i=1}^{m}\left(z_{j}^{i}-h_{j}\left(x_{j}, y_{i}\right)\right)^{2},
$$

$z_{j}^{i}=\left\{\begin{array}{l}1 \text { if } y_{i} \text { is of category } j, ~\end{array}\right.$
$z_{j}= \begin{cases}1 & \text { otherwise. }\end{cases}$

