
6.252 NONLINEAR PROGRAMMING


LECTURE 6


NEWTON AND GAUSS-NEWTON METHODS


LECTURE OUTLINE


• Newton’s Method 

• Convergence Rate of the Pure Form 

• Global Convergence 

• Variants of Newton’s Method 

• Least Squares Problems 

• The Gauss-Newton Method 
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NEWTON’S METHOD


xk+1 = xk − αk
 ∇2f(xk) 
)−1 ∇f(xk)


assuming that the Newton direction is defined and 
is a direction of descent 

• Pure form of Newton’s method (stepsize = 1) 

xk+1 = xk −

)−1 ∇2f(xk) ∇f(xk) 

− Very fast when it converges (how fast?) 

−	 May not converge (or worse, it may not be 
defined) when started far from a nonsingular 
local min 

−	 Issue: How to modify the method so that 
it converges globally, while maintaining the 
fast convergence rate 
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CONVERGENCE RATE OF PURE FORM


• Consider solution of nonlinear system g(x) = 0  
where g : �n �→ �n, with method 

)−1 
xk+1 = xk − ∇g(xk)′ g(xk) 

− If g(x) =  ∇f(x), we get pure form of Newton 

• Quick derivation: Suppose xk → x ∗ with g(x ∗) =  
0 and ∇g(x ∗) is invertible. By Taylor 

0 =  g(x ∗) =  g(xk)+∇g(xk)′(x ∗−xk)+o ‖xk−x ∗‖ . 

Multiply with ∇g(xk)′ 
)−1

: 

)−1 
xk − x ∗ − ∇g(xk)′ g(xk) =  o ‖xk − x ∗‖ , 

so 
xk+1 − x ∗ = o ‖xk − x ∗‖ , 

implying superlinear convergence and capture.




CONVERGENCE BEHAVIOR OF PURE FORM
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MODIFICATIONS FOR GLOBAL CONVERGENCE


•  Use a stepsize 

•  Modify the Newton direction when: 

−  Hessian is not positive definite 

−  When Hessian is nearly singular (needed to 
improve performance) 

•  Use 

dk = −�
)−1 ∇2f(xk ) + ∆k ∇f(xk ), 

whenever the Newton direction does not exist or 
is not a descent direction. Here ∆k is a diagonal 
matrix such that 

∇2f(xk ) + ∆k ≥  0 

−  Modified Cholesky factorization 

−  Trust region methods 
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LEAST-SQUARES PROBLEMS


minimize f(x) =  1 22 ‖g(x)‖2 = 1 

i=1


‖gi(x)‖2


subject to x ∈ �n, 

where g = (g1, . . . , gm), gi : �n → �ri . 

••Many applications: 

−  Model Construction – Curve Fitting 

−  Neural Networks 

−  Pattern Classification 
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THE GAUSS-NEWTON METHOD


•  Idea: Linearize around the current point xk 

g̃(x, xk ) =  g(xk ) +  ∇g(xk )′(x −  xk ) 

and minimize the norm of the linearized function 
g̃: 

1xk+1 = arg min 2 ‖g̃(x, xk )‖2 

x∈�n 

)−1 = xk − ∇g(xk )∇g(xk )′ ∇g(xk )g(xk ) 

•  The direction 

)−1 − ∇g(xk )∇g(xk )′ ∇g(xk )g(xk ) 

is a descent direction since 

∇g(xk )g(xk ) =  ∇  (1/2)‖g(x)‖2 

∇g(xk )∇g(xk )′ > 0
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MODIFICATIONS OF THE GAUSS-NEWTON 

•  Similar to those for Newton’s method: 

xk+1 = xk −αk

)−1 ∇g(xk )∇g(xk )′+∆k ∇g(xk )g(xk ) 

where αk is a stepsize and ∆k is a diagonal matrix 
such that 

∇g(xk )∇g(xk )′ + ∆k > 0 

•  Incremental version of the Gauss-Newton method: 

−  Operate in cycles 

−  Start a cycle with ψ0 (an estimate of x) 

−  Update ψ using a single component of g 

ψi = arg min 
x∈�n 

j=1


‖g̃ j (x, ψj−1)‖2, i = 1, . . . , m,�

where g̃ j are the linearized functions


g̃ j (x, ψj−1) = gj (ψj−1)+∇gj (ψj−1)′(x−ψj−1)
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MODEL CONSTRUCTION


•  Given set of m input-output data pairs (yi, zi), 
i = 1, . . . , m, from the physical system 

•  Hypothesize an input/output relation z = h(x, y), 
where x is a vector of unknown parameters, and 
h is known 

•  Find x that matches best the data in the sense 
that it minimizes the sum of squared errors 

1

2


i=1


‖zi −  h(x, yi)‖2


•  Example of a linear model: Fit the data pairs by 
a cubic polynomial approximation. Take 

h(x, y) =  x3y3 + x2y2 + x1y + x0, 

where x = (x0, x1, x2, x3) is the vector of unknown 
coefficients of the cubic polynomial. 



NEURAL NETS


•  Nonlinear model construction with multilayer 
perceptrons 

•  x of the vector of weights 

•  Universal approximation property 
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PATTERN CLASSIFICATION 

•  Objects are presented to us, and we wish to 
classify them in one of s categories 1, . . . , s, based 
on a vector y of their features. 

•  Classical maximum posterior probability ap-
proach: Assume we know 

p(j|y) =  P (object w/ feature vector y is of category j) 

Assign object with feature vector y to category 

j∗(y) =  arg max 
j=1,...,s 

p(j|y). 

•  If p(j|y) are unknown, we can estimate them 
using functions hj (xj , y) parameterized by vectors 
xj . Obtain xj by minimizing 

∑( )2
1 
2 zj

i −  hj (xj , yi) , 

where i=1 

zi = 
{ 

1 if yi is of category j, 
j 0 otherwise. 


