
6.252 NONLINEAR PROGRAMMING


LECTURE 18: DUALITY THEORY


LECTURE OUTLINE


• Geometrical Framework for Duality 

• Lagrange Multipliers 

• The Dual Problem 

• Properties of the Dual Function 

• Consider the problem 

minimize f (x)


subject to x ∈ X, gj (x) ≤ 0, j = 1, . . . , r,


assuming −∞ < f  ∗ < ∞. 

• We assume that the problem is feasible and the 
cost is bounded from below, 

−∞ < f 
∗ = inf 
x∈X 

gj (x)≤0, j=1,...,r 

f(x) < ∞




MIN COMMON POINT/MAX INTERCEPT POINT


• Let S be a subset of �n: 

• Min Common Point Problem: Among all points that 
are common to both S and the nth axis,find the 
one whose nth component is minimum. 

• Max Intercept Point Problem: Among all hyper-
planes that intersect the nth axis and support the 
set S from “below”, find the hyperplane for which 
point of intercept with the nth axis is maximum. 
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∗ 

GEOMETRICAL DEFINITION OF A L-MULTIPLIER 

1, . . . , µ∗) is said to be a Lagrange• A vector µ∗ = (µ∗ 
r 

multiplier for the primal problem if


µ
j ≥ 0, j = 1, . . . , r,


and

f ∗ = inf L(x, µ ∗ ). 
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H = {(z,w) | f* = w + Σ j µj zj}* 
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S = {(g(x),f(x)) | x ∈ X} S = {(g(x),f(x)) | x ∈ X} 
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Set of pairs (z,w) corresponding to x 
that minimize L(x,µ*) over X 
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EXAMPLES: A L-MULTIPLIER EXISTS
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(0,-1) 

(µ*,1) 

(0,1) 
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(-1,0) 

S = {(g(x),f(x)) | x ∈ X} 

0(-1,0) 

(µ*,1) 

(b) 

S = {(g(x),f(x)) | x ∈ X} 

0 

(µ*,1) 
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(µ*,1) 

(µ*,1) 

S = {(g(x),f(x)) | x ∈ X} 

min f(x) = x1 - x2 
s.t. g(x) = x1 + x2 - 1 ≤ 0 

x ∈ X = {(x1,x2) | x1 ≥ 0, x2 ≥ 0} 

min f(x) = (1/2) (x1
2 + x2

2) 
s.t. g(x) = x1 - 1 ≤ 0 

x ∈ X = R2 

min f(x) = |x1| + x2 
s.t. g(x) = x1 ≤ 0 

x ∈ X = {(x1,x2) | x2 ≥ 0} 



EXAMPLES: A L-MULTIPLIER DOESN’T EXIST


(0,f*) = (0,0) 

S = {(g(x),f(x)) | x ∈ X} 

min f(x) = x 

s.t. g(x) = x2 ≤ 0 
x ∈ X = R 

(a) 

(-1/2,0) 

S = {(g(x),f(x)) | x ∈ X} 

(b) 

(0,f*) = (0,0) 

(1/2,-1) 

min f(x) = - x 

s.t. 	g(x) = x - 1/2 ≤ 0 
x ∈ X = {0,1} 

• Proposition: Let µ ∗ be a Lagrange multiplier. 
Then x ∗ is a global minimum of the primal problem 
if and only if x ∗ is feasible and 

∗ ∗ ∗ ∗ x = arg min L(x, µ ), µj gj (x ) = 0, j = 1, . . . , r  
x∈X 



THE DUAL FUNCTION AND THE DUAL PROBLEM


• The dual problem is 

maximize q(µ) 

subject to µ ≥ 0, 

where q is the dual function 

q(µ) =  inf L(x, µ), ∀ µ ∈ �r . 
x∈X


• Question: How does the optimal dual value q ∗ = 

supµ≥0 q(µ) relate to f∗? 

(µ,1) 

H = {(z,w) | w + µ'z = b} 

Optimal 
Dual Value 

x ∈ X
q(µ) = inf µ) 

Support points 
correspond to minimizers 
of L(x,µ) over X 

S = {(g(x),f(x)) | x ∈ X} 

L(x,
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WEAK DUALITY


• The domain of q is 

Dq = µ | q(µ) > −∞ . 

• Proposition: The domain Dq is a convex set and 
q is concave over Dq . 

• Proposition: (Weak Duality Theorem) We have 

∗ ∗ q ≤ f .


Proof: For all µ ≥ 0, and x ∈ X with g(x) ≤ 0, we 
have 

r 

q(µ) =  inf L(z, µ) ≤ f(x) +  µj gj (x) ≤ f (x), 
z∈X 

j=1 

so 
∗ ∗ q = sup q(µ) ≤ inf f(x) =  f . 

µ≥0 x∈X, g(x)≤0 



DUAL OPTIMAL SOLUTIONS AND L-MULTIPLIERS


• Proposition: (a) If q ∗ = f ∗ , the set of Lagrange 
multipliers is equal to the set of optimal dual solu-
tions. (b) If q ∗ < f  ∗ , the set of Lagrange multipliers 
is empty. 

Proof: By definition, a vector µ ∗ ≥ 0 is a Lagrange 
multiplier if and only if f∗ = q(µ ∗) ≤ q ∗ , which by the 
weak duality theorem, holds if and only if there is 
no duality gap and µ ∗ is a dual optimal solution. 
Q.E.D. 
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- 1/2 

min f(x) = x 

s.t. 	g(x) = x2 ≤ 0 
x ∈ X = R 

q(µ) = min {x + µx2} ={- 1/(4 µ) if  µ > 0 

x ∈ R - ∞ if  µ ≤ 0 

min f(x) = - x 

s.t. 	g(x) = x - 1/2 ≤ 0 
x ∈ X = {0,1} 

q(µ) = min { - x + µ(x - 1/2)} = min{ - µ/2, µ/2 −1} 
x ∈ {0,1} 

(b) 


