6.252 NONLINEAR PROGRAMMING

LECTURE 18: DUALITY THEORY

LECTURE OUTLINE

- Geometrical Framework for Duality
- Lagrange Multipliers
- The Dual Problem
- Properties of the Dual Function
- Consider the problem

minimize f(x)subject to $x \in X$, $g_j(x) \le 0$, $j = 1, \dots, r$,

assuming $-\infty < f^* < \infty$.

• We assume that the problem is feasible and the cost is bounded from below,

$$-\infty < f^* = \inf_{\substack{x \in X \\ g_j(x) \le 0, \ j=1,\dots,r}} f(x) < \infty$$

MIN COMMON POINT/MAX INTERCEPT POINT

• Let S be a subset of \Re^n :

- *Min Common Point Problem*: Among all points that are common to both *S* and the *n*th axis,find the one whose *n*th component is minimum.
- Max Intercept Point Problem: Among all hyperplanes that intersect the nth axis and support the set S from "below", find the hyperplane for which point of intercept with the nth axis is maximum.

GEOMETRICAL DEFINITION OF A L-MULTIPLIER

• A vector $\mu^* = (\mu_1^*, \dots, \mu_r^*)$ is said to be a *Lagrange* multiplier for the primal problem if

$$\mu_j^* \ge 0, \qquad j = 1, \dots, r,$$

$$f^* = \inf_{x \in X} L(x, \mu^*).$$

EXAMPLES: A L-MULTIPLIER EXISTS

min
$$f(x) = x_1 - x_2$$

s.t. $g(x) = x_1 + x_2 - 1 \le 0$
 $x \in X = \{(x_1, x_2) \mid x_1 \ge 0, x_2 \ge 0\}$

min f(x) =
$$(1/2) (x_1^2 + x_2^2)$$

s.t. g(x) = $x_1 - 1 \le 0$
 $x \in X = \mathbb{R}^2$

0

min
$$f(x) = |x_1| + x_2$$

s.t. $g(x) = x_1 \le 0$
 $x \in X = \{(x_1, x_2) \mid x_2 \ge 0\}$

EXAMPLES: A L-MULTIPLIER DOESN'T EXIST

• Proposition: Let μ^* be a Lagrange multiplier. Then x^* is a global minimum of the primal problem if and only if x^* is feasible and

 $x^* = \arg\min_{x \in X} L(x, \mu^*), \quad \mu_j^* g_j(x^*) = 0, \quad j = 1, \dots, r$

THE DUAL FUNCTION AND THE DUAL PROBLEM

• The dual problem is

maximize $q(\mu)$ subject to $\mu \ge 0$,

where q is the dual function

$$q(\mu) = \inf_{x \in X} L(x, \mu), \qquad \forall \ \mu \in \Re^r.$$

• Question: How does the optimal dual value $q^* = \sup_{\mu \ge 0} q(\mu)$ relate to f^* ?

WEAK DUALITY

• The *domain* of *q* is

$$D_q = \Big\{ \mu \mid q(\mu) > -\infty \Big\}.$$

- Proposition: The domain D_q is a convex set and q is concave over D_q .
- Proposition: (Weak Duality Theorem) We have

 $q^* \le f^*.$

Proof: For all $\mu \ge 0$, and $x \in X$ with $g(x) \le 0$, we have

$$q(\mu) = \inf_{z \in X} L(z,\mu) \le f(x) + \sum_{j=1}^{r} \mu_j g_j(x) \le f(x),$$

SO

$$q^* = \sup_{\mu \ge 0} q(\mu) \le \inf_{x \in X, \ g(x) \le 0} f(x) = f^*.$$

DUAL OPTIMAL SOLUTIONS AND L-MULTIPLIERS

• Proposition: (a) If $q^* = f^*$, the set of Lagrange multipliers is equal to the set of optimal dual solutions. (b) If $q^* < f^*$, the set of Lagrange multipliers is empty.

Proof: By definition, a vector $\mu^* \ge 0$ is a Lagrange multiplier if and only if $f^* = q(\mu^*) \le q^*$, which by the weak duality theorem, holds if and only if there is no duality gap and μ^* is a dual optimal solution. Q.E.D.

