6.252 NONLINEAR PROGRAMMING

LECTURE 18: DUALITY THEORY

LECTURE OUTLINE

- Geometrical Framework for Duality
- Lagrange Multipliers
- The Dual Problem
- Properties of the Dual Function
- Consider the problem
minimize $f(x)$
subject to $x \in X, \quad g_{j}(x) \leq 0, \quad j=1, \ldots, r$,
assuming $-\infty<f^{*}<\infty$.
- We assume that the problem is feasible and the cost is bounded from below,

$$
-\infty<f^{*}=\inf _{\substack{x \in X \\ g_{j}(x) \leq 0, j=1, \ldots, r}} f(x)<\infty
$$

MIN COMMON POINT/MAX INTERCEPT POINT

- Let S be a subset of \Re^{n} :
- Min Common Point Problem: Among all points that are common to both S and the nth axis,find the one whose nth component is minimum.
- Max Intercept Point Problem: Among all hyperplanes that intersect the nth axis and support the set S from "below", find the hyperplane for which point of intercept with the nth axis is maximum.

GEOMETRICAL DEFINITION OF A L-MULTIPLIER

- A vector $\mu^{*}=\left(\mu_{1}^{*}, \ldots, \mu_{r}^{*}\right)$ is said to be a Lagrange multiplier for the primal problem if

$$
\mu_{j}^{*} \geq 0, \quad j=1, \ldots, r,
$$

and

$$
f^{*}=\inf _{x \in X} L\left(x, \mu^{*}\right) .
$$

Set of pairs (z, w) corresponding to x that minimize $L\left(x, \mu^{*}\right)$ over X
(a)
(b)

EXAMPLES: A L-MULTIPLIER EXISTS

$$
\begin{array}{ll}
\min & f(x)=x_{1}-x_{2} \\
\text { s.t. } & g(x)=x_{1}+x_{2}-1 \leq 0 \\
& x \in X=\left\{\left(x_{1}, x_{2}\right) \mid x_{1} \geq 0, x_{2} \geq 0\right\}
\end{array}
$$

$$
\begin{gathered}
\min f(x)=(1 / 2)\left(x_{1}^{2}+x_{2}^{2}\right) \\
\text { s.t. } g(x)=x_{1}-1 \leq 0 \\
x \in X=R^{2}
\end{gathered}
$$

$$
\begin{array}{ll}
\min & f(x)=\left|x_{1}\right|+x_{2} \\
\text { s.t. } & g(x)=x_{1} \leq 0 \\
& x \in X=\left\{\left(x_{1}, x_{2}\right) \mid x_{2} \geq 0\right\}
\end{array}
$$

EXAMPLES: A L-MULTIPLIER DOESN'T EXIST

$$
\begin{array}{ll}
\min & f(x)=x \\
\text { s.t. } g(x)=x^{2} \leq 0 \\
x \in X=R
\end{array}
$$

$\min f(x)=-x$
s.t. $g(x)=x-1 / 2 \leq 0$
$x \in X=\{0,1\}$

Proposition: Let μ^{*} be a Lagrange multiplier. Then x^{*} is a global minimum of the primal problem if and only if x^{*} is feasible and

$$
x^{*}=\arg \min _{x \in X} L\left(x, \mu^{*}\right), \quad \mu_{j}^{*} g_{j}\left(x^{*}\right)=0, \quad j=1, \ldots, r
$$

THE DUAL FUNCTION AND THE DUAL PROBLEM

- The dual problem is

$$
\begin{array}{ll}
\text { maximize } & q(\mu) \\
\text { subject to } & \mu \geq 0,
\end{array}
$$

where q is the dual function

$$
q(\mu)=\inf _{x \in X} L(x, \mu), \quad \forall \mu \in \Re^{r} .
$$

- Question: How does the optimal dual value $q^{*}=$ $\sup _{\mu \geq 0} q(\mu)$ relate to f^{*} ?

WEAK DUALITY

- The domain of q is

$$
D_{q}=\{\mu \mid q(\mu)>-\infty\} .
$$

- Proposition: The domain D_{q} is a convex set and q is concave over D_{q}.
- Proposition: (Weak Duality Theorem) We have

$$
q^{*} \leq f^{*} .
$$

Proof: For all $\mu \geq 0$, and $x \in X$ with $g(x) \leq 0$, we have

$$
q(\mu)=\inf _{z \in X} L(z, \mu) \leq f(x)+\sum_{j=1}^{r} \mu_{j} g_{j}(x) \leq f(x),
$$

SO

$$
q^{*}=\sup _{\mu \geq 0} q(\mu) \leq \inf _{x \in X, g(x) \leq 0} f(x)=f^{*} .
$$

DUAL OPTIMAL SOLUTIONS AND L-MULTIPLIERS

- Proposition: (a) If $q^{*}=f^{*}$, the set of Lagrange multipliers is equal to the set of optimal dual solutions. (b) If $q^{*}<f^{*}$, the set of Lagrange multipliers is empty.
Proof: By definition, a vector $\mu^{*} \geq 0$ is a Lagrange multiplier if and only if $f^{*}=q\left(\mu^{*}\right) \leq q^{*}$, which by the weak duality theorem, holds if and only if there is no duality gap and μ^{*} is a dual optimal solution. Q.E.D.

$$
\begin{aligned}
& \min f(x)=x \\
& \text { s.t. } g(x)=x^{2} \leq 0 \\
& x \in X=R
\end{aligned}
$$

$$
q(\mu)=\min _{x \in R}\left\{x+\mu x^{2}\right\}=\left\{\begin{array}{l}
-1 /(4 \mu) \text { if } \mu>0 \\
-\infty \text { if } \mu \leq 0
\end{array}\right.
$$

(a)

$$
\begin{aligned}
& \min f(x)=-x \\
& \text { s.t. } g(x)=x-1 / 2 \leq 0 \\
& \quad x \in X=\{0,1\} \\
& q(\mu)=\min _{x}\{-x+\mu(x-1 / 2)\}=\min \{-\mu / 2, \mu / 2-1\} \\
&
\end{aligned}
$$

(b)

