6.252 NONLINEAR PROGRAMMING

LECTURE 22: ADDITIONAL DUAL METHODS

LECTURE OUTLINE

- Cutting Plane Methods
- Decomposition

- Consider the primal problem
minimize $f(x)$
subject to $x \in X, \quad g_{j}(x) \leq 0, \quad j=1, \ldots, r$,
assuming $-\infty<f^{*}<\infty$.
- Dual problem: Maximize

$$
q(\mu)=\inf _{x \in X} L(x, \mu)=\inf _{x \in X}\left\{f(x)+\mu^{\prime} g(x)\right\}
$$

subject to $\mu \in M=\{\mu \mid \mu \geq 0, q(\mu)>-\infty\}$.

CUTTING PLANE METHOD

- k th iteration, after μ^{i} and $g^{i}=g\left(x_{\mu^{i}}\right)$ have been generated for $i=0, \ldots, k-1$: Solve

$$
\max _{\mu \in M} Q^{k}(\mu)
$$

where

$$
Q^{k}(\mu)=\min _{i=0, \ldots, k-1}\left\{q\left(\mu^{i}\right)+\left(\mu-\mu^{i}\right)^{\prime} g^{i}\right\} .
$$

Set

$$
\mu^{k}=\arg \max _{\mu \in M} Q^{k}(\mu) .
$$

POLYHEDRAL CASE

$$
q(\mu)=\min _{i \in I}\left\{a_{i}^{\prime} \mu+b_{i}\right\}
$$

where I is a finite index set, and $a_{i} \in \Re^{r}$ and b_{i} are given.

- Then subgradient g^{k} in the cutting plane method is a vector $a_{i^{k}}$ for which the minimum is attained.
- Finite termination expected.

CONVERGENCE

- Proposition: Assume that the min of Q_{k} over M is attained and that q is real-valued. Then every limit point of a sequence $\left\{\mu^{k}\right\}$ generated by the cutting plane method is a dual optimal solution.
Proof: g^{i} is a subgradient of q at μ^{i}, so

$$
\begin{align*}
q\left(\mu^{i}\right)+\left(\mu-\mu^{i}\right)^{\prime} g^{i} \geq q(\mu), & \forall \mu \in M, \\
Q^{k}\left(\mu^{k}\right) \geq Q^{k}(\mu) \geq q(\mu), & \forall \mu \in M . \tag{1}
\end{align*}
$$

- Suppose $\left\{\mu^{k}\right\}_{K}$ converges to $\bar{\mu}$. Then, $\bar{\mu} \in M$, and from (1), we obtain for all k and $i<k$,

$$
q\left(\mu^{i}\right)+\left(\mu^{k}-\mu^{i}\right)^{\prime} g^{i} \geq Q^{k}\left(\mu^{k}\right) \geq Q^{k}(\bar{\mu}) \geq q(\bar{\mu})
$$

- Take the limit as $i \rightarrow \infty, k \rightarrow \infty, i \in K, k \in K$,

$$
\lim _{k \rightarrow \infty, k \in K} Q^{k}\left(\mu^{k}\right)=q(\bar{\mu}) .
$$

Combining with (1), $q(\bar{\mu})=\max _{\mu \in M} q(\mu)$.

LAGRANGIAN RELAXATION

- Solving the dual of the separable problem
$\operatorname{minimize} \sum_{j=1}^{J} f_{j}\left(x_{j}\right)$
subject to $x_{j} \in X_{j}, \quad j=1, \ldots, J, \quad \sum_{j=1}^{J} A_{j} x_{j}=b$.
- Dual function is

$$
\begin{aligned}
q(\lambda) & =\sum_{j=1}^{J} \min _{x_{j} \in X_{j}}\left\{f_{j}\left(x_{j}\right)+\lambda^{\prime} A_{j} x_{j}\right\}-\lambda^{\prime} b \\
& =\sum_{j=1}^{J}\left\{f_{j}\left(x_{j}(\lambda)\right)+\lambda^{\prime} A_{j} x_{j}(\lambda)\right\}-\lambda^{\prime} b
\end{aligned}
$$

where $x_{j}(\lambda)$ attains the min. A subgradient at λ is

$$
g_{\lambda}=\sum_{j=1}^{J} A_{j} x_{j}(\lambda)-b .
$$

DANTSIG-WOLFE DECOMPOSITION

- D-W decomposition method is just the cutting plane applied to the dual problem $\max _{\lambda} q(\lambda)$.
- At the k th iteration, we solve the "approximate dual"

$$
\lambda^{k}=\arg \max _{\lambda \in \Re^{r}} Q^{k}(\lambda) \equiv \min _{i=0, \ldots, k-1}\left\{q\left(\lambda^{i}\right)+\left(\lambda-\lambda^{i}\right)^{\prime} g^{i}\right\} .
$$

- Equivalent linear program in v and λ
maximize v
subject to $v \leq q\left(\lambda^{i}\right)+\left(\lambda-\lambda^{i}\right)^{\prime} g^{i}, \quad i=0, \ldots, k-1$
The dual of this (called master problem) is
minimize $\sum_{i=0}^{k-1} \xi^{i}\left(q\left(\lambda^{i}\right)-\lambda^{i^{\prime}} g^{i}\right)$
subject to $\quad \sum_{i=0}^{k-1} \xi^{i}=1, \quad \sum_{i=0}^{k-1} \xi^{i} g^{i}=0$,

$$
\xi^{i} \geq 0, \quad i=0, \ldots, k-1,
$$

DANTSIG-WOLFE DECOMPOSITION (CONT.)

- The master problem is written as
$\operatorname{minimize} \sum_{j=1}^{J}\left(\sum_{i=0}^{k-1} \xi^{i} f_{j}\left(x_{j}\left(\lambda^{i}\right)\right)\right)$
subject to $\quad \sum_{i=0}^{k-1} \xi^{i}=1, \quad \sum_{j=1}^{J} A_{j}\left(\sum_{i=0}^{k-1} \xi^{i} x_{j}\left(\lambda^{i}\right)\right)=b$,

$$
\xi^{i} \geq 0, \quad i=0, \ldots, k-1 .
$$

- The primal cost function terms $f_{j}\left(x_{j}\right)$ are approximated by

$$
\sum_{i=0}^{k-1} \xi^{i} f_{j}\left(x_{j}\left(\lambda^{i}\right)\right)
$$

- Vectors x_{j} are expressed as

$$
\sum_{i=0}^{k-1} \xi^{i} x_{j}\left(\lambda^{i}\right)
$$

GEOMETRICAL INTERPRETATION

- Geometric interpretation of the master problem (the dual of the approximate dual solved in the cutting plane method) is inner linearization.

- This is a "dual" operation to the one involved in the cutting plane approximation, which can be viewed as outer linearization.

