6.252 NONLINEAR PROGRAMMING LECTURE 22: ADDITIONAL DUAL METHODS LECTURE OUTLINE

- Cutting Plane Methods
- Decomposition

• Consider the primal problem

minimize f(x)subject to $x \in X$, $g_j(x) \le 0$, $j = 1, \dots, r$,

assuming $-\infty < f^* < \infty$.

• Dual problem: Maximize

$$q(\mu) = \inf_{x \in X} L(x, \mu) = \inf_{x \in X} \{ f(x) + \mu' g(x) \}$$

subject to $\mu \in M = \{\mu \mid \mu \ge 0, q(\mu) > -\infty\}.$

CUTTING PLANE METHOD

• *k*th iteration, after μ^i and $g^i = g(x_{\mu^i})$ have been generated for i = 0, ..., k - 1: Solve

$$\max_{\mu \in M} Q^k(\mu)$$

where

$$Q^{k}(\mu) = \min_{i=0,\dots,k-1} \left\{ q(\mu^{i}) + (\mu - \mu^{i})' g^{i} \right\}.$$

Set

$$\mu^k = \arg \max_{\mu \in M} Q^k(\mu).$$

POLYHEDRAL CASE

$$q(\mu) = \min_{i \in I} \left\{ a'_i \mu + b_i \right\}$$

where *I* is a finite index set, and $a_i \in \Re^r$ and b_i are given.

- Then subgradient g^k in the cutting plane method is a vector a_{i^k} for which the minimum is attained.
- Finite termination expected.

CONVERGENCE

• Proposition: Assume that the min of Q_k over M is attained and that q is real-valued. Then every limit point of a sequence $\{\mu^k\}$ generated by the cutting plane method is a dual optimal solution.

Proof: g^i is a subgradient of q at μ^i , so

$$q(\mu^{i}) + (\mu - \mu^{i})'g^{i} \ge q(\mu), \qquad \forall \ \mu \in M,$$
$$Q^{k}(\mu^{k}) \ge Q^{k}(\mu) \ge q(\mu), \qquad \forall \ \mu \in M.$$
(1)

• Suppose $\{\mu^k\}_K$ converges to $\overline{\mu}$. Then, $\overline{\mu} \in M$, and from (1), we obtain for all k and i < k,

$$q(\mu^{i}) + (\mu^{k} - \mu^{i})'g^{i} \ge Q^{k}(\mu^{k}) \ge Q^{k}(\bar{\mu}) \ge q(\bar{\mu}).$$

• Take the limit as $i \to \infty$, $k \to \infty$, $i \in K$, $k \in K$,

$$\lim_{k \to \infty, \ k \in K} Q^k(\mu^k) = q(\bar{\mu}).$$

Combining with (1), $q(\bar{\mu}) = \max_{\mu \in M} q(\mu)$.

LAGRANGIAN RELAXATION

• Solving the dual of the separable problem

minimize
$$\sum_{j=1}^{J} f_j(x_j)$$

subject to $x_j \in X_j, \ j = 1, \dots, J, \quad \sum_{j=1}^{J} A_j x_j = b.$

Dual function is

$$q(\lambda) = \sum_{j=1}^{J} \min_{x_j \in X_j} \left\{ f_j(x_j) + \lambda' A_j x_j \right\} - \lambda' b$$
$$= \sum_{j=1}^{J} \left\{ f_j(x_j(\lambda)) + \lambda' A_j x_j(\lambda) \right\} - \lambda' b$$

where $x_j(\lambda)$ attains the min. A subgradient at λ is

$$g_{\lambda} = \sum_{j=1}^{J} A_j x_j(\lambda) - b.$$

DANTSIG-WOLFE DECOMPOSITION

- D-W decomposition method is just the cutting plane applied to the dual problem $\max_{\lambda} q(\lambda)$.
- At the *k*th iteration, we solve the "approximate dual"

$$\lambda^{k} = \arg \max_{\lambda \in \Re^{r}} Q^{k}(\lambda) \equiv \min_{i=0,\dots,k-1} \left\{ q(\lambda^{i}) + (\lambda - \lambda^{i})' g^{i} \right\}.$$

• Equivalent linear program in v and λ

maximize v

subject to $v \leq q(\lambda^i) + (\lambda - \lambda^i)'g^i$, $i = 0, \dots, k-1$

The dual of this (called *master problem*) is

$$\begin{array}{ll} \text{minimize} & \sum_{i=0}^{k-1} \xi^i \left(q(\lambda^i) - \lambda^{i'} g^i \right) \\ \text{subject to} & \sum_{i=0}^{k-1} \xi^i = 1, \qquad \sum_{i=0}^{k-1} \xi^i g^i = 0, \\ & \xi^i \ge 0, \quad i = 0, \dots, k-1, \end{array}$$

DANTSIG-WOLFE DECOMPOSITION (CONT.)

• The master problem is written as

$$\begin{array}{ll} \text{minimize} & \sum_{j=1}^{J} \left(\sum_{i=0}^{k-1} \xi^{i} f_{j} \left(x_{j}(\lambda^{i}) \right) \right) \\ \text{subject to} & \sum_{i=0}^{k-1} \xi^{i} = 1, \qquad \sum_{j=1}^{J} A_{j} \left(\sum_{i=0}^{k-1} \xi^{i} x_{j}(\lambda^{i}) \right) = b, \\ & \xi^{i} \geq 0, \quad i = 0, \dots, k-1. \end{array}$$

• The primal cost function terms $f_j(x_j)$ are approximated by

$$\sum_{i=0}^{k-1} \xi^i f_j \left(x_j(\lambda^i) \right)$$

• Vectors x_j are expressed as

$$\sum_{i=0}^{k-1} \xi^i x_j(\lambda^i)$$

GEOMETRICAL INTERPRETATION

• Geometric interpretation of the master problem (the dual of the approximate dual solved in the cutting plane method) is *inner linearization*.

• This is a "dual" operation to the one involved in the cutting plane approximation, which can be viewed as *outer linearization*.