6.252 NONLINEAR PROGRAMMING

LECTURE 5: RATE OF CONVERGENCE

LECTURE OUTLINE

- Approaches for Rate of Convergence Analysis
- The Local Analysis Method
- Quadratic Model Analysis
- The Role of the Condition Number
- Scaling
- Diagonal Scaling
- Extension to Nonquadratic Problems
- Singular and Difficult Problems

APPROACHES FOR RATE OF

CONVERGENCE ANALYSIS

- Computational complexity approach
- Informational complexity approach
- Local analysis
- Why we will focus on the local analysis method

THE LOCAL ANALYSIS APPROACH

- Restrict attention to sequences x^{k} converging to a local min x^{*}
- Measure progress in terms of an error function $e(x)$ with $e\left(x^{*}\right)=0$, such as

$$
e(x)=\left\|x-x^{*}\right\|, \quad e(x)=f(x)-f\left(x^{*}\right)
$$

- Compare the tail of the sequence $e\left(x^{k}\right)$ with the tail of standard sequences
- Geometric or linear convergence [if $e\left(x^{k}\right) \leq q \beta^{k}$ for some $q>0$ and $\beta \in[0,1)$, and for all k]. Holds if

$$
\limsup _{k \rightarrow \infty} \frac{e\left(x^{k+1}\right)}{e\left(x^{k}\right)}<\beta
$$

- Superlinear convergence $\left[\right.$ if $e\left(x^{k}\right) \leq q \cdot \beta p^{k}$ for some $q>0, p>1$ and $\beta \in[0,1)$, and for all $k]$.
- Sublinear convergence

QUADRATIC MODEL ANALYSIS

- Focus on the quadratic function $f(x)=(1 / 2) x^{\prime} Q x$, with $Q>0$.
- Analysis also applies to nonquadratic problems in the neighborhood of a nonsingular local min
- Consider steepest descent

$$
\begin{aligned}
& x^{k+1}=x^{k}-\alpha^{k} \nabla f\left(x^{k}\right)=\left(I-\alpha^{k} Q\right) x^{k} \\
& \begin{aligned}
\left\|x^{k+1}\right\|^{2} & =x^{k^{\prime}}\left(I-\alpha^{k} Q\right)^{2} x^{k} \\
& \leq\left(\max \operatorname{eig} \cdot\left(I-\alpha^{k} Q\right)^{2}\right)\left\|x^{k}\right\|^{2}
\end{aligned}
\end{aligned}
$$

The eigenvalues of $\left(I-\alpha^{k} Q\right)^{2}$ are equal to $(1-$ $\left.\alpha^{k} \lambda_{i}\right)^{2}$, where λ_{i} are the eigenvalues of Q, so
$\max \operatorname{eig}$ of $\left(I-\alpha^{k} Q\right)^{2}=\max \left\{\left(1-\alpha^{k} m\right)^{2},\left(1-\alpha^{k} M\right)^{2}\right\}$
where m, M are the smallest and largest eigenvalues of Q. Thus

$$
\frac{\left\|x^{k+1}\right\|}{\left\|x^{k}\right\|} \leq \max \left\{\left|1-\alpha^{k} m\right|,\left|1-\alpha^{k} M\right|\right\}
$$

OPTIMAL CONVERGENCE RATE

- The value of α^{k} that minimizes the bound is $\alpha^{*}=2 /(M+m)$, in which case

$$
\frac{\left\|x^{k+1}\right\|}{\left\|x^{k}\right\|} \leq \frac{M-m}{M+m}
$$

Stepsizes that
Guarantee Convergence

- Conv. rate for minimization stepsize (see text)

$$
\frac{f\left(x^{k+1}\right)}{f\left(x^{k}\right)} \leq\left(\frac{M-m}{M+m}\right)^{2}
$$

- The ratio M / m is called the condition number of Q, and problems with M / m : large are called ill-conditioned.

SCALING AND STEEPEST DESCENT

- View the more general method

$$
x^{k+1}=x^{k}-\alpha^{k} D^{k} \nabla f\left(x^{k}\right)
$$

as a scaled version of steepest descent.

- Consider a change of variables $x=S y$ with $S=\left(D^{k}\right)^{1 / 2}$. In the space of y, the problem is

$$
\begin{aligned}
& \text { minimize } h(y) \equiv f(S y) \\
& \text { subject to } y \in \Re^{n}
\end{aligned}
$$

- Apply steepest descent to this problem, multiply with S, and pass back to the space of x, using $\nabla h\left(y^{k}\right)=S \nabla f\left(x^{k}\right)$,

$$
\begin{gathered}
y^{k+1}=y^{k}-\alpha^{k} \nabla h\left(y^{k}\right) \\
S y^{k+1}=S y^{k}-\alpha^{k} S \nabla h\left(y^{k}\right) \\
x^{k+1}=x^{k}-\alpha^{k} D^{k} \nabla f\left(x^{k}\right)
\end{gathered}
$$

DIAGONAL SCALING

- Apply the results for steepest descent to the scaled iteration $y^{k+1}=y^{k}-\alpha^{k} \nabla h\left(y^{k}\right)$:

$$
\begin{gathered}
\frac{\left\|y^{k+1}\right\|}{\left\|y^{k}\right\|} \leq \max \left\{\left|1-\alpha^{k} m^{k}\right|,\left|1-\alpha^{k} M^{k}\right|\right\} \\
\frac{f\left(x^{k+1}\right)}{f\left(x^{k}\right)}=\frac{h\left(y^{k+1}\right)}{h\left(y^{k}\right)} \leq\left(\frac{M^{k}-m^{k}}{M^{k}+m^{k}}\right)^{2}
\end{gathered}
$$

where m^{k} and M^{k} are the smallest and largest eigenvalues of the Hessian of h, which is

$$
\nabla^{2} h(y)=S \nabla^{2} f(x) S=\left(D^{k}\right)^{1 / 2} Q\left(D^{k}\right)^{1 / 2}
$$

- It is desirable to choose D^{k} as close as possible to Q^{-1}. Also if D^{k} is so chosen, the stepsize $\alpha=1$ is near the optimal $2 /\left(M^{k}+m^{k}\right)$.
- Using as D^{k} a diagonal approximation to Q^{-1} is common and often very effective. Corrects for poor choice of units expressing the variables.

NONQUADRATIC PROBLEMS

- Rate of convergence to a nonsingular local minimum of a nonquadratic function is very similar to the quadratic case (linear convergence is typical).
- If $D^{k} \rightarrow\left(\nabla^{2} f\left(x^{*}\right)\right)^{-1}$, we asymptotically obtain optimal scaling and superlinear convergence
- More generally, if the direction $d^{k}=-D^{k} \nabla f\left(x^{k}\right)$ approaches asymptotically the Newton direction, i.e.,

$$
\lim _{k \rightarrow \infty} \frac{\left\|d^{k}+\left(\nabla^{2} f\left(x^{*}\right)\right)^{-1} \nabla f\left(x^{k}\right)\right\|}{\left\|\nabla f\left(x^{k}\right)\right\|}=0
$$

and the Armijo rule is used with initial stepsize equal to one, the rate of convergence is superlinear.

- Convergence rate to a singular local min is typically sublinear (in effect, condition number $=\infty$)

