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LECTURE 1

AN INTRODUCTION TO THE COURSE

LECTURE OUTLINE

• The Role of Convexity in Optimization

• Duality Theory

• Algorithms and Duality

• Course Organization
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HISTORY AND PREHISTORY

• Prehistory: Early 1900s - 1949.

− Caratheodory, Minkowski, Steinitz, Farkas.

− Properties of convex sets and functions.

• Fenchel - Rockafellar era: 1949 - mid 1980s.

− Duality theory.

− Minimax/game theory (von Neumann).

− (Sub)differentiability, optimality conditions,
sensitivity.

• Modern era - Paradigm shift: Mid 1980s - present.

− Nonsmooth analysis (a theoretical/esoteric
direction).

− Algorithms (a practical/high impact direc-
tion).

− A change in the assumptions underlying the
field.
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OPTIMIZATION PROBLEMS

• Generic form:

minimize f(x)

subject to x ⌘ C

Cost function f : �n → �, constraint set C, e.g.,

C = X ⌫
⇤
x | h1(x) = 0
⇤

, . . . , hm(x) = 0

⌫ x | g1(x) ⌥ 0, . . . , gr(x) ⌥ 0

⌅

• Continuous vs discrete problem distinction

⌅

• Convex programming problems are those for
which f and C are convex

− They are continuous problems

− They are nice, and have beautiful and intu-
itive structure

• However, convexity permeates all of optimiza-
tion, including discrete problems

• Principal vehicle for continuous-discrete con-
nection is duality:

− The dual problem of a discrete problem is
continuous/convex

− The dual problem provides important infor-
mation for the solution of the discrete primal
(e.g., lower bounds, etc)

◆
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WHY IS CONVEXITY SO SPECIAL?

• A convex function has no local minima that are
not global

• A nonconvex function can be “convexified” while
maintaining the optimality of its global minima

• A convex set has a nonempty relative interior

• A convex set is connected and has feasible di-
rections at any point

• The existence of a global minimum of a convex
function over a convex set is conveniently charac-
terized in terms of directions of recession

• A polyhedral convex set is characterized in
terms of a finite set of extreme points and extreme
directions

• A real-valued convex function is continuous and
has nice differentiability properties

• Closed convex cones are self-dual with respect
to polarity

• Convex, lower semicontinuous functions are self-
dual with respect to conjugacy
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DUALITY

• Two different views of the same object.

• Example: Dual description of signals.

Time domain Frequency domain

• Dual description of closed convex sets

A union of points An intersection of halfspaces
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DUAL DESCRIPTION OF CONVEX FUNCTIONS

• Define a closed convex function by its epigraph.

• Describe the epigraph by hyperplanes.

• Associate hyperplanes with crossing points (the
conjugate function).

x

Slope = y

0

(y, 1)

f(x)

inf
x⇤⌅n

{f(x)  x⇥y} = f(y)

Primal Description Dual Description

Values f(x) Crossing points f∗(y)
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FENCHEL PRIMAL AND DUAL PROBLEMS

x x

f1(x)

f2(x)

Slope yf
1 (y)

f
2 (y)

f
1 (y) + f

2 (y)

Primal Problem Description Dual Problem Description
Vertical Distances Crossing Point Dierentials

• Primal problem:

min
x

⇤
f1(x) + f2(x)

⌅

• Dual problem:

max
y

⇤
− f1

⇤(y)− f2
⇤(−y)

where f

⌅

1
⇤ and f2

⇤ are the conjugates
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FENCHEL DUALITY

x x

f1(x)

f2(x)

f
1 (y)

f
2 (y)

f
1 (y) + f

2 (y)

Slope y

Slope y

min
x

�
f1(x) + f2(x)

⇥
= max

y

�
 f

1 (y)  f
2 (y)

⇥

• Under favorable conditions (convexity):

− The optimal primal and dual values are equal

− The optimal primal and dual solutions are
related
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A MORE ABSTRACT VIEW OF DUALITY

• Despite its elegance, the Fenchel framework is
somewhat indirect.

• From duality of set descriptions, to

− duality of functional descriptions, to

− duality of problem descriptions.

• A more direct approach:

− Start with a set, then

− Define two simple prototype problems dual
to each other.

• Avoid functional descriptions (a simpler, less
constrained framework).
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MIN COMMON/MAX CROSSING DUALITY
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• All of duality theory and all of (convex/concave)
minimax theory can be developed/explained in
terms of this one figure.

• The machinery of convex analysis is needed to
flesh out this figure, and to rule out the excep-
tional/pathological behavior shown in (c).
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ABSTRACT/GENERAL DUALITY ANALYSIS

Minimax Duality Constrained Optimization
Duality

Min-Common/Max-Crossing
Theorems

Theorems of the
Alternative etc( MinMax = MaxMin )

Abstract Geometric Framework

Special choices
of M

(Set M)
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EXCEPTIONAL BEHAVIOR

• If convex structure is so favorable, what is the
source of exceptional/pathological behavior?

• Answer: Some common operations on convex
sets do not preserve some basic properties.

• Example: A linearly transformed closed con-
vex set need not be closed (contrary to compact
and polyhedral sets).

− Also the vector sum of two closed convex sets
need not be closed.

x1

x2

C1 =
�
(x1, x2) | x1 > 0, x2 > 0, x1x2  1

⇥

C2 =
�
(x1, x2) | x1 = 0

⇥

• This is a major reason for the analytical di⌅cul-
ties in convex analysis and pathological behavior
in convex optimization (and the favorable charac-
ter of polyhedral sets). 13



MODERN VIEW OF CONVEX OPTIMIZATION

• Traditional view: Pre 1990s

− LPs are solved by simplex method

− NLPs are solved by gradient/Newton meth-
ods

− Convex programs are special cases of NLPs

LP CONVEX NLP

Duality Gradient/NewtonSimplex

• Modern view: Post 1990s

− LPs are often solved by nonsimplex/convex
methods

− Convex problems are often solved by the same
methods as LPs

− “Key distinction is not Linear-Nonlinear but
Convex-Nonconvex” (Rockafellar)

LP CONVEX NLP

Simplex
Gradient/NewtonDuality

Cutting plane
Interior point
Subgradient
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THE RISE OF THE ALGORITHMIC ERA

• Convex programs and LPs connect around

− Duality

− Large-scale piecewise linear problems

• Synergy of:

− Duality

− Algorithms

− Applications

• New problem paradigms with rich applications

• Duality-based decomposition

− Large-scale resource allocation

− Lagrangian relaxation, discrete optimization

− Stochastic programming

• Conic programming

− Robust optimization

− Semidefinite programming

• Machine learning

− Support vector machines

− l1 regularization/Robust regression/Compressed
sensing
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METHODOLOGICAL TRENDS

• New methods, renewed interest in old methods.

− Interior point methods

− Subgradient/incremental methods

− Polyhedral approximation/cutting plane meth-
ods

− Regularization/proximal methods

− Incremental methods

• Renewed emphasis on complexity analysis

− Nesterov, Nemirovski, and others ...

− “Optimal algorithms” (e.g., extrapolated gra-
dient methods)

• Emphasis on interesting (often duality-related)
large-scale special structures
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COURSE OUTLINE

• We will follow closely the textbook

− Bertsekas, “Convex Optimization Theory,”
Athena Scientific, 2009, including the on-line
Chapter 6 and supplementary material at
http://www.athenasc.com/convexduality.html

• Additional book references:

− Rockafellar, “Convex Analysis,” 1970.

− Boyd and Vanderbergue, “Convex Optimiza-
tion,” Cambridge U. Press, 2004. (On-line at
http://www.stanford.edu/~boyd/cvxbook/) 

− Bertsekas, Nedic, and Ozdaglar, “Convex Anal-
ysis and Optimization,” Ath. Scientific, 2003.

• Topics (the text’s design is modular, and the
following sequence involves no loss of continuity):

− Basic Convexity Concepts: Sect. 1.1-1.4.

− Convexity and Optimization: Ch. 3.

− Hyperplanes & Conjugacy: Sect. 1.5, 1.6.

− Polyhedral Convexity: Ch. 2.

− Geometric Duality Framework: Ch. 4.

− Duality Theory: Sect. 5.1-5.3.

− Subgradients: Sect. 5.4.

Algorithms: Ch. 6.−
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WHAT TO EXPECT FROM THIS COURSE

• Requirements: Homework (25%), midterm (25%),
and a term paper (50%)

• We aim:

− To develop insight and deep understanding
of a fundamental optimization topic

− To treat with mathematical rigor an impor-
tant branch of methodological research, and
to provide an account of the state of the art
in the field

− To get an understanding of the merits, limi-
tations, and characteristics of the rich set of
available algorithms

• Mathematical level:

− Prerequisites are linear algebra (preferably
abstract) and real analysis (a course in each)

− Proofs will matter ... but the rich geometry
of the subject helps guide the mathematics

• Applications:

− They are many and pervasive ... but don’t
expect much in this course. The book by
Boyd and Vandenberghe describes a lot of
practical convex optimization models

− You can do your term paper on an applica-
tion area
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A NOTE ON THESE SLIDES

• These slides are a teaching aid, not a text

• Don’t expect a rigorous mathematical develop-
ment

• The statements of theorems are fairly precise,
but the proofs are not

• Many proofs have been omitted or greatly ab-
breviated

• Figures are meant to convey and enhance un-
derstanding of ideas, not to express them precisely

• The omitted proofs and a fuller discussion can
be found in the “Convex Optimization Theory”
textbook and its supplementary material
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