LECTURE 2

LECTURE OUTLINE

- Convex sets and functions
- Epigraphs
- Closed convex functions
- Recognizing convex functions

Reading: Section 1.1

SOME MATH CONVENTIONS

- All of our work is done in \Re^n : space of *n*-tuples $x = (x_1, \ldots, x_n)$
- All vectors are assumed column vectors
- "'" denotes transpose, so we use x' to denote a row vector

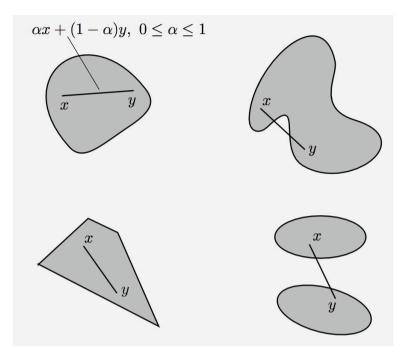
• x'y is the inner product $\sum_{i=1}^{n} x_i y_i$ of vectors x and y

• $||x|| = \sqrt{x'x}$ is the (Euclidean) norm of x. We use this norm almost exclusively

• See the textbook for an overview of the linear algebra and real analysis background that we will use. Particularly the following:

- Definition of sup and inf of a set of real numbers
- Convergence of sequences (definitions of lim inf, lim sup of a sequence of real numbers, and definition of lim of a sequence of vectors)
- Open, closed, and compact sets and their properties
- Definition and properties of differentiation

CONVEX SETS



• A subset C of \Re^n is called *convex* if

 $\alpha x + (1 - \alpha)y \in C, \qquad \forall \ x, y \in C, \ \forall \ \alpha \in [0, 1]$

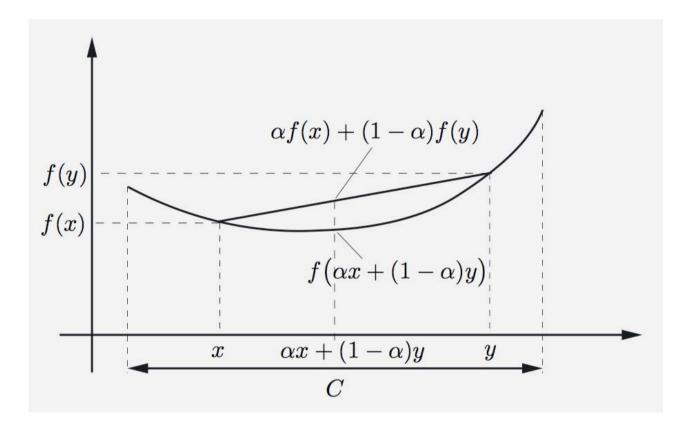
- Operations that preserve convexity
 - Intersection, scalar multiplication, vector sum, closure, interior, linear transformations
- Special convex sets:
 - Polyhedral sets: Nonempty sets of the form

$$\{x \mid a'_j x \le b_j, \ j = 1, \dots, r\}$$

(always convex, closed, not always bounded)

- Cones: Sets C such that $\lambda x \in C$ for all $\lambda > 0$ and $x \in C$ (not always convex or closed)

CONVEX FUNCTIONS



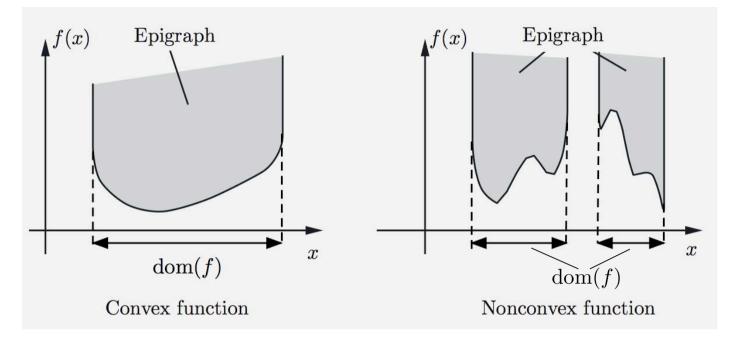
• Let C be a convex subset of \Re^n . A function $f: C \mapsto \Re$ is called *convex* if for all $\alpha \in [0, 1]$

$$f(\alpha x + (1 - \alpha)y) \le \alpha f(x) + (1 - \alpha)f(y), \quad \forall x, y \in C$$

If the inequality is strict whenever $a \in (0, 1)$ and $x \neq y$, then f is called *strictly convex* over C.

• If f is a convex function, then all its level sets $\{x \in C \mid f(x) \leq \gamma\}$ and $\{x \in C \mid f(x) < \gamma\}$, where γ is a scalar, are convex.

EXTENDED REAL-VALUED FUNCTIONS



• The *epigraph* of a function $f: X \mapsto [-\infty, \infty]$ is the subset of \Re^{n+1} given by

 $\operatorname{epi}(f) = \left\{ (x, w) \mid x \in X, \, w \in \Re, \, f(x) \le w \right\}$

• The *effective domain* of f is the set

$$\operatorname{dom}(f) = \left\{ x \in X \mid f(x) < \infty \right\}$$

• We say that f is *convex* if epi(f) is a convex set. If $f(x) \in \Re$ for all $x \in X$ and X is convex, the definition "coincides" with the earlier one.

• We say that f is *closed* if epi(f) is a closed set.

• We say that f is *lower semicontinuous* at a vector $x \in X$ if $f(x) \leq \liminf_{k \to \infty} f(x_k)$ for every sequence $\{x_k\} \subset X$ with $x_k \to x$.

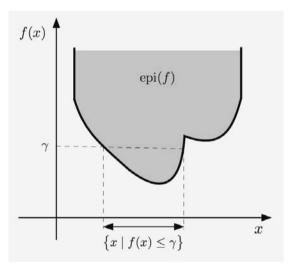
CLOSEDNESS AND SEMICONTINUITY I

• Proposition: For a function $f : \Re^n \mapsto [-\infty, \infty]$, the following are equivalent:

(i) $V_{\gamma} = \{x \mid f(x) \leq \gamma\}$ is closed for all $\gamma \in \Re$.

(ii) f is lower semicontinuous at all $x \in \Re^n$.

(iii) f is closed.



• (ii) \Rightarrow (iii): Let $\{(x_k, w_k)\} \subset \operatorname{epi}(f)$ with $(x_k, w_k) \rightarrow (\overline{x}, \overline{w})$. Then $f(x_k) \leq w_k$, and

 $f(\overline{x}) \le \liminf_{k \to \infty} f(x_k) \le \overline{w} \quad \text{so } (\overline{x}, \overline{w}) \in \operatorname{epi}(f)$

• (iii) \Rightarrow (i): Let $\{x_k\} \subset V_{\gamma}$ and $x_k \to \overline{x}$. Then $(x_k, \gamma) \in \operatorname{epi}(f)$ and $(x_k, \gamma) \to (\overline{x}, \gamma)$, so $(\overline{x}, \gamma) \in \operatorname{epi}(f)$, and $\overline{x} \in V_{\gamma}$.

• (i) \Rightarrow (ii): If $x_k \to \overline{x}$ and $f(\overline{x}) > \gamma > \liminf_{k \to \infty} f(x_k)$ consider subsequence $\{x_k\}_{\mathcal{K}} \to \overline{x}$ with $f(x_k) \leq \gamma$ - contradicts closedness of V_{γ} .

CLOSEDNESS AND SEMICONTINUITY II

- Lower semicontinuity of a function is a "domain-specific" property, but closeness is not:
 - If we change the domain of the function without changing its epigraph, its lower semicontinuity properties may be affected.
 - **Example:** Define $f: (0,1) \to [-\infty,\infty]$ and $\hat{f}: [0,1] \to [-\infty,\infty]$ by

 $f(x) = 0, \qquad \forall \ x \in (0, 1),$

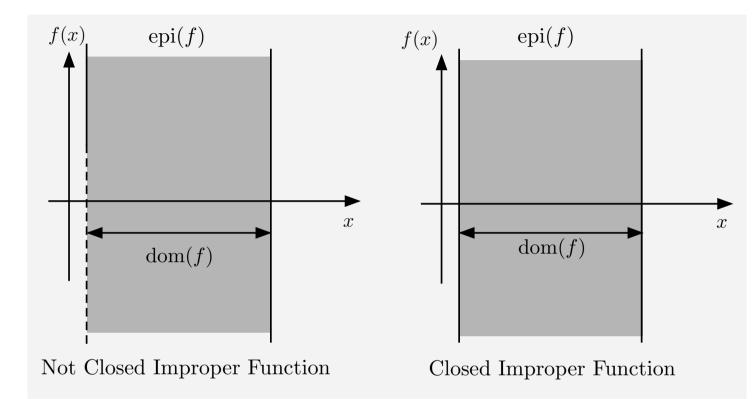
$$\hat{f}(x) = \begin{cases} 0 & \text{if } x \in (0,1), \\ \infty & \text{if } x = 0 \text{ or } x = 1. \end{cases}$$

Then f and \hat{f} have the same epigraph, and both are not closed. But f is lower-semicontinuous while \hat{f} is not.

- Note that:
 - If f is lower semicontinuous at all $x \in \text{dom}(f)$, it is not necessarily closed
 - If f is closed, dom(f) is not necessarily closed

• Proposition: Let $f: X \mapsto [-\infty, \infty]$ be a function. If dom(f) is closed and f is lower semicontinuous at all $x \in \text{dom}(f)$, then f is closed.

PROPER AND IMPROPER CONVEX FUNCTION



• We say that f is proper if $f(x) < \infty$ for at least one $x \in X$ and $f(x) > -\infty$ for all $x \in X$, and we will call f *improper* if it is not proper.

• Note that f is proper if and only if its epigraph is nonempty and does not contain a "vertical line."

• An improper *closed* convex function is very peculiar: it takes an infinite value (∞ or $-\infty$) at every point.

RECOGNIZING CONVEX FUNCTIONS

• Some important classes of elementary convex functions: Affine functions, positive semidefinite quadratic functions, norm functions, etc.

• Proposition: (a) The function $g: \Re^n \mapsto (-\infty, \infty]$ given by

$$g(x) = \lambda_1 f_1(x) + \dots + \lambda_m f_m(x), \qquad \lambda_i > 0$$

is convex (or closed) if f_1, \ldots, f_m are convex (respectively, closed).

(b) The function $g: \Re^n \mapsto (-\infty, \infty]$ given by

$$g(x) = f(Ax)$$

where A is an $m \times n$ matrix is convex (or closed) if f is convex (respectively, closed).

(c) Consider $f_i : \Re^n \mapsto (-\infty, \infty], i \in I$, where I is any index set. The function $g : \Re^n \mapsto (-\infty, \infty]$ given by

$$g(x) = \sup_{i \in I} f_i(x)$$

is convex (or closed) if the f_i are convex (respectively, closed).

6.253 Convex Analysis and Optimization Spring 2012

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.