LECTURE 2

LECTURE OUTLINE

- Convex sets and functions
- Epigraphs
- Closed convex functions
- Recognizing convex functions

Reading: Section 1.1

SOME MATH CONVENTIONS

- All of our work is done in \Re^{n} : space of n-tuples $x=\left(x_{1}, \ldots, x_{n}\right)$
- All vectors are assumed column vectors
- "'" denotes transpose, so we use x^{\prime} to denote a row vector
- $x^{\prime} y$ is the inner product $\sum_{i=1}^{n} x_{i} y_{i}$ of vectors x and y
- $\|x\|=\sqrt{x^{\prime} x}$ is the (Euclidean) norm of x. We use this norm almost exclusively
- See the textbook for an overview of the linear algebra and real analysis background that we will use. Particularly the following:
- Definition of sup and inf of a set of real numbers
- Convergence of sequences (definitions of lim inf, limsup of a sequence of real numbers, and definition of lim of a sequence of vectors)
- Open, closed, and compact sets and their properties
- Definition and properties of differentiation

CONVEX SETS

- A subset C of \Re^{n} is called convex if

$$
\alpha x+(1-\alpha) y \in C, \quad \forall x, y \in C, \forall \alpha \in[0,1]
$$

- Operations that preserve convexity
- Intersection, scalar multiplication, vector sum, closure, interior, linear transformations
- Special convex sets:
- Polyhedral sets: Nonempty sets of the form

$$
\left\{x \mid a_{j}^{\prime} x \leq b_{j}, j=1, \ldots, r\right\}
$$

(always convex, closed, not always bounded)

- Cones: Sets C such that $\lambda x \in C$ for all $\lambda>0$ and $x \in C$ (not always convex or closed)

CONVEX FUNCTIONS

- Let C be a convex subset of \Re^{n}. A function $f: C \mapsto \Re$ is called convex if for all $\alpha \in[0,1]$
$f(\alpha x+(1-\alpha) y) \leq \alpha f(x)+(1-\alpha) f(y), \quad \forall x, y \in C$
If the inequality is strict whenever $a \in(0,1)$ and $x \neq y$, then f is called strictly convex over C.
- If f is a convex function, then all its level sets $\{x \in C \mid f(x) \leq \gamma\}$ and $\{x \in C \mid f(x)<\gamma\}$, where γ is a scalar, are convex.

EXTENDED REAL-VALUED FUNCTIONS

Convex function

Nonconvex function

- The epigraph of a function $f: X \mapsto[-\infty, \infty]$ is the subset of \Re^{n+1} given by

$$
\operatorname{epi}(f)=\{(x, w) \mid x \in X, w \in \Re, f(x) \leq w\}
$$

- The effective domain of f is the set

$$
\operatorname{dom}(f)=\{x \in X \mid f(x)<\infty\}
$$

- We say that f is convex if $\operatorname{epi}(f)$ is a convex set. If $f(x) \in \Re$ for all $x \in X$ and X is convex, the definition "coincides" with the earlier one.
- We say that f is closed if $\operatorname{epi}(f)$ is a closed set.
- We say that f is lower semicontinuous at a vector $x \in X$ if $f(x) \leq \liminf _{k \rightarrow \infty} f\left(x_{k}\right)$ for every sequence $\left\{x_{k}\right\} \subset X$ with $x_{k} \rightarrow x$.

CLOSEDNESS AND SEMICONTINUITY I

- Proposition: For a function f : $\Re^{n} \mapsto[-\infty, \infty]$, the following are equivalent:
(i) $V_{\gamma}=\{x \mid f(x) \leq \gamma\}$ is closed for all $\gamma \in \Re$.
(ii) f is lower semicontinuous at all $x \in \Re^{n}$.
(iii) f is closed.

- (ii) \Rightarrow (iii): Let $\left\{\left(x_{k}, w_{k}\right)\right\} \subset \operatorname{epi}(f)$ with $\left(x_{k}, w_{k}\right) \rightarrow(\bar{x}, \bar{w})$. Then $f\left(x_{k}\right) \leq w_{k}$, and

$$
f(\bar{x}) \leq \liminf _{k \rightarrow \infty} f\left(x_{k}\right) \leq \bar{w} \quad \text { so }(\bar{x}, \bar{w}) \in \operatorname{epi}(f)
$$

- (iii) \Rightarrow (i): Let $\left\{x_{k}\right\} \subset V_{\gamma}$ and $x_{k} \rightarrow \bar{x}$. Then $\left(x_{k}, \gamma\right) \in \operatorname{epi}(f)$ and $\left(x_{k}, \gamma\right) \rightarrow(\bar{x}, \gamma)$, so $(\bar{x}, \gamma) \in$ epi (f), and $\bar{x} \in V_{\gamma}$.
- (i) \Rightarrow (ii): If $x_{k} \rightarrow \bar{x}$ and $f(\bar{x})>\gamma>\liminf _{k \rightarrow \infty} f\left(x_{k}\right.$ consider subsequence $\left\{x_{k}\right\}_{\mathcal{K}} \rightarrow \bar{x}$ with $f\left(x_{k}\right) \leq \gamma$
- contradicts closedness of V_{γ}.

CLOSEDNESS AND SEMICONTINUITY II

- Lower semicontinuity of a function is a "domainspecific" property, but closeness is not:
- If we change the domain of the function without changing its epigraph, its lower semicontinuity properties may be affected.
- Example: Define $f:(0,1) \rightarrow[-\infty, \infty]$ and $\hat{f}:[0,1] \rightarrow[-\infty, \infty]$ by

$$
\begin{gathered}
f(x)=0, \quad \forall x \in(0,1) \\
\hat{f}(x)= \begin{cases}0 & \text { if } x \in(0,1) \\
\infty & \text { if } x=0 \text { or } x=1\end{cases}
\end{gathered}
$$

Then f and \hat{f} have the same epigraph, and both are not closed. But f is lower-semicontinuous while \hat{f} is not.

- Note that:
- If f is lower semicontinuous at all $x \in \operatorname{dom}(f)$, it is not necessarily closed
- If f is closed, $\operatorname{dom}(f)$ is not necessarily closed
- Proposition: Let $f: X \mapsto[-\infty, \infty]$ be a function. If $\operatorname{dom}(f)$ is closed and f is lower semicontinuous at all $x \in \operatorname{dom}(f)$, then f is closed.

PROPER AND IMPROPER CONVEX FUNCTION

Not Closed Improper Function

Closed Improper Function

- We say that f is proper if $f(x)<\infty$ for at least one $x \in X$ and $f(x)>-\infty$ for all $x \in X$, and we will call f improper if it is not proper.
- Note that f is proper if and only if its epigraph is nonempty and does not contain a "vertical line."
- An improper closed convex function is very peculiar: it takes an infinite value $(\infty$ or $-\infty)$ at every point.

RECOGNIZING CONVEX FUNCTIONS

- Some important classes of elementary convex functions: Affine functions, positive semidefinite quadratic functions, norm functions, etc.
- Proposition: (a) The function $g: \Re^{n} \mapsto(-\infty, \infty]$ given by

$$
g(x)=\lambda_{1} f_{1}(x)+\cdots+\lambda_{m} f_{m}(x), \quad \lambda_{i}>0
$$

is convex (or closed) if f_{1}, \ldots, f_{m} are convex (respectively, closed).
(b) The function $g: \Re^{n} \mapsto(-\infty, \infty]$ given by

$$
g(x)=f(A x)
$$

where A is an $m \times n$ matrix is convex (or closed) if f is convex (respectively, closed).
(c) Consider $f_{i}: \Re^{n} \mapsto(-\infty, \infty], i \in I$, where I is any index set. The function $g: \Re^{n} \mapsto(-\infty, \infty]$ given by

$$
g(x)=\sup _{i \in I} f_{i}(x)
$$

is convex (or closed) if the f_{i} are convex (respectively, closed).

MIT OpenCourseWare
http://ocw.mit.edu

6.253 Convex Analysis and Optimization

Spring 2012

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

