
1 

MASSACHUSETTS INSTITUTE OF TECHNOLOGY 
Department of Electrical Engineering and Computer Science 

6.262 Discrete Stochastic Processes 
Midterm Exam - Solutions 

April 7, 2009 

Problem 1 

1a) (i) Recall that two states i and j in a Markov chain communicate if each is accessible 
from the other, i.e., if there is a walk from each to the other. Since all transitions move 
from left to right, each state is accessible only from those to the left, and therefore no state 
communicates with any other state. Thus each state is in a class by itself. 

States 0 to 5 (and thus the classes {0}, . . . , {5} are each transient since each is inaccessible 
from an accessible state (i.e., there is a path away from each from which there is no return). 
State 6 is recurrent. States 1 and 6 (and thus class {1} and {6}) are each aperiodic since 
P 1 

00 = 0 and 6 P 1 6= 0. The periods of classes {1} to {5} are undefined, but no points were 66 
taken o↵ if some other answer was given for these periods. 

1a) (ii) Each state on the circle on the left communicates with all other states on the 
left and similarly for the circle on the right. Since there is a transition from left to right, 
and also from right to left, the entire set of states communicate, so there is single class 
containing all states. Note that there is a cycle of length 6 starting in state 0 and passing 
through state 1, and there is a cycle of length 8 from 0 going around the left circle. The 
greatest common divisor of 6 and 8 is 2. Thus, the chain is either periodic with period 2 or 
aperiodic. The easiest way to see that the period is 2, i.e., all cycles have even length, is to 
renumber the states, going from 0 to 7 in order on the left, and 8 to 15 on the right, with 
even states going only to odd and odd going only to even. Thus the chain must be periodic 
with period 2. 

1a) (iii) The entire set of states communicate by virtually the same argument as in 1a 
ii. State 0 has a cycle of length 2 through state 1 and of length 7 via the left circle. The 
greatest common divisor of 2 and 7 is 1, so state 1 has period 1. The chain is then aperiodic 
since all states in a class have the same period. 

1b) It may be helpful to review Exercise 3.25 before reading this solution. We first show 
that the intervals (in number of coin-flips) between successive occurrences of HHTHTHTT 
are IID. To see this, let Y1, Y2, . . . be the sequence of heads and tails and let X1,X2, . . . be 
the intervals between successive occurrences of the string HHTHTHTT (viewing the time 
of occurrence of a string as the time of the final coin flip in the string). 

For any given sample values X1 = x1, . . . ,Xi-1 = xi-1, we see that Xi is the interval from 
x1 +· · · xi-1 until the next occurrence of HHTHTHTT. This interval must be at least 8 since 
the string does not overlap with any delayed replica of itself (i.e., no prefix of the string is 
the same as the corresponding sufx of the same length). This interval depends only on the 
coin-toss sequence {Yn; n > x1 + · · · xn-1} and this sequence has the same probabilitistic 
description as the original sequence for all choices of x1, . . . , xn-1. Thus Xi is independent 
of X1, . . . ,Xi-1, and this is true for all i > 1, making Xi; i 2 1} a renewal process. 
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As in Exercise 3.25, this result depends on the no prefix property of HHTHTHTT, i.e., the 
property that no prefix is the same as the sufx of the same length. For strings without the 
prefix property, Xi; i 2 1} is a delayed renewal process. 

For this renewal process, a renewal occurs at toss n, for n 2 8, if the string HHTHTHTT 
occurs from n - 7 to n. This event has probability 2-8 . Letting m(t) = E [N(t)] be the 
expected number of renewals up to time t, we see that m(t) = (t-7)2-8. By the elementary 
renewal theorem, then, the expected length of an interrenewal period is E [X] = 28 . 

1c) The simple way to do this is to view N1(t) and N2(t) as a splitting of a Poisson process 
of rate s + f . Then each arrival to the combined process is directed to process 1 with 
probability f/(f + s) and to process 2 with probability s/(f + s). These Bernoulli choices 
are independent of the interarrival times. Thus, interarrival interval Zn is independent of 
which split process that arrival goes to, and Zn has density fZn (z) = (f + s) exp(-(f + s)t). 

This result might seem counterintuitive, since one might think that an arrival that is split to 
the slow process takes longer to arrive. If one visualizes a sequence of combined arrivals, with 
most going to the fast process and an occasional one to the slow process, and remembers 
that the combinded process is Poisson, then the result here seems more intuitive. 



    
              
                  

               
      

                
                 
                 

               
               
               

          

    

    

 

    

    

       

                 
               
           

            

             
                    
               

     


     


       


      



  

        

               
            


  


    


        

 

Question 2 (36 pts) 
The following solution concerns the reading of the problem suggested during the exam, namely 
that as soon as Alice becomes free, Bob transfers his customer to her, and goes back to drinking 
coffee. However, regardless of the interpretation, the system (in terms of the arrival and departure 
processes) corresponds to an M/M/2 queue. 

a Let each state {0, 1, 2, . . .} denote the total number of customers in the store, either talking 
to Bob or Alice or waiting in line. Choosing δ sufficiently small, the probability of having two 
or more customer arrivals (or two or more departures or an arrival and a departure, etc.) in 
a period of length δ vanishes. The probability of observing a customer arrival becomes λδ, 
that of observing a customer departure when both Bob and Alice are working becomes 2μδ 
and that of observing a customer departure when Alice alone is working becomes λδ. The 
sampled-time Markov chain description of the system is the following. 

0 1 2 3 

Ȝį Ȝį Ȝį Ȝį 

… 

1- Ȝį 1- (Ȝ+μ)į 1- (Ȝ+2μ)į 1- (Ȝ+2μ)į 

μį 2μį 2μį 2μį 

Note that this is a birth-death chain. 

b All states communicate, therefore the chain is composed of a single class. There is at least 
one self-loop, which implies that the corresponding state has period 1, which in turn implies 
that the rest of the class (and therefore chain) is aperiodic. 

There are several ways to show that the chain is positive recurrent. 

Solution 1 We compute the steady-state probabilities π0, π1, . . .. It then suffices to show 
that πi > 0 for each i = 0, 1, . . ., or, alternatively, show that πi > 0 for some i = 0, 1, . . .  and 
note that if one state is positive recurrent, the containing class will be as well. 

The steady-state equations are given by:
 

π0 = (1  − λδ)π0 + μδπ1
 

π1 = λδπ0 + (1  − (λ + μ)δ)π1 + 2μδπ2
 

π2 = λδπ1 + (1  − (λ + 2μ)δ)π1 + 2μδπ3
 

.
 . . 
1 =  π1 + π2 + π3 + . . . .  

Alternatively, a reduced set of equations is obtained noting that in steady state, the fraction 
of incoming transitions to a state equals that of outgoing transitions, and thus:
 

π0λδ = π1μδ
 

πiλδ = 2πi+1μδ, for i ≥ 1
 

1 =  π1 + π2 + π3 + . . . .  
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(Note that the above steady-state equations for a birth-death chain are derived as Eqn. 5.27
 
in the notes.)
 

The two systems of equations are equivalent and either will yield:
 

 i−1 
1 

 
λ 
 i 

πi = π0, i ≥ 1
2 μ 

and therefore
1 2μ − λ 

π0 = ( )i = > 0. ∞ λ 2μ + λ1 +  (1/2)i−1 
i=1 μ 

Solution 2 Though the steady-state probabilities will become useful later in the problem, a 
way to show positive recurrence bypassing the above calculation is the following. Let Xn = 1  
and suppose that the process leaves state 1 at time k > n. It suffices to show that the process 
eventually returns to state 1 with probability 1. It will follow that state 1 is positive recurrent, 
from which it will follow that all the states in the containing class, and therefore the entire 
chain, are positive recurrent. 

First note that starting from state 1, the next state must be either 0 or 2. Because the chain 
is birth/death, the chain cannot get from 0 to states larger than 1 without returning to 1, 
and cannot get from states larger than 1 to 0 without returning to 1. Thus, for questions of 
recurrence, one can analyze whether the chain is recurrent by separately asking whether the 
chain with only states 0 and 1 is recurrent and whether the chain with states 1 and greater 
is recurrent. 

Assuming that the process process leaves state 1 at time k > n and conditioned on Xk = 0,  
the process returns to state 1 eventually w.p.1, as truncating the chain at state 1 yields a 
finite Markov chain with a single recurrent class. Now condition on Xk = 2 and consider the 
following chain: 

0 1 2 3 

Ȝį Ȝį Ȝį Ȝį 

… 

1- Ȝį 1- (Ȝ+μ)į 1- (Ȝ+2μ)į 1- (Ȝ+2μ)į 

μį 2μį 2μį 2μį 

Note that the modification does not affect the probability of eventually returning to state 1 
after entering state 2. However, the above is a birth-death chain has a transition probability 
p = λδ of moving forward and transition probability q = 2μδ of moving backward for all 
transitions. Since 2μ > λ, the chain is positive recurrent and the process returns to state 1 
eventually w.p.1. It follows that state 1 is positive recurrent. 

2
 



                  
       

             
                

                
                

                  
      

   

   

  

 

   


               


                        
  
   

  

      
 
 

 
  

   
  

  
     
  

                  
                 

    
                     

                
  

   

  

 

  

 




c Starting from time 0, let TB denote the time until Bob first becomes busy. There are again 
several possible ways to approach this problem. 

Solution 1: In the sampled-time Markov chain representation, the period of time until 
Bob first becomes busy corresponds to the number of transitions to reach state 2 from state 
0, additionally taking into account the fact that every transition lasts δ units of time. It 

¯therefore suffices to compute the expected first passage time T0,2, from which it will follow 
¯that E(TB) =  δT 0,2. One way to do this is to compute the time to absorption, starting at 

state 0, for the following chain: 

1- Ȝį 1- (Ȝ+μ)į 1 

0 1 2 

Ȝį Ȝį 

μį 
The corresponding equations become 

¯ ¯ ¯ ¯ ¯ T0,2 = (1  − λδ)(T0,2 + 1) + (λδ)(T1,2 + 1)  =  1 + (1  − λδ)T0,2 + (λδ)T1,2 

¯ ¯ ¯ ¯ ¯ T1,2 = (1  − (λ + μ)δ)(T1,2 + 1) +  μδ(T0,2 + 1) +  λδ(1 + T2,2)  =  1 + (1  − (λ + μ)δ)T1,2 + μδT̄  
0,2, 

T̄  
2,2 = 0  

which yields 
1 1 +  μδ¯ ¯ ¯ T1,2 = T0,2 − = T0,2
λδ (λ + μ)δ 

and thus, 
μ 2¯ T0,2 = + . 

λ2δ λδ 

¯Since the expected number of transitions to reach state 2 from state 0 is T0,2, and each tran
sition corresponds to δ minutes, it follows that the expected time for Bob to start helping is 
¯ μ + 2 20 + 20 80(T0,2)δ = 2 = = minutes. Note that the answer does not depend on δ.

λ λ 9 3 9 

Solution 2: Compute the expected length of time between two returns to state 2 for the 
following chain: 

0 1 2 

Ȝį Ȝį 

μį 

1- Ȝį 1- (Ȝ+μ)į 

1 
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The steady-state equations become: 

π0 = (1  − λδ)π0 + μδπ1 + π2 

π1 = λδπ0 + (1  − (λ + μ)δ)π1 

π2 = λδπ1 

1 =  π1 + π2 + π3. 

The solution yields
 

1
 
π0 = (1 +  μ/λ)π1, π1 = , π2 = λδπ1.2 +  λδ + μ/λ 

From renewal theory, we have that starting from state 2, the expected time to return to 2 is 
1/π2. It follows that starting from 0, the expected number of transitions to first reach state 
2 is given by 1/π2 − 1. Since each transition corresponds to δ minutes, we have 

μ 2¯ δT 0,2 = (1/π2 − 1)δ = + ,
λ2 λ 

which is what we had before. 

Solution 3 (Due to SLH, MY, DB) Let TB = Y1 + Y2, where Y1 denotes the time of the first 
customer arrival after time zero and Y2 is the remaining time (begining with the arrival of 
the first customer) until Bob first becomes busy. Clearly, E(Y1) = 1/λ. From here on, the 
next “event” can either be the departure from Alice’s customer or an arrival of yet another 
customer. Since both times are given by independent exponential random variables, we can 
view the setup as two competing exponentials or (equivalently) as an arrival to a merged 
process. Letting A = {customer 1 departs before customer 2 arrives} and C = {customer 2 
arrives before customer 1 departs}, we have that P (A) =  μ/(λ + μ) and P (C) =  λ/(λ + μ). 
By the Total Expectation Theorem, 

1 μ λ
E(TB) = + E(Y2 | A) +  E(Y2 | C). 

λ λ + μ λ + μ 

Now, E(Y2 | C) = 1/(λ + μ) since Bob becomes busy the moment the second customer 
(which is an arrival to the merged process) arrives. In contrast, under A, the system restarts 
probabilistically the moment the first customer departs since the arrival time of the second 
customer is given by a memoryless r.v. Thus, E(Y2 | C) = 1/(λ + μ) + E(TB). Putting things 
together and solving for E(TB), we again obtain that 

μ 2
E(TB) =  + . 

λ2 λ 

d The moment Bob stops helping Alice corresponds to the first time the chain is in state 1 after 
being in state 2. From that point on, the time until Bob is again needed to help Alice is given 
by the time to reach state 2 from state 1. The desired answer is 

μ 1 50¯ δT 1,2 = + = min. ,
λ2 λ 9 
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computed in any of the following ways. 

¯ ¯Solution 1 T1,2 is obtained in the process of solving for T1,2 in Solution 1 to part c). 

¯ ¯Solution 2 T1,2 is obtained from T0,2 obtained by either Solution 1 or Solution 2 to part c), 
by noting that the expected time to transition from state 0 to state 1 is 1/(λδ) (expectation 

¯ ¯of a geometric random variable with success probability λδ. Thus, T0,2 = T1,2 + 1/(λδ) and 
¯ ¯therefore δT 1,2 = δT 0,2 − 1/λ. 

Solution 3 Analogously to the Solution 3 to part c), conditioning yields 

λ 1 μ 1¯ ¯ T1,2 = + + T0,2 . 
λ + μ λ + μ λ + μ λ + μ
 

¯
Solution 4 T1,2 = 1/π2 − 1 in the following modified chain (note that the process renews 
every time state 2 is reached): 

20 1 

Ȝį Ȝį 

1- Ȝį 1- (Ȝ+μ)į 

μį 1 

The steady-state equations become: 

π0 = (1  − λδ)π0 + μδπ1 

π1 = λδπ0 + (1  − (λ + μ)δ)π1 + π2 

π2 = λδπ1 

1 =  π1 + π2 + π3. 

The solution yields 

1 λ λ2 

π0 = , π1 = π0, π2 = δπ01 +  λ/μ + λ2δ/μ μ μ 

and thus 
μ 1¯ T1,2 = 1/π2 − 1 =  + . 

λ2δ λδ 

e The fraction of time Bob spends helping Alice is given by the fraction of time the chain of 
part a) spends in states {2, 3, . . .}. Renewal theory tells us that the corresponding long-term 
fraction of time equals π2 + π3 + . . .  = 1  − π0 − π1 (Strong Law for renewal rewards + 
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Blackwell’s Theorem), where the steady-state probabilities again refer to the chain of part a). 
Substituting the steady-state probabilities calculated in b), 

λ2 9
1 − π0 − π1 = 1  − π0(1 + λ/μ) =  = . 

μ(2μ + λ) 14 

f Let us first consider which type of answer would make intuitive sense. In a birth/death chain, 
with renewals on a given transition, the expected time between renewals should be the recip
rocal of the probability of that renewal. The period between renewals is then one segment in 
the upper part of the chain and one segment in the lower part, where the fraction of time in 
each is equal to the long term fraction of time spent in each region. Making this argument 
rigorous is the essence of Solution 1, but, as always, several different approaches are possible. 

Solution 1 From part e), the fraction of time that Bob is busy is given by
 

3λμ − λ2 9
 
Fb = = . 

μ(2μ + λ) 14 

Defining a renewal every time Bob becomes free and letting R(t) = 1 during times where Bob 
is helping Alice and R(t) = 0 otherwise, the Strong Law for Renewal Rewards yields 

E(R1)
Fb = ,

E(X1) 

where X1 is the length of the first renewal period. The probability of having a renewal at 
time n, for large n, is given by 2μδπ2. By Blackwell’s Theorem (as the process has span δ), 
it follows that 

1 μ 2μ + λ 140
E(X1) = = = ,

2μπ2 λ2 2μ − λ 9
 
and thus
 

9 140
E(R1) =  = 10 min. 

14 9 

Solution 2 As an alternative method of finding E(X1), notice that, from part d), once Bob 
μ 50becomes free he may expect to remain so for the next + 1 = minutes on average. On 
λ2 λ 9 

the other hand, once he starts helping, he may expect to do so for the next E(R1) on average. 
Therefore, 

3λμ − λ2 9 E(R1) E(R1)
Fb = = = μ = ,

μ(2μ + λ) 14 + 1 + E(R1) E(R1) +  50 
λ2 λ 9 

which yields 
E(R1) = 10 min. 

Solution 2’ A variant on Solution 2 consists of keeping the same renewal process define two 
rewards: R(t) taking value 1 over periods where Bob is busy and R̃(t) taking value 1 over 
periods where Bob is free. Notice that J Jt t

R(τ)dτ R̃(τ)dτ 
Fb = lim 0 = 1  − lim 0 . 

t→∞ t t→∞ t 
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˜ ˜Since E(R1) + E(R1) = E(X1) and since E(R1) was found to equal 50/9 in part d), it then 
follows that 

Fb 9 50 ˜E(R1) =  E(R1) =  = 10 min. 
1 − Fb 5 9 

Note on Solutions 1 - 2: 
Letting R(t) = 1 during periods Bob is busy, a number of students noticed that 

J t 
0 R(τ)dτ 

lim = 1  − π0 − π1 = E(R1)/E(X1). 
t→∞ t 

However, a large proportion of those students also defined the underlying renewal in a way 
that the expected accumulated reward over one renewal, E(R1), does not give us what we 
asked for. We need the expected length of any period Bob spends helping Alice. If we define 
a renewal every time the process hits state 0 (for instance), a potentially large number of 
renewals will incur a total reward of zero, thus reducing the value of E(R1). The only two 
viable options are to define a reward the moment Bob becomes busy (on the transition from 
1 to 2), or, alternatively, the moment Bob becomes free (on the transition from 2 to 1). Can 
you see why both approaches yield answer? 

Solution 3 (Due to HSK) Suppose at time n, the process has just entered state 2 from state 
1. Let define a collection of random variables {Yk}∞ 

k=1 as follows: 
⎧ ⎨ 0  if  Xn+k = Xn+k−1
 

Yk = 1  if  Xn+k = Xn+k−1 + 1 
  ⎩ −1  if  Xn+k = Xn+k−1 − 1 

Let N = min{n | X1 + . . . + Xn ≤ 1}. Note that since the chain is positive recurrent, we 
have that N is both finite with probability 1 and also E(N) < ∞. Furthermore the event 
{N ≥ n} = {X1 > 1, . . . , Xn−1 > 1} is independent of Xn, Xn+1, etc. It follows that N is a 
valid stopping time. By Wald’s equality, we then have that 

( 1 −1 = E(N)E(Y1) = E(N) λδ(1) + 2μδ(−1) + 0)  =⇒ E(N) =  ,
(2μ − λ)δ 

and the answer is given by δE(N)=10 min. Awesome stuff! 

Solution 4 We’re looking for the expected amount of time that the chain of part a) spends 
in states {2, 3, . . .} once it has entered state 2. Accordingly, defining a renewal every time 
a chain enters state 1, it suffices to look at the expected time in states {2, 3, . . .} for the 
following chain: 
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1- (Ȝ+2μ)į 1- (Ȝ+2μ)į
 

1 2 3 

1 Ȝį Ȝį 

… 

2μį 2μį 2μį 

The length of time in states {2, 3, . . .} is given by δ(1/π1 − 1), similarly to the previous 
argument of this type in part c). The steady-state equations for this chain are given by: 

π1 = 2μδπ2 

π2 = π1 + (1  − (λ + 2μ)δ)π2 + 2μδπ3 

π3 = λδπ2 + (1  − (λ + 2μ)δ)π3 + 2μδπ4 

. . . 
1 =  π1 + π2 + π3 + . . . ,  

or, alternatively: 

π1 = 2μδπ2 

πiλδ = πi+12μδ for i ≥ 2 

1 =  π1 + π2 + π3 + . . . ,  

Both sets of equations yield 

1 
π2 = π12μδ 

λ 1 λ k−2 

πk = πk−1 = π1, k  ≥ 3,
2μ 2μδ 2μ 

and therefore 

1 1 δ(2μ − λ)
π1 = ( )k−2 = = .1 1 ∞ 1 λ 1 +  δ(2μ − λ) + 11 +  2μδ 1− λ 

k=2 2μδ 2μ 2μ 

It follows that the expected amount of time that Bob is busy helping Alice is given by 

1 1 
δ − 1 = = 10 min. 

π1 2μ − λ 
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III. (40 pts)A small production facility builds widgets. Widgets require two subassemblies, 
aidjets and bidgets. The time to build an aidjet is a nonnegative rv A with density fA(t) 
and distribution function FA(t). Successive aidgets require IID construction intervals. The 
time to build a bidjet is also a nonnegative rv B with density fB(t) and distribution function 
FB(t). Successive bidget times are also IID. Also aidget and bidget times are independent 
of each other. In this question, you can either choose fA and fB to be uniform over (0, 2] 
and calculate a numerical answer or leave them abstract and provide a formula. 

a) Initially the facility is set up with an aidget facility and a bidget facility but no storage. 
Thus the first aidget and the first bidget both start construction at time 0, but the first to 
finish stops and waits until the other is finished. The widget is then produced in zero extra 
time and each facility starts on the next part. This continues ad infinitum. Let N1(t) be  
the number of widgets produced by time t. 

a1) (5 pts) Is N1(t) a renewal counting process? 

Solution: N1(t) is a renewal counting process since each interval for producing a widget 
is independent of the others, and the time to produce a widget is max(A, B), which is a rv 
since a and b are each rv’s. 

a2) (5 pts) Find the time-average number of widgets produced in the limit t → ∞  
and state carefully what that time-average means. 

Solution: By the strong law for renewal processes, the limiting time-average, with prob
ability 1, is 1/E [W1], where the rv W1 = max(A1, B1) is the time to construct the first 
widget. Note that P {W1 ≤ t} = P  {A1 ≤ t}P {B1 ≤ t}. Thus  

FW (t) =  FA(t)FB(t) ∞ 

E [W1] =  [1 − FA(t)FB(t)] dt 
0 

N1(t)lim 
t→∞ t 

= 

  ∞  −1 

[1 − FA(t)FB(t)] dt 
0 

W.P.1 

where we evaluated E [W1] by integrating the complementary distribution function and then 
used the strong law for renewal processes. 

For the uniform distribution, the above integral is is 4/3, so the time average number of 
widgets per unit time is 0.75. 

b) Now some storage is provided and two aidgets are produced one after the other and, 
starting at the same time, two bidgets are produced one after the other. Whichever finishes 
a pair first stops and waits for the other to finish a pair. The first widget is produced when 
both have finished one part and the second widget when both have finished the second part. 
When both finish their second part, both start again, and this continues ad infinitum. Let 
N2(t) be the number of widgets by time t in this new scheme. 

b1) (6 pts) Is N2(t) a renewal counting process? If not, describe a renewal 
counting process that accomplishes the same purpose. 
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Solution: N2(t) is not a renewal counting process since the inter-renewal time to produce 
the second widget is dependent on how much of a head start one of the facilities has over the 
other in the production of the second widget, and this head start depends on the previous 
widget time. If we let N2

(2) be the number of pairs of widgets produced by time t, then this 
is a renewal counting process for the same reason that N1(t) is a renewal process in part 
(a) 

b2) (6 pts) Show that N1(t) ≤ N2(t) assuming that the sample times A1(ω), A2(ω), . . .  
for building successive aidjets are the same in scheme 1 and 2. Similarly the 
sample times for bidgets, B1(ω), B2(ω), . . .  are the same in each scheme. Hint: 
this is not an asymptotic result - look at the first pair of widgets. 

Solution: First consider an example. Suppose, for a given sample point ω, that A1(ω) is  
very small, say 0.1, and A2(ω) is very large, say 1.9. Suppose also that B1(ω) =  B2(ω) = 1.  
Then in scheme 2, the first two aidjets and the first 2 bidgets are completed at time 2, so 
the first two widgets are completed at time 2. In scheme 1, the aidjet facility stops at time 
0.1 and waits for the first bidget at time 1. This means that the second aidjet is completed 
at time 2.9, so the second widget is completed later in the first scheme than the second. 

In general, first assume that A1(ω) < B1(ω). Then the second aidjet in scheme 1 does not 
start construction until time B1(ω). The second aidjet is completed at B1(ω)+A2(ω). This 
is greater than A1(ω) +  A2(ω), which is the completion time of the second aidjet in scheme 
2. The completion of the second bidget occurs at the same time in schemes 1 and 2, so 
the second widget is completed either at the same time or earlier in scheme 2. The same 
argument applies when A1(ω) ≥ B1(ω). 

Another approach is to say that waiting occurs in scheme 1 for either aidjets or bidgets 
between the first and second assembly, and no such waiting occurs for scheme 2. All other 
times are the same in the two schemes. 

b3) (6 pts) Find the time-average number of widgets produced in the limit 
t → ∞ and state carefully what that time-average means. 

Solution: Let fAA(t) be  fA(t) ∗ fA(t) and fBB(t) =  fB(t) ∗ fB(t). Let FAA(t) and FBB(t) 
be the corresponding distribution functions. Then the distribution function for the time to 
produce the first pair of widgets, say FWW  (t) is  

FWW  (t) =  FAA(t)FBB(t) 
∞ 

E [WW ] =  [1 − FAA(t)FBB(t)] dt 
0 

where E [WW ] is the expected time to construct a pair of widgets in scheme 2. After much 
tedious but elementary integration, this is 2.4667 in scheme 2, somewhat less than 2.667 for 
scheme 1. 

Then limt→∞ N2
(2)(t)/t, i.e., the time average number of widget pairs per unit time, is 

1/E [WW ]. It follows that the number of widgets per unit time is 

N2(t) 2 ∞ −1 

lim = = 2 [1 − FAA(t)FBB(t)] dt 
t→∞ t E [WW ] 0 



   

    

 

           

              
              

          

             

                 
              

               
                   

              
             

               
       

           
          

 
  

 
  

    
    

      
 

  
   

         

           

3 

This is 0.811 widgets per time unit for the uniform distribution. 

c) Now assume that neither facility ever stops and waits; they continue producing aidgets 
and bidgets, which are paired as available and immediately are combined into widgets. Let 
N∞(t) be the number of widgets produced by time t 

c1) (6 pts) Explain carefully why N∞(t) is not a renewal counting process. 

Solution: At any given time t, the aidgit and bidgit processes are at varous times in their 
production cycles, and the probability that both finish a unit simultaneously is zero (since 
they both have probability densities). The time until the next widgit thus depends on how 
far into the production cycle each are. One could try to use a pair of ages, one for each 
facility as a renewal point, but because the construction intervals are given by densities, 
there is zero probability that any given pair of ages will be repeated. 

c2) (6 pts) Find the time-average number of widgets produced in the limit t → ∞  
and state carefully what that time-average means. 

Solution: Both subassemblies form renewal processes individually, and N(t) = min(NA(t)NB(t)). 
Since N1(t)/t and N2(t)/t each have limits W.P.1, we have 

N∞(t) NA(t) NB(t)
lim = lim min 
t→∞ t t→∞ t t 

limt→∞ Na(t) limt→∞ Nb(t)= min 
t 

, 
t 

= min 
1 1 

E [A(t)] E [B(t)] 
1 

= 
max(E [A(t)] , E [B(t)]) 

For the uniform distribution, this is a widget per time unit.
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