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PROFESSOR: So this is the outline of the lecture for today. So we just need to talk about the

conditional densities for Poisson process. So these are the things that we've seen

before in previous sections, so I'm just going to give a simple proof for them and

some intuition. So if you remember the Poisson process, this was the famous figure

that we had.

So our time is at zero and afterwards zero and then we had some arrivals. So our

time is then t. We had N of t arrivals, which is equal to n. This is Sn. This is the

figure that we had. So for the first equation, we're looking at-- We want to find the

conditional distribution of interval times condition and last arrival times.

So first of all, we want to find the joint distribution of the interval arrival times and the

last arrival, this equation. So you know that interval arrival times are independent in

the Poisson process, so just looking at this thing, you know that these things are

independent of each other so we will have lambda to the power of Ne to the power

minus lambda.

And then, this last one corresponds to the fact that xn plus 1 is equal to n plus 1

minus summation of x. These two events are equivalent to each other, so this is

going to correspond to lambda e to the power of minus lambda. So we just did it the

other way, so it's going to be like-- So you can just get rid of these terms and it's

going to be that equation.

So it's very simple, it's just the independence of inter-arrival times. So you look at

the last term as the inter-arrival time for the last arrival, and then they're going to be

independent, and the terms kind of cancel out and you have this equation. So this

conditional density will be the joint distribution-- or the distribution of Sn plus 1,

1



which is like these. So the joint decision will be like this.

So what does the intuition behind this mean? This means that-- you've seen this

term before. This means that we have uniform distribution over the interval of zero

to one, condition on something. So previously, what we had was the conditional

distribution of arrival times condition on the last arrival, so F of s1 and condition on

sn plus 1. But here we have distribution of x1 to x and condition on sn plus 1. And

previously, the constraint that we had was like we should have ordering over the

arrival times. So because of this constraint we had this n factorial, if you remember,

that order of statistics things that you talked about.

Now here, what we have is something like this. So all the arrival times should be

positive, and summation of them should be less than t. Because well, the

summation of them to n plus 1 is equal to sn plus 1. And the last term is positive, so

this thing should be less than t. So these two constraints are sort of dual to each

other. So because of this constraint, I had some n factorial over the conditional

distribution of arrival times, condition on the last arrival time. Now, I have inter-

arrival conditional distribution of inter-arrival time condition on last arrival time and

we should have this n factorial here.

The other interesting thing is that if I condition it under n of t, so the number of

arrivals at time [INAUDIBLE] t. The time is going to be very similar to the previous

one. Just to prove this thing, it's very simple again. I just wanted to show you--

So what does this thing mean? This thing means that these are the distributions of

the inter-arrival times and the last event corresponds to the fact that xn plus 1 is

bigger than t minus summation of xi. Because we have an arrival time at [? snn, ?]

and then after that there's no arrival. Because at time nt we have n arrivals. So this

corresponds to do is thing. So again, we'll have something like lambda n, e to the

power of-- This is for the first event and you see that these are independent

because of the Poisson properties of the Poisson process.

And the last term will be-- property of the Poisson and a variable bigger than

something is-- Yes, this cancel out. And then we'll have this term, this first n lambda
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to the power of n, just forget about n plus 1. And property distribution of n of t equal

to n is this term without n plus 1. So lambda n to the 12, and e to the power minus

lambda t over n factorial. So these terms cancel out and we'll have this thing.

So again, we should have these constraints that summation of xk, k equal to 1, n

should be less than t. No matter if they are conditioning of n of t or sn plus 1, the

last arrival time or the number of arrivals at some time instant, the condition of

distribution is uniform subject to some constraints. Is there any questions?

So if you look at the limit, and so again, looking at this figure, you see that this

corresponds to sn plus 1 and you see that sn plus 1 is bigger than t. So if you take

the limit and take the t1 going to t, these two distributions are going to be the same.

So t1 corresponds to sn plus 1. t1. So basically what's it's saying is that conditional

distribution of arrival times are uniform, independent of what is going to happen in

future.

So in future, there might be some, I mean, the knowledge that we have about future

could be the fact that knowing what happens in this interval or the next arrival is

going to happen at some point, I mean, condition on these things the arrival times

are going to be uniform.

The other fact is that this distribution that I showed you, they are all symmetric with

respect to interval arrival times. So it doesn't matter, I mean, no arrival has more

priority to any other one or they're not different to each other. So if you look at the

permutation of them, they're going to be similar.

So now, I want to look at the distribution of x1 or s1, they are equal to each other. I

can easily calculate the probability of x1 bigger than some tau condition, for

example, n of t is equal to n. So what is this conditional distribution?

So condition on n of t equal to n, I know that in this interval I have n arrivals and n

inter-arrival times, and I want to know if x1 is in this interval, or s1. s1 is equal to x1.

And you know that si's are also uniform. So you know that these are independent of

each other, and so you can say that the probability of this thing is like this one. So
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all of them should be bigger than tau.

And since this is symmetric-- so this corresponds to x1. Since this was-- everything

was symmetric for all inter-arrival times. This is also the complimentary distribution

function for xk. Is there any questions? So the other think that are not in the slides

that I want to tell you is the conditional distribution of si given n of t.

So I know that there n arrivals in this interval, and I want to see if the i arrival is

something like this. So the probability that-- so this even corresponds to the fact that

there is one arrival in this interval and i minus 1 arrival was here and n minus i

minus 1 arrival was here. Oh, no, sorry, n minus i arrival is here.

So the probability of having one arrival here corresponds to-- since arrival times our

uniform, and I want to have one arrival in this interval like this, and I want to have i

minus arrivals here i minus one arrivals here, and n minus i arrivals here. So it's like

aq binomial probability distribution so out of the n arrival-- n minus 1 remaining

arrivals, I want to have some of them in this interval and some of them here. So this

is the distribution of this thing.

Yeah, so just as a check we know that the last inter-arrival-- last arrival time, the

distribution of that thing is-- Here, you just cancel these things out, too-- is-- We

need to get back to this equation, but it's just the same as this one but you let i

equal to n. This is OK? Just to think i equal to n, you get this one.

AUDIENCE: Does this equation also apply to i equals [INAUDIBLE]?

PROFESSOR: Yeah, sure. Yeah, i equal to 1, we will have nt minus tau. And if you look at this

thing, so this is a complimentary distribution function. You just take to zero till you

get that. This is just a check of this formulation. Yeah. So is there any other

questions? Did anybody get why we have this kind of formulation? Is was very

simple, it's just the combination of a uniform distribution and a binomial distribution.

AUDIENCE: What is tau?

PROFESSOR: Tau is this thing. Tau is the si. Change of notation.
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AUDIENCE: [INAUDIBLE]?

PROFESSOR: I said that I want one arrival in this interval and i minus 1 arrival was here and n

minus i arrival is here. So I define it, the Bernoulli process. So priority of falling in

this interval is tau over t minus tau. And I say that--

AUDIENCE: [INAUDIBLE]?

PROFESSOR: OK, so falling in this interval in a uniform distribution corresponds to success. I want,

among n minus 1 arrivals, i minus 1 of them to be successful and the rest of them to

be [INAUDIBLE]. [INAUDIBLE] that one of them should fall here and the rest of them

should fall here. Richard?

AUDIENCE: So that's the [INAUDIBLE]?

PROFESSOR: Yeah, you just get rid of this dt, that's it.

[? AUDIENCE: Why do ?] those stay, n over t.

PROFESSOR: Which one?

AUDIENCE: Can you explain again the first term? The first term there, the nd over t?

PROFESSOR: Oh, OK, so I want to have one interval definitely here but among n arrivals I want

them to fall here. So any one of them should cancel. But then i minus 1 of them

should fall here and n minus i intervals should fall here. Any other questions? It's

beautiful, isn't it?

There's a problem. I studied x1 to xn, but what is the distribution of this remaining

part? So if I condition on n, nt or condition on sn plus 1, what is the distribution of

this one or this one or doing distribution off all these? So this is what we're going to

look. So first of all, I do the conditioning over sn plus 1, and I find the distribution of--

the distribution of x1 to xn condition on sn plus 1, is there any randomness in

distribution of xn plus 1? So this is going to be sx plus 1.

So this is going to be xn plus 1. So if I find a distribution of x1 to xn condition on this
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condition is sn plus 1, it's very easy to show that xn plus 1 is equal to sn plus 1. So

there's no randomness here. But looking at the figure, you see that-- and the

distributions, you see that everything is symmetric. So I've found the distribution x1

to xn and I can find xn plus 1 easily from them.

But what if I find the distribution of x2 to xn plus 1, condition on this thing, and then

find x1 from them? So you can say that x1 is equal to xn minus 1 2 to n plus 1xi.

And then we have this solution. So it seems that there's no difference between them

and actually, there's not. So condition on sn plus 1, we have the same distribution

for x1 to xn or x2 to xn plus 1. But there are only n free parameters because the n

plus 1's can be calculated in your equations.

If you take any n random variables out of this n plus 1 random variables, we have

the same story. So it's going to be uniform, our 0 to t for this interval. So it's

symmetric. Now, the very nice thing is about n of t, equal t-- [? so ?] n must be

equal to n.

So this is easy because we had these equations, but what if I call this thing xn star

of n plus 1 and I do the conditioning over n of t? So I don't know the arrival time for

n plus 1's arrival but I do know the number of arrivals at time [INAUDIBLE] t.

Condition on that, what is the distribution for example, for xn star n plus 1 or x1 to

xn? Again, easily we can say that it's the same story, so it's uniform. So you can

take out of x1 to xn and xn star n plus 1, you can take n off them and find the

distribution of that.

OK, so the other way to look at this is that if I find the distribution of x1 to xn

condition on n of t, I will have the expect that xs star n plus 1 is equal to t minus sn,

which is t minus summation of x to i. Can anyone of you see this? Hope so. Oh, OK.

So again, if I find the distribution of x1 to xn, I can find sx star n plus 1

deterministically. Just as a signage check, you can find that f of the star of x-- oh,

sorry, f of x star n plus 1 condition on--

So looking at this formulation and just replacing everything, we can't find this thing,

and you can see that this is similar to this one again. So this is the distribution for--
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well, this is the distribution for x1. So you can find the density and this is going to be

density. So what I'm saying is that x1 has the same marginal distribution as xn plus

1 star. So you can get it with this kind of reasoning, saying that the marginal

distribution should be the same or looking at this kind of formulation. When you

have this distribution you can find the distribution of summation of xi, i equal to 1 to

n. And then you can find-- So t is determined, so you can just replace everything

and find it. And you can see that these two are the same.

AUDIENCE: [INAUDIBLE] the same distribution that is one?

PROFESSOR: Yeah. Condition on nt [INAUDIBLE]. So everything is symmetric and uniform. But

you can only choose n for your parameters because the n plus 1 is a combination of

the-- Right? So this is the end of the chapter [INAUDIBLE] for Poisson process, is

there any problems or any questions about it?

So let's start the Markov chain. So in this chapter we only talk about the finite-state

of Markov chains. Markov chains are some processes that changing integer-time

sense. So it's like we're quantizing time and any kind of change can happen only in

an integer-time sense. And it's different in this way from Poisson processes because

we can have the definition of Poisson processes for any continuous time, but

Markov chains are only defined for integer-times.

And finite-state Markov chains is a Markov chain where states can be only in a finite

set, so we usually call it 1 to M, but you can name it in any way you like. What we

are looking for in finite-state Markov chains is the probability distribution of the next

state conditioned on whatever [? history ?] that I have. So I know that at integer

times there can be some change.

So what is this change? We model it with the probability distribution of this change

corresponding to the history. So we can model any discrete integer time processing

this way. Now, the nice thing about Markov chains or homogeneous Markov chains

is that this distribution is equal to these things.

So you see i and j, so i is the previous state and j is the state that I want to go in so
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the distribution of the next state condition and all the history only depends on the

last step. So even the previous state, the new state is independent of all their earlier

things that might happen.

So there's a very nice way to show it. So in general, we say that xn plus 1 is

independent of xn plus 1. So if I know the periods-- and these things are true for all

the possible states.

So whatever the history in the earlier process that I had, I only care about the state

that I was in in previous time. And this is going to show me what is the distribution of

next state. So the two important things that you can see this in this formulation is

that, first of all, this kind of independence, it is true for all i, j, k, m, and so on. The

other thing is that it's not time-dependent. So if I'm in state, the probability

distribution of my next state is going to be the same if the same thing happens in

100 years. So it's not time-dependent. That's why we call it homogeneous Markov

chains.

And we can have non-homogeneous Markov chains, but there are not many nice

results about them. I mean, we cannot find many good things. And all the

information that we know to characterize the Markov chain is this kind of distribution.

So we call these things transition probabilities. And something else which is called

initial probabilities, which tell me that, at time instance 0, what is the probability

distribution of the states. So knowing Markov chains, you can find that probability

distribution of x1 is equal to probability of x1 condition and x0 [INAUDIBLE]. So

knowing this thing and these transition probabilities, I can kind the probability

distribution of x1.

Well, very easily, the probability of xn is equal to-- sorry. so you can do this thing

iteratively. And just knowing the transition probabilities and initial probabilities, you

can find the probability distribution of the states at any time instant to forever. Do

you see it's very easy? You just do this thing iteratively. So I talked about the

independence and initial. Yeah, so what we do is, we characterize the Markov

chains with these set of transition probabilities and the initial state. And you see that
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these transition probabilities, we have, well, m times n minus 1, free parameters in

them, because the summation of each of them should be equal to 1.

So for each initial state, I can have a distribution over the next step. So I'm going to

talk about it in the matrix form. And what we're doing in practice usually, we assume

the initial state to be a constant state. So we usually just define a state, call it initial

state. Usually, we call it x0. I mean, it's what's you're going to usually see if you want

to study the behavior of Markov chains. So these are the two ways that we can

visualize the transition probabilities.

So matrix form is very easy. So you just look at the n probability distributions that

you have. And with Markov chain with n number of states, you will have n

distributions, each of them corresponding to the conditional distribution of next step,

condition of the present step equal to i. So i can be anything. So this was the thing I

was saying, the number of free parameters. So I have n distribution, and each

distribution has n minus 1 free parameters, because the summation of them should

be equal to 1.

So this is the number of free parameters that I have. So is there any problem with

the matrix form? I'm assuming that you've all been seeing this sometime before.

Fine? So the nice thing about matrix form is that you can do many nice stuff with

them. We can look at the notes for them, and we will see these kinds of properties

later. But you can imagine that just looking at the matrix form and doing some

algebra over them, we can get very nice results about the Markov chains. The other

representation of the Markov chains is using a graph, a directed graph in which

each node corresponds to a state and each arc, or each edge, corresponds to a

transition probability.

And the very important thing about graphical model is that there's a very clear

difference between 0 transition probabilities and non-0 transition probabilities. So if

there's any possibility of going from one state to another state, we have an edge or

an arc here. So probability of 10 to the power of minus 5 is different from 0. We

have an arc in one case and no arc in another case, because there's a chance of
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going from this state to the next state. And even then, the probability is 10 to the

power of minus 5.

And OK, so we can do a lot of inference by just looking at the graphical model. And

it's easier to see some properties of the Markov chain by looking at the graphical

models. We will see these properties that we can find by looking at the graphical

model. So this is not really classification of states, actually. So there are some

definitions, very intuitive definitions here. So there's something called a walk, which

says that this is an ordered string of the nodes, where the probability of going from

each node to the next one is non-0.

So for example, looking at this walk, you can have the probability of going from 4 to

4 is positive, 4 to 1, 1 to 2, 2 to 3, and 3, to 2. So there is no kind of constraints in

the definition of the walk. There should be just positive probabilities in going from

one state to the next state. So we can have repetition. We can have whatever we

like. And the number of-- well, we can find the number of states for sure.

So what is the maximum number of steps in a walk? Or minimum number?

Minimum number of states is two-- [? one. ?] So what is the maximum number of

steps? Well, there's no constraint, so it can be anything. So the next thing that we

look is a path. A path is a walk where there is no repeated nodes. So I never go

through one node twice. So for example, I have this path, 4, 1, 2, 3. We can see

here, 4, 1, 2, 3. And now we can say, what is the maximum number of steps in a

path?

AUDIENCE: [INAUDIBLE].

PROFESSOR: Steps, not states.

AUDIENCE: [INAUDIBLE].

PROFESSOR: n minus 1, yeah. Because you cannot go through one state twice. So you have a

maximum number of steps in n minus 1. And the cycle is a walk in which the first

and last node is repeated. So first of all, there's not a really great difference

between these two cycles, so it doesn't matter where I start. And we don't care

10



about the repetition and definition of cycle. Oh, OK. Yeah, sorry. No node is

repeated. So sorry, something was wrong. Yeah, we shouldn't have any repetition

except for the first and last nodes. So the first and last node should be the same,

but there shouldn't be any repetition.

So what is the maximum number of steps in this case?

AUDIENCE: [INAUDIBLE].

PROFESSOR: n, yeah, because we have an additional step. Yeah?

AUDIENCE: You said in a path, the maximum number of steps is n minus 1?

PROFESSOR: Yeah.

AUDIENCE: I mean, if you have n equals, like, 6, couldn't there be 1, 2, 3, 4, 5, 6?

PROFESSOR: No, it's the steps, not the states. So if I have path from 1 to 2, and this is the path.

So there's one step. Just whenever you're confused, make a simple model. It's

going to make everything very, very easy. Any other questions? So this is another

definition. We say that a node j is accessible from i if there is a walk from i to j. And

by just looking at the graphical model, you can verify the existence of this walk very

easily. But the nice thing, again, about this thing is what I emphasized in the

graphical model. It talks about if there's any positive probability of going from i to j.

So if j is accessible from i and you start at node i, there's a positive probability that

you will end in node j sometime in the future. There's nothing said about the number

of steps needed to get there, or the probability of that, except that this probability is

non-0. It's positive. So for example, if there's a state like k, that we have p of ik is

positive and p of kj is positive, then we will have p of ij [? too ?] is positive. So we

have this kind of notation. I don't have a pointer. Weird. So yeah, we have this kind

of my notation. pijn means that the probability of going from state i to state j in n

steps.

And this is exactly like n steps. Actually, this value could be different for different
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number of n. For example, if we have a Markov chain like this, p of 131 is equal to

0, but p of 132 is non-0. So node j is accessible from i if pijn is positive for any n. So

we say that j is not accessible from i if this is 0 for all possible n's. Mercedes?

AUDIENCE: Are those actually greater than or equal to?

PROFESSOR: No, greater. They are always greater than or equal to 0. Probability is always non-

negative. So what want is positive probability, meaning that there's a chance that I

will get there. I don't care how small this chance is, but it shouldn't be 0.

AUDIENCE: [INAUDIBLE]. So p to ij, though, couldn't it be equal to pik, [? pkj? ?]

PROFESSOR: Yeah, exactly. So in this case, p132 is equal to p12, p23,

AUDIENCE: So I guess I'm asking if p2ij should be greater than or equal to pfk.

PROFESSOR: Oh, OK. No, actually. You know why? Because there can exist some other state like

here.

AUDIENCE: Right. But if that doesn't exist and there's only one path.

PROFESSOR: Yeah, sure. But there's no guarantee. What I'm saying is that Pik is positive, Pkj is

positive. So this thing is positive, but it can be bigger. In this case, it can be bigger. I

don't care about the quantity, about the amount of the probability. I care about its

positiveness, it's greater than 0. I just want it to be non-0. The other thing is that

when we look at pijn, I don't care what kind of walk I have between i and j. It's a

walk, so it can have repetition, it can have cycles, or it can have anything. I don't

care. So if you really want to calculate pij for n equal to [INAUDIBLE] 1,000, you

should really find all possible walks from i to j and add the probabilities to find this

value. And all the walks within steps.

Not here. Let's look at some examples. So is node 3 accessible from node 1? So

you see that there's a walk like this, 1, 2, 3. So there's a positive probability of going

to state 3 from node 1. So node 3 is accessible from 1. But if you really want to

calculate the probability, you should also look at the fact that we can have cycles.

So 1, 2, 3 is a walk. But 1, 1, 2, 3 is also a walk. 1, 2 3, 2, 3 is also a walk. You see?
12



So you have to count all these things to find the probability of p13n for any n.

What about state 5? So is the node 3 accessible from node 5? You see that it's not.

Actually, if you're going to state 5, you never go out. With [INAUDIBLE] probability of

1, you stay there forever. So actually, no state except state 5 is accessible from 5.

So is node 2 accessible from itself? So accessible means that I should have a walk

from 2 to 2 in some number of steps. So you can see that we can have 2, 3, 2, or

many other walks. So it's accessible.

But as you see, node 6 is not accessible from itself. If you are in node 6, you always

go out. So it's not accessible. So let's go back to these definitions. Yeah, this is what

I said, and I'm emphasizing again. If you want to say that j is not accessible from i, I

should have a pijn equal to 0 for all n. The other thing is that, if there's a walk from i

to j and from j to k, we can prove easily that there's a walk from i to k. So having a

walk from i to j means that for some n, this thing is positive. So this is i to j. From j to

k, this means that p of jk, for some n, this is positive.

So looking at i two k, I can say that p of i to k, m plus n, is greater than. And I have

this thing here because of the reason that I explained right now, because there

might be other paths from i to k, except the paths going through j, or except the

walks that have n steps to get to j and n steps to get to k. So we know that, well, we

can concatenate the walks from-- so if there's a walk from i to j and j to k, we have a

walk from i to k. So we say that states i and j communicate if there's a walk from i to

j and from j to i. So it can go back and forth. So it means that there's a cycle from

from i two i or j two j. This is the implication.

So it's, again, very simple to prove that if i communicates with j and j communicates

with k, then i communicates with k. In order to prove that, I should assume that i

communicates to j, I need to prove that there is a walk from i to k, and I need to

prove that there is a walk from k to i. So this means that i communicates with k. So

these two things can be proved easily from the concatenation of the walks and the

fact that i and j communicate and j and k communicate. Now, what I can define is

something called a class of states. So a class is called a non-empty set of states,
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where all the pairs of states in a class communicated with each other, and none of

them communicate with any other state in the Markov chain. So this is the definition

of class.

So I just group the pairs that can communicate with the state and just get rid of all

those who do not communicate to the [INAUDIBLE]. So for defining a class or for

finding a class, or for naming a class, we can have a representative state. So I want

to find all the states that communicate with each other in a class. So I can just pick

one of the states in this class and find all the states that communicate with this

single state, because if two states communicate with one state, then these two

states communicate with each other. And if there's a state that doesn't

communicate with me, it doesn't communicate with anybody else whom I'm

communicating with. I'm going to prove it now, just in a few moments.

Just, I want to look at this figure again. So first I take state 2 and find a class that

has this state in itself. So you see that in this class, we have state 2 on 3, because

there's only a state 3 that communicates with 2. And correspondingly, we can have

class having state 4 and 5. And you see that state 1 is communicating with itself, so

it's a class by itself. But it doesn't communicate with anyone else. So we have this

class also.

So next question, why do we call C4 a class? So it doesn't communicate with itself.

If you're in state 6, you go out of it with probability of 1, eventually. So why do we

call it a class? Actually, so this is the definition of the classes. But we want to have

some very nice property of other classes which says that we can partition the states

in a Markov chain by using the classes. So if I don't count this case as a class, I

cannot partition it, because partitioning means that I should cover the whole states

in the classes. What I to do is to do some kind of partitioning in a Markov chain that I

have, by using the classes, so that I can have a representative state for each class.

And this is one way to partition the Markov chains.

And why do I say it's partitioning? Well, it's covering the whole finite space of the

states. But I need to prove that there's no intersection between classes also. Why is
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it like that? So meaning that I cannot have two classes where there is an

intersection between them, because if there's an intersection-- for example, i

belongs to C1 and i belongs to C2-- it means that i communicates with all the states

in C1 and i communicates with all states in C2. So you can say that all states in C1

communicate with all states in C2. So actually, they should be the same.

And there's only these states that communicate with each other. We have this

exclusivity that's conditional. So we can have this kind of partitioning. Is there any

question? Everybody's fine? So another definition which is going to be very, very

important in the future for us is the recurrency. And it's actually very simple. So a

state is called recurrent if for all the states that we have j is accessible to i, we also

have i is accessible to j. So if from some state i, in some number of states, I can go

to some state j, I can get back to i from this state for sure. And this should be true

for all the states in a Markov chain.

So if there's a walk from i to j, there should be a walk from j to i, too. If this is true,

then i is recurrent. This is the definition of recurrence. Is it OK? And if it's not

recurrent, we call it transient. And why do we call transient? I mean, the intuition is

very nice. So what is a transient state? A transient state says that there might be

some kind of walk from i to some k. And then I can't go back. So there's a positive

probability that I go out of state i in some way, in some walk, and never come back

to it. So it's kind of transitional behavior.

AUDIENCE: [INAUDIBLE]?

PROFESSOR: No, no, with some probability. So there exists some probability. There is a positive

probability that I go out of it and never come back. It's enough for definition of

transience. So you know why? Because I have the definition of recurrence for all the

j's that are accessible from i.

So with probability 1-- oh, OK, so I cannot say with probability 1. Yeah, I cannot say

probability of 1 for recurrency. But for transient behavior, there exists some

probability. There's a positive probability that I go out and never come back. State 1

is transient. And state 3, is it recurrent or transient? Some idea?
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AUDIENCE: [INAUDIBLE].

PROFESSOR: Transient? What about state 2? It's wrong, because there should be something

going on [INAUDIBLE]. So now here, it's recurrent. Good? Oh yeah, we have

examples here. So states 2 and 3 are recurrent, because the only state that I can

go out from this state is to themselves. So they are only accessible from

themselves. And there's a positive probability of going from one to the other. So

they're recurrent. But states 4 and 5 are transient. And the reason is here, because

there is a positive probability that I go out of state 4 in that direction and never come

back. And there's no way to come back.

And state 6 and 1 are also transient. State 6 is very, very transient because, well, I

go out of it in one step and never come back. And state 1 is also transient, because

I can go out of it in this direction and never be able to come back. Do you see? So

this is a very, very, very important theorem, which says that if we have some

classes, the states in the class are all recurrent or all transient. This is what we are

going to use a lot in the future, so you should remember it. And the proof is very

easy. So let's assume that state i is recurrent. And let's define Si, all the states that

communicate with i, that are accessible from i.

And you know that since i is recurrent, being accessible from i means that i is

accessible from them. So if j is accessible from i, i is also accessible from j. So we

know that i and j communicate with each other if and only if j is in this set. So this is

a class. This is the class that contains i. So this is like the class that I told you, that

we can have a class where this state i is representative. And actually, any state in a

class can be representative. It doesn't matter.

So by just looking at state i, I can define a class. The states that are accessible from

i-- and actually, this is the class that contains i. So let's assume that there's a state

called k which is accessible from some j which is in this set. So k is accessible from

j, and j is accessible from i. So k is accessible from i. But k accessible from i implies

that i is also accessible from k, because i is recurrent. So you think i is accessible

from k? And you know that j is also accessible from i because, well, Si was also a
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class, recurrent class.

So you see that j is also recurrent. So if k is accessible from j, then j is also

accessible from k for any k. So this is the definition of recurrency. So what I want to

say is that if i is recurrent and it's in the same class as j, then j is recurrent for sure.

And we didn't prove it here, but if one of them is transient, them all of them are

transient too. So the proof is very simple. I proved that if there is any state like k

that's is accessible from j, I need to prove that j is also accessible from k. And I

proved it like this. It's easy.

So the next definition that we have is the definition of the periodic states and

classes. So I told you that the number of steps in a walk-- so when I say that there's

a walk from some state to the other state, I didn't specify the number of steps

needed to get from the state to another state. So assuming that there is a walk from

state i to i, meaning that i is accessible from i, it's not always true. You might go out

of i and never come back to it. So assuming that there's a positive probability that

we can go from state i to i, you can look at the number of steps needed for this

walk. And we can find the greatest common divisor of this number of steps. And it's

called the period of i.

And if this number is greater than 1, then i is called to be periodic. And if it's not, it's

aperiodic. So the very simple example of this thing is this Markov chain. So

probability of 1,1 in step is 0. probability of 1, 1 in two steps is positive. And actually,

probability of 1, 1 for all even number of steps is positive. But for all odd number of

steps, it's 0. And actually, you can prove that 2 is the greatest common divisor. So

this is the very easy example to show that it's periodic.

So there is a very simple thing to check if something is aperiodic. But it doesn't tell

me-- I mean, if it doesn't exist, we don't know its periodicity. So if there is a walk

from state 1 or state i to itself, and in this walk, we go from a state called, like, j, and

there is a loop here-- so Pjj is positive. What can we say about the periodicity of i?

No, the period is 1. Yeah, exactly.

So in this case, state i is always aperiodic. So if there's a walk, and in this walk,
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there is a loop, we always say that. But if it doesn't exist, can we say anything about

the periodicity? No. It might be periodic. It might be aperiodic. It's just a check. So

whenever you see a loop, it's aperiodic. Whenever you see a loop in the walk from i

to i, if there's a loop in the other side of the Markov chain, we don't care.

So the definition is fine. So just looking at this example, so if we're going from state

4 to 4, the number of states that we need is, like, 4, 6, 8. So 4, 1, 2, 3, 4 is a cycle,

or is a walk from 4, to 4, and the number of steps is 4. 4, 5, 6, 7, 8 9, 4 is another

walk. So this corresponds to n equal to 6. And 4, 1, 2 3, 4, 1, 2, 3, 4 is another walk

which corresponds to n equal to 8.

So you see that we can go like this or this or this. So these are different n's. But we

see that the greatest common divisor is 2. So the period of state 4 is 2. For state 7,

we have this thing. So the minimum number of steps to get from 7 to itself is 6, and

then you can get from 7 to 7 in 10 steps. And I hope you see it. So it's going to be

like this. And so again, the greatest common divisor is 2.

So we proved that if one state in a class is recurrent, and then all the states are

recurrent. And we said that recurrency corresponds to having a cycle, having a walk

from each state to itself. So this is the result, very similar to that one, which says

that all the states in the same class have the same period. And in this example, you

see it too. The proof is not very complicated, but it takes time to do that. So I'm not

going to do it. But it's all nice. So it's good if you look at the text, you'll see that.

AUDIENCE: [INAUDIBLE] only for recurrent states?

PROFESSOR: Yeah. For non-recurrent ones, it's--

AUDIENCE: [INAUDIBLE].

PROFESSOR: It's 1. It's aperiodic. OK, yeah. Periodicity is only defined for recurrent states, yeah.

We have another example here. I just want to show you. So I have two recurrent

classes in this example. Actually, three. So one of them is this class. What is the

period for a class corresponding to state 1? It's 1, because I have a loop. It's very

simple. For any n, there is a positive probability. What is the period for this class,
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states-- containing states 4 and 5?

Look at it. There is definitely a loop in this class. So it's 1. No, I said that whenever

there is a loop, the greatest common divisor is 1.

So for going from a state 5 to 5, we can go it in one step, two step, three step, four

step, five. So the greatest common divisor is 1. So here, I showed you that if there is

a loop, then it's definitely aperiodic, meaning that the greatest common divisor is 1.

AUDIENCE: [INAUDIBLE] have self-transitions [INAUDIBLE] 2?

PROFESSOR: No, I'm talking about 4 and 5. In what?

AUDIENCE: If they didn't have self-transitions? [INAUDIBLE].

PROFESSOR: Oh yeah. It would be like this one?

AUDIENCE: Yeah, [INAUDIBLE].

PROFESSOR: Yeah, definitely. So the class containing states 2 and 3, they are periodic.

AUDIENCE: Oh, wait. You just said [INAUDIBLE].

PROFESSOR: Oh, OK.

AUDIENCE: [INAUDIBLE].

PROFESSOR: Yeah, actually, we can define for transient states. Yeah, for transient classes, we

can define periodicity, like this case. Yeah, why not? This is another very important

thing that we can do in Markov chains. So I have a class of states in a Markov

chain, and they are periodic. So the period of each state in a class is greater than 1.

And you know that all the states in a class have the same period. So it means that I

can partition the class into these subclasses, where there is only-- OK, so-- do I

have that? I don't know.

So let's assume that d is equal to 3. And the whole team is the class of states that

I'm talking about. I can partition into three classes, in which I only have transitions
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from one of these to the other one. So there's no transition in this subclass to itself.

And the only transitions are from one class to the next one. So this is sort of

intuitive. So just looking at three states, if the period is 3, I can partition it in this way.

Or I can have it like two of these in this case, where I have like this. You see?

So there's a transition from this to these two states, and from these two states to

here, and from here to here. But I cannot have any transition from here to itself, or

from here to here, or here to here. Just look at the text for the proof and illustration.

But there exists this kind of partitioning. You should know that. Yeah, so if I am in a

class, in a subclass, the next state will be in the next subclass, for sure. So I know

this subclass in [INAUDIBLE]. And in two steps, I will be in the other [INAUDIBLE].

So you know that the set of classes that I can be in state, nd plus m.

So the other definition that you can say is that, again, you can choose one of the

states in a class that I talked about. So let's say that I choose a state 1. And I define

Sm-- Sm corresponds to that subclass-- are all the j's where S1j. So I told you that I

will have d classes, I can define each class like this. So this is all the possible states

that I can be in nd plus m step. So starting from state 1, in nd plus m step, I can be

in set of classes, for some m. So m can we big. But anyway, I call this the subclass

number m.

So let's just talk about something. So I said that in order to characterize the Markov

chains, I need to show you the initial state or initial state distribution. So it can be

deterministic, like I start from some specific state all the time, or there can be some

distribution, like px0, meaning that this is the distribution that I would have at my

initial state. I don't have it here, but using, I think, chain rules, we can easily find a

distribution of states at each time instant by having the transitional probabilities and

the initial state distribution. I just wrote it for you.

So for characterizing the Markov chain, I just need to tell you the transition

probabilities and the initial state. So a very good question is that, is there any kind of

stable behavior when time goes, like in very far future? So I had an example here,

just looking at here. So this is a very simple thing that I can say about this Markov
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chain. I know that in the very far future, there is a 0 probability that I'm in state 6.

And you know it why? Because any time that I am in state 6, I will go out of it with

probability 1. So there's no chance that I will be there.

Or I can say that, if I start from state 4, in very, very far future, I will not be in state 1,

4, or 5, for sure. You know why? Because there is a positive probability of going out

of these threes states, like here. And then if I go out of it, I can never come back. So

there's a chance of going from state 4 to state 2. And if I ever go there, I will never

come back.

So these are the statements that I can say about the state of behavior or the very,

very future behavior of the Markov chain. So the question is that, can we always say

these kind of statements? And what kind of statements, actually, we can have? And

so you see that, for example, for a state six [INAUDIBLE] example, I could say that

the probability of being in state 6 as n goes to infinity is 0. So can I always have

some kind of probability distribution over the states in the future as n goes to

infinity? This is a very good question.

And actually, it's related to a lot of applications that we have for Markov chains, like

the queuing theory. And you can have queues for almost anything. So one of the

most fundamental and interesting classes of states are the states that are called

ergodic, meaning that they are recurrent and aperiodic. So if I have a Markov chain

that has only one class, and this class is recurrent and aperiodic, then we call it a

ergodic Markov chain. So we had two theorems saying that if a state in a class is

recurrent, then all the states are recurrent. And if a state in a class is aperiodic, then

all the states are aperiodic.

So we can say that some classes are ergodic and some are not ergodic. So if the

Markov chain has only one class, and this class is aperiodic and recurrent, then we

call it a ergodic Markov chain. And the very important and nice property of ergodic

Markov chains is that they lose memory as n goes to infinity, meaning that whatever

initial distribution that I have for the initial state, I will lose memory of that. So

whatever state that I start in, or whatever distribution that I start in, after a while, for

21



a large enough n, the distribution of states does not depend on that.

So again, looking at that chain rule, I could say that I can find the probability

distribution of x by looking at this thing. And looking at these recursively, it all

depends on P of the initial distribution. And the ergodic Markov chains have this

property that, after a while, this distribution doesn't depend on initial distribution

anymore. So they lose memory. And actually, usually we can calculate the stable

distribution. So this thing goes to a limit which is called pj. So the important thing is

that it doesn't depend on i. It doesn't depend where i starts. Eventually, I will

converge the distribution. And then this distribution doesn't change.

So for a large enough n, I have this property for ergodic Markov chains. We will

have a lot to do with these properties in the future. So I was saying that this pj, pi j,

should be positive. So being in each state has a non-0 probability. The first thing

that I need to prove is that pijn and is nonzero for a large enough n for all j and all

the initial distributions. And I want to prove that this is true for ergodic Markov

chains. This is not true, generally. Well, this is more a combinatorial issue, but there

is a theorem here which says that for an ergodic Markov chain, for all n greater than

this value, I have non-0 probability of going from i to j.

So the thing that you should be careful here is that, for all n greater than this value.

So for going from a state 1 to 1, I can go it in six steps and 12 steps and so on. But I

cannot go it in 24 steps, I think. I cannot go from 1 to 1 in 25 steps. But I can go

from 1 to 1 in 26, 27, 28, 29, to 30. So for n greater than n minus 1 squared plus 1, I

can go from any state to any state. So I think this [? bond ?] is tied for state 4. Sorry,

maybe what I said is true for state 4. Yeah.

So I'm not going to prove this theorem. Well, actually you don't have the proof in the

notes, either. But yeah, you can look at the example and the cases that are

discussed in the notes. Is there any questions? Fine?
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