
Chapter 4 

RENEWAL PROCESSES 

4.1 Introduction 

Recall that a renewal process is an arrival process in which the interarrival intervals are 
positive,1 independent and identically distributed (IID) random variables (rv’s). Renewal 
processes (since they are arrival processes) can be specified in three standard ways, first, 
by the joint distributions of the arrival epochs S1, S2, . . . , second, by the joint distributions 
of the interarrival times X1,X2, . . . , and third, by the joint distributions of the counting 
rv’s, N(t) for t > 0. Recall that N(t) represents the number of arrivals to the system in the 
interval (0, t]. 

The simplest characterization is through the interarrival times Xi, since they are IID. Each 
arrival epoch Sn is simply the sum X1 + X2 + + Xn of n IID rv’s. The characterization · · · 
of greatest interest in this chapter is the renewal counting process, {N(t); t > 0}. Recall 
from (2.2) and (2.3) that the arrival epochs and the counting rv’s are related in each of the 
following equivalent ways. 

{Sn ≤ t} = {N(t) ≥ n}; {Sn > t} = {N(t) < n}. (4.1) 

The reason for calling these processes renewal processes is that the process probabilistically 
starts over at each arrival epoch, Sn. That is, if the nth arrival occurs at Sn = τ , then, 
counting from Sn = τ , the jth subsequent arrival epoch is at Sn+j − Sn = Xn+1 + +· · · 
Xn+j . Thus, given Sn = τ , {N(τ + t) − N(τ); t ≥ 0} is a renewal counting process with 
IID interarrival intervals of the same distribution as the original renewal process. This 
interpretation of arrivals as renewals will be discussed in more detail later. 

The major reason for studying renewal processes is that many complicated processes have 
randomly occurring instants at which the system returns to a state probabilistically equiva

1Renewal processes are often defined in a slightly more general way, allowing the interarrival intervals Xi 

to include the possibility 1 > Pr{Xi = 0} > 0. All of the theorems in this chapter are valid under this more 
general assumption, as can be verified by complicating the proofs somewhat. Allowing Pr{Xi = 0} > 0 
allows multiple arrivals at the same instant, which makes it necessary to allow N(0) to take on positive 
values, and appears to inhibit intuition about renewals. Exercise 4.3 shows how to view these more general 
renewal processes while using the definition here, thus showing that the added generality is not worth much. 
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lent to the starting state. These embedded renewal epochs allow us to separate the long term 
behavior of the process (which can be studied through renewal theory) from the behavior 
within each renewal period. 

Example 4.1.1 (Visits to a given state for a Markov chain). Suppose a recurrent finite-
state Markov chain with transition matrix [P ] starts in state i at time 0. Then on the first 
return to state i, say at time n, the Markov chain, from time n on, is a probabilistic replica 
of the chain starting at time 0. That is, the state at time 1 is j with probability Pij , and, 
given a return to i at time n, the probability of state j at time n + 1 is Pij . In the same 
way, for any m > 0, 

Pr{X1 = j, . . . ,Xm = k | X0 = i} = Pr{Xn+1 = j, . . . ,Xn+m = k | Xn = i} . (4.2) 

Each subsequent return to state i at a given time n starts a new probabilistic replica of the 
Markov chain starting in state i at time 0, . Thus the sequence of entry times to state i can 
be viewed as the arrival epochs of a renewal process. 

This example is important, and will form the key to the analysis of Markov chains with a 
countably infinite set of states in Chapter 5. At the same time, (4.2) does not quite justify 
viewing successive returns to state i as a renewal process. The problem is that the time of 
the first entry to state i after time 0 is a random variable rather than a given time n. This 
will not be a major problem to sort out, but the resolution will be more insightful after 
developing some basic properties of renewal processes. 

Example 4.1.2 (The G/G/m queue:). The customer arrivals to a G/G/m queue form 
a renewal counting process, {N(t); t > 0}. Each arriving customer waits in the queue until 
one of m identical servers is free to serve it. The service time required by each customer 
is a rv, IID over customers, and independent of arrival times and servers. The system is 
assumed to be empty for t < 0, and an arrival, viewed as customer number 0, is assumed at 
time 0. The subsequent interarrival intervals X1,X2, . . . , are IID. Note that N(t) for each 
t > 0 is the number of arrivals in (0, t], so arrival number 0 at t = 0 is not counted in N(t).2 

We define a new counting process, {N r(t); t > 0}, for which the renewal epochs are those 
particular arrival epochs in the original process {N(t); t > 0} at which an arriving customer 
sees an empty system (i.e., no customer in queue and none in service).3 We will show 
in Section 4.5.3 that {N r(t) t > 0} is actually a renewal process, but give an intuitive 
explanation here. Note that customer 0 arrives at time 0 to an empty system, and given a 
first subsequent arrival to an empty system, at say epoch S1 

r > 0, the subsequent customer 
interarrival intervals are independent of the arrivals in (0, S1

r) and are identically distributed 
to those earlier arrivals. The service times after S1 

r are also IID from those earlier. Finally, 
the conditions that cause queueing starting from the arrival to an empty system at t = S1 

r 

are the same as those starting from the arrival to an empty system at t = 0. 
2There is always a certain amount of awkwardness in ‘starting’ a renewal process, and the assumption of 

an arrival at time 0 which is not counted in N(t) seems strange, but simplifies the notation. The process is 
defined in terms of the IID inter-renewal intervals X1, X2, . . . . The first renewal epoch is at S1 = X1, and 
this is the point at which N(t) changes from 0 to 1. 

3Readers who accept without question that {Nr (t) t > 0} is a renewal process should be proud of their 
probabilistic intuition, but should also question exactly how such a conclusion can be proven. 
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In most situations, we use the words arrivals and renewals interchangably, but for this 
type of example, the word arrival is used for the counting process {N(t); t > 0} and the 
word renewal is used for {N r(t); t > 0}. The reason for being interested in {N r(t); t > 
0} is that it allows us to analyze very complicated queues such as this in two stages. 
First, {N(t); t > 0} lets us analyze the distribution of the inter-renewal intervals Xr ofn 
{N r(t); t > 0}. Second, the general renewal results developed in this chapter can be applied 
to the distribution on Xr to understand the overall behavior of the queueing system. n 

Throughout our study of renewal processes, we use X and E [X] interchangeably to denote 
the mean inter-renewal interval, and use σ2 or simply σ2 to denote the variance of the X 
inter-renewal interval. We will usually assume that X is finite, but, except where explicitly 
stated, we need not assume that σ2 is finite. This means, first, that σ2 need not be calculated 
(which is often difficult if renewals are embedded into a more complex process), and second, 
since modeling errors on the far tails of the inter-renewal distribution typically affect σ2 

more than X, the results are relatively robust to these kinds of modeling errors. 

Much of this chapter will be devoted to understanding the behavior of N(t) and N(t)/t as 
t becomes large. As might appear to be intuitively obvious, and as is proven in Exercise 
4.1, N(t) is a rv (i.e., not defective) for each t > 0. Also, as proven in Exercise 4.2, 
E [N(t)] < 1 for all t > 0. It is then also clear that N(t)/t, which is interpreted as the 
time-average renewal rate over (0,t], is also a rv with finite expectation. 

One of the major results about renewal theory, which we establish shortly, concerns the 
behavior of the rv’s N(t)/t as t → 1. For each sample point ω ∈ ≠, N(t,ω)/t is a 
nonnegative number for each t and {N(t,ω); t > 0} is a sample path of the counting 
renewal process, taken from (0, t] for each t. Thus limt→1 N(t,ω)/t, if it exists, is the 
time-average renewal rate over (0, 1) for the sample point ω. 

The strong law for renewal processes states that this limiting time-average renewal rate 
exists for a set of ω that has probability 1, and that this limiting value is 1/X. We shall 
often refer to this result by the less precise statement that the time-average renewal rate is 
1/X. This result is a direct consequence of the strong law of large numbers (SLLN) for IID 
rv’s. In the next section, we first state and prove the SLLN for IID rv’s and then establish 
the strong law for renewal processes. 

Another important theoretical result in this chapter is the elementary renewal theorem, 
which states that E [N(t)/t] also approaches 1/X as t →1. Surprisingly, this is more than 
a trival consequence of the strong law for renewal processes, and we shall develop several 
widely useful results such as Wald’s equality, in establishing this theorem. 

The final major theoretical result of the chapter is Blackwell’s theorem, which shows that, for 
appropriate values of δ, the expected number of renewals in an interval (t, t + δ] approaches 
δ/X as t → 1. We shall thus interpret 1/X as an ensemble-average renewal rate. This 
rate is the same as the above time-average renewal rate. We shall see the benefits of being 
able to work with both time-averages and ensemble-averages. 

There are a wide range of other results, ranging from standard queueing results to results 
that are needed in all subsequent chapters. 



4.2. THE STRONG LAW OF LARGE NUMBERS AND CONVERGENCE WP1 159 

4.2 The strong law of large numbers and convergence WP1 

The concept of a sequence of rv’s converging with probability 1 (WP1) was introduced 
briefly in Section 1.5.6. We discuss this type of convergence more fully here and establish 
some conditions under which it holds. Next the strong law of large numbers (SLLN) is 
stated for IID rv’s (this is essentially the result that the partial sample averages of IID rv’s 
converge to the mean WP1). A proof is given under the added condition that the rv’s have 
a finite fourth moment. Finally, in the following section, we state the strong law for renewal 
processes and use the SLLN for IID rv’s to prove it. 

4.2.1 Convergence with probability 1 (WP1) 

Recall that a sequence {Zn; n ≥ 1} of rv’s on a sample space ≠ is defined to converge WP1 
to a rv Z on ≠ if 

Pr
n
ω ∈ ≠ : lim Zn(ω) = Z(ω)

o 
= 1, 

n→1 

i.e., if the set of sample sequences {Zn(ω); n ≥ 1} that converge to Z(ω) has probability 1. 
This becomes slightly easier to understand if we define Yn = Zn −Z for each n. The sequence 
{Yn; n ≥ 1} then converges to 0 WP1 if and only if the sequence {Zn; n ≥ 1} converges to 
Z WP1. Dealing only with convergence to 0 rather than to an arbitrary rv doesn’t cut any 
steps from the following proofs, but it simplifies the notation and the concepts. 

We start with a simple lemma that provides a useful condition under which convergence to 
0 WP1 occurs. We shall see later how to use this lemma in an indirect way to prove the 
SLLN. 

Lemma 4.2.1. Let {Yn; n ≥ 1} be a sequence of rv’s, each with finite expectation. If P1
n=1 E [|Yn|] < 1, then Pr{ω : limn→1 Yn(ω) = 0} = 1. 

Proof: For any α, 0 < α < 1 and any integer m ≥ 1, the Markov inequality says that 

( 
m

)	 Pm 

Pr	
X 

|Yn| > α ≤ 
E [

Pm
n

α 
=1 |Yn|] = n=1 

α 
E [|Yn|] 

. (4.3) 
n=1 

Since |Yn| is non-negative, 
Pm |Yn| > α implies that 

Pm+1 |Yn| > α. Thus the left side n=1	 n=1 
of (4.3) is nondecreasing in m and we can go to the limit 

( 
m

) P1 E [ Yn ]
lim Pr

X 
Yn > α n=1 | |

. 
m→1 

n=1 

| | ≤ 
α 

Now let Am = {ω : 
Pm

n=1 |Yn(ω)| > α}. As seen above, the sequence {Am; m ≥ 1} is 
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nested, A1 ⊆ A2 · · · , so from property (1.9) of the axioms of probability,4 

( 
m

) o
lim Pr

X 
Yn > α = Pr

n[1 
Am 

m→1 
n=1 

| | 
m=1 

o
= Pr

n
ω : 

X
n

1 

=1 
|Yn(ω)| > α , (4.4) 

where we have used the fact that for any given ω, 
P1

n=1 Yn(ω) > α if and only if Pm
n=1 |Yn(ω)| > α for some m ≥ 1. Combining (4.3) with (4.4), 

| | 

1 P1 E [ Yn ]
Pr

(

ω : 
X 

(ω) > α

) 
n=1 | |

.|Yn | ≤ 
α 

n=1 

Looking at the complementary set and assuming α > 
P1

n=1 E [|Yn|], 

1 P1 E [ Yn ]
Pr

(

ω : 
X 

|Yn(ω)| ≤ α

) 

≥ 1 − n=1 

α 
| |

. (4.5) 
n=1 

For any ω such that 
P1 |Yn(ω)| ≤ α, we see that {|Yn(ω)|; n ≥ 1} is simply a sequence n=1 

of non-negative numbers with a finite sum. Thus the individual numbers in that sequence 
must approach 0, i.e., limn→1 |Yn(ω)| = 0 for each such ω. It follows then that 

1
Pr

n
ω : lim |Yn(ω)| = 0

o 
≥ Pr

(

ω : 
X 

|Yn(ω)| ≤ α

) 

. 
n→1 

n=1 

Combining this with (4.5), 

Pr
n
ω : lim |Yn(ω)| = 0

o 
≥ 1 − 

P1
n=1 

α 
E [|Yn|] 

. 
n→1 

This is true for all α, so Pr{ω : limn→1 |Yn| = 0} = 1, and thus Pr{ω : limn→1 Yn = 0} = 1. 

It is instructive to recall Example 1.5.1, illustrated in Figure 4.1, where {Yn; n ≥ 1} con
verges in probability but does not converge with probability one. Note that E [Yn] = 
1/(5j+1 − 1) for n ∈ [5j , 5j+1). Thus limn→1 E [Yn] = 0, but 

P1
n=1 E [Yn] = 1. Thus 

this sequence does not satisfy the conditions of the lemma. This helps explain how the 
conditions in the lemma exclude such sequences. 

Before proceeding to the SLLN, we want to show that convergence WP1 implies convergence 
in probability. We give an incomplete argument here with precise versions both in Exercise 
4.5 and Exercise 4.6. Exercise 4.6 has the added merit of expressing the set {ω : limn Yn(ω) = 
0} explicitly in terms of countable unions and intersections of simple events involving finite 
sets of the Yn. This representation is valid whether or not the conditions of the lemma are 
satisfied and shows that this set is indeed an event. 

4This proof probably appears to be somewhat nitpicking about limits. The reason for this is that the 
argument is quite abstract and it is difficult to develop the kind of intuition that ordinarily allows us to be 
somewhat more casual. 
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Figure 4.1: Illustration of a sample path of a sequence of rv’s {Yn; n ≥ 0} where, for 
each j ≥ 0, Yn = 1 for an equiprobable choice of n ∈ [5j , 5j+1) and Yn = 0 otherwise. 

Assume that {Yn; n ≥ 1} is a sequence of rv’s such that limn→1(Yn) = 0 WP1. Then for 
any ≤ > 0, each sample sequence {Yn(ω); n ≥ 1} that converges to 0 satisfies |Yn| ≤ ≤ for 
all sufficiently large n. This means (see Exercise 4.5) that limn→1 Pr{|Yn| ≤ ≤} = 1. Since 
this is true for all ≤ > 0, {Yn; n ≥ 0} converges in probability to 0. 

4.2.2 Strong law of large numbers (SLLN) 

We next develop the strong law of large numbers. We do not have the mathematical tools 
to prove the theorem in its full generality, but will give a fairly insightful proof under the 
additional assumption that the rv under discussion has a finite 4th moment. The theorem 
has a remarkably simple and elementary form, considering that it is certainly one of the 
most important theorems in probability theory. Most of the hard work in understanding the 
theorem comes from understanding what convergence WP1 means, and that has already 
been discussed. Given this understanding, the theorem is relatively easy to understand and 
surprisingly easy to prove (assuming a 4th moment). 

Theorem 4.2.1 (Strong Law of Large Numbers (SLLN )). For each integer n ≥ 1, 
let Sn = X1 + · · · + Xn, where X1,X2, . . . are IID rv’s satisfying E [|X|] < 1. Then 

Ω 
Sn(ω) 

æ
Pr ω : lim = X = 1. (4.6) 

n→1 n 

Proof (for the case where X = 0 and E 
£
X4

§ 
< 1): 

Assume that X = 0 and E 
£
X4

§ 
< 1. Denote E 

£
X4

§ 
by ∞. For any real number x, if 

|x| ≤ 1, then x2 ≤ 1, and if |x| > 1, then x2 < x4 . Thus x2 ≤ 1 + x4 for all x. It follows 
σ2 = E 

£
X2

§ 
≤ 1 + E 

£
X4

§
. Thus σ2 is finite if E 

£
X4

§ 
is. 

Now let Sn = X1 + + Xn where X1, . . . ,Xn are IID with the distribution of X.· · · 

E 
£
S4

§ 
= E [(X1 + + Xn)(X1 + + Xn)(X1 + + Xn)(X1 + + Xn)]n · · · · · · · · · · · · 

√ 
n

! 
n

√ 
n

!√ 
n

! 

= E 
X 

Xi 
X 

Xj 
X 

Xk 

X 
X`  

i=1 j=1 k=1 `=1 

n n n n


= 
XXXX 

E [XiXj XkX`] ,

i=1 j=1 k=1 `=1
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where we have multiplied out the product of sums to get a sum of n4 terms. 

For each i, 1 ≤ i ≤ n, there is a term in this sum with i = j = k = `. For each such term, 
E [XiXj XkX`] = E 

£
X4

§ 
= ∞. There are n such terms (one for each choice of i, 1 ≤ i ≤ n) 

and they collectively contribute n∞ to the sum E 
£
Sn

4
§
. Also, for each i, k = i, there is a 6

term with j = i and ` = k. For each of these n(n − 1) terms, E [XiXiXkXk] = σ4 . There 
are another n(n − 1) terms with j =6 i and k = i, ` = j. Each such term contributes σ4 to 
the sum. Finally, for each i 6= j, there is a term with ` = i and k = j. Collectively all of 
these terms contribute 3n(n − 1)σ4 to the sum. Each of the remaining terms is 0 since at 
least one of i, j, k, ̀  is different from all the others, Thus we have 

E 
£
S4

§ 
= n∞ + 3n(n − 1)σ4 .n

Now consider the sequence of rv’s {Sn
4/n4; n ≥ 1}. 

1
S4 ∏ 1

n∞ + 3n(n − 1)σ4X 
E 

∑ØØØØ n
n 
4 

ØØØØ = 
X 

n4 < 1, 
n=1 n=1 

where we have used the facts that the series 
P 

n≥1 1/n2 and the series 
P 

n≥1 1/n3 converge. 

Using Lemma 4.2.1 applied to {S4/n4; n ≥ 1}, we see that limn→1 S4/n4 = 0 WP1. For n n

each ω such that limn→1 S4(ω)/n4 = 0, the nonnegative fourth root of that sequence of n

nonnegative numbers also approaches 0. Thus limn→1 |Sn/n| = 0 WP1. 

The above proof assumed that E [X] = 0. It can be extended trivially to the case of an 
arbitrary finite X by replacing X in the proof with X − X. A proof using the weaker 
condition that σ2 

X < 1 will be given in Section 7.9.1. 

The technique that was used at the end of this proof provides a clue about why the con
cept of convergence WP1 is so powerful. The technique showed that if one sequence of 
rv’s ({Sn

4/n4; n ≥ 1}) converges to 0 WP1, then another sequence (|Sn/n|; n ≥ 1}) also 
converges WP1. We will formalize and generalize this technique in Lemma 4.3.2 as a major 
step toward establishing the strong law for renewal processes. 

4.3 Strong law for renewal processes 

To get an intuitive idea why N(t)/t should approach 1/X for large t, consider Figure 4.2. 
For any given sample function of {N(t); t > 0}, note that, for any given t, N(t)/t is the 
slope of a straight line from the origin to the point (t,N(t)). As t increases, this slope 
decreases in the interval between each adjacent pair of arrival epochs and then jumps up 
at the next arrival epoch. In order to express this as an equation, note that t lies between 
the N(t)th arrival (which occurs at SN(t)) and the (N(t) + 1)th arrival (which occurs at 
SN(t)+1). Thus, for all sample points, 

N(t) N(t) 
>

N(t) 
. (4.7)

SN(t) 
≥ 

SN(t)+1 t 
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Slope = N(t) 
t 

Slope = N(t) 
SN(t) 

Slope = N(t) 
SN(t)+1 

❆ 
❆❆ 

t 

N(t) 

0 S1 SN(t) SN(t)+1 
N(t) N(t)Figure 4.2: Comparison of a sample function of N(t)/t with SN (t) 

and SN(t)+1 
for the 

same sample point. Note that for the given sample point, N(t) is the number of arrivals 
up to and including t, and thus SN(t) is the epoch of the last arrival before or at time 
t. Similarly, SN(t)+1 is the epoch of the first arrival strictly after time t. 

We want to show intuitively why the slope N(t)/t in the figure approaches 1/X as t → 
1. As t increases, we would guess that N(t) increases without bound, i.e., that for each 
arrival, another arrival occurs eventually. Assuming this, the left side of (4.7) increases 
with increasing t as 1/S1, 2/S2, . . . , n/Sn, . . . , where n = N(t). Since Sn/n converges to X 
WP1 from the strong law of large numbers, we might be brave enough or insightful enough 
to guess that n/Sn converges to 1/X. 

We are now ready to state the strong law for renewal processes as a theorem. Before proving 
the theorem, we formulate the above two guesses as lemmas and prove their validity. 

Theorem 4.3.1 (Strong Law for Renewal Processes). For a renewal process with mean 
inter-renewal interval X < 1, limt→1 N(t)/t = 1/X WP1. 

Lemma 4.3.1. Let {N(t); t > 0} be a renewal counting process with inter-renewal rv’s 
{Xn; n ≥ 1}. Then (whether or not X < 1), limt→1 N(t) = 1 WP1 and limt→1 E [N(t)] = 
1. 

Proof of Lemma 4.3.1: Note that for each sample point ω, N(t,ω) is a nondecreasing 
real-valued function of t and thus either has a finite limit or an infinite limit. Using (4.1), 
the probability that this limit is finite with value less than any given n is 

lim Pr{N(t) < n} = lim Pr{Sn > t} = 1 − lim Pr{Sn ≤ t} . 
t→1 t→1 t→1 

Since the Xi are rv’s, the sums Sn are also rv’s (i.e., nondefective) for each n (see Section 
1.3.7), and thus limt→1 Pr{Sn ≤ t} = 1 for each n. Thus limt→1 Pr{N(t) < n} = 0 for 
each n. This shows that the set of sample points ω for which limt→1 N(t(ω)) < n has 
probability 0 for all n. Thus the set of sample points for which limt→1 N(t,ω) is finite has 
probability 0 and limt→1 N(t) = 1 WP1. 

Next, E [N(t)] is nondecreasing in t, and thus has either a finite or infinite limit as t →1. 
For each n, Pr{N(t) ≥ n} ≥ 1/2 for large enough t, and therefore E [N(t)] ≥ n/2 for such 
t. Thus E [N(t)] can have no finite limit as t →1, and limt→1 E [N(t)] = 1. 

The following lemma is quite a bit more general than the second guess above, but it will be 
useful elsewhere. This is the formalization of the technique used at the end of the proof of 
the SLLN. 
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Lemma 4.3.2. Let {Zn; n ≥ 1} be a sequence of rv’s such that limn→1 Zn = α WP1. Let 
f be a real valued function of a real variable that is continuous at α. Then 

lim f(Zn) = f(α) WP1. (4.8) 
n→1 

Proof of Lemma 4.3.2: First let z1, z2, . . . , be a sequence of real numbers such that 
limn→1 zn = α. Continuity of f at α means that for every ≤ > 0, there is a δ > 0 such 
that |f(z) − f(α)| < ≤ for all z such that |z − α| < δ. Also, since limn→1 zn = α, we know 
that for every δ > 0, there is an m such that |zn − α| ≤ δ for all n ≥ m. Putting these two 
statements together, we know that for every ≤ > 0, there is an m such that |f(zn)−f(α)| < ≤ 
for all n ≥ m. Thus limn→1 f(zn) = f(α). 

If ω is any sample point such that limn→1 Zn(ω) = α, then limn→1 f(Zn(ω)) = f(α). Since 
this set of sample points has probability 1, (4.8) follows. 

Proof of Theorem 4.3.1, Strong law for renewal processes: Since Pr{X > 0} = 1 for 
a renewal process, we see that X > 0. Choosing f(x) = 1/x, we see that f(x) is continuous 
at x = X. It follows from Lemma 4.3.2 that 

n 1
lim = WP1. 

n→1 Sn X 

From Lemma 4.3.1, we know that limt→1 N(t) = 1 with probability 1, so, with probability 
1, N(t) increases through all the nonnegative integers as t increases from 0 to 1. Thus 

N(t) n 1
lim = lim = WP1. 
t→1 SN(t) n→1 Sn X 

Recall that N(t)/t is sandwiched between N(t)/SN(t) and N(t)/SN(t)+1, so we can complete 
the proof by showing that limt→1 N(t)/SN(t)+1 = 1/X. To show this, 

N(t) n n+1 n 1
lim = lim = lim = WP1. 
t→1 SN(t)+1 n→1 Sn+1 n→1 Sn+1 n+1 X 

We have gone through the proof of this theorem in great detail, since a number of the 
techniques are probably unfamiliar to many readers. If one reads the proof again, after 
becoming familiar with the details, the simplicity of the result will be quite striking. The 
theorem is also true if the mean inter-renewal interval is infinite; this can be seen by a 
truncation argument (see Exercise 4.8). 

As explained in Section 4.2.1, Theorem 4.3.1 also implies the corresponding weak law of 
large numbers for N(t), i.e., for any ≤ > 0, limt→1 Pr

©
|N(t)/t − 1/X| ≥ ≤

™ 
= 0). This 

weak law could also be derived from the weak law of large numbers for Sn (Theorem 1.5.3). 
We do not pursue that here, since the derivation is tedious and uninstructive. As we will 
see, it is the strong law that is most useful for renewal processes. 

Figure 4.3 helps give some appreciation of what the strong law for N(t) says and doesn’t say. 
The strong law deals with time-averages, limt→1 N(t,ω)/t, for individual sample points ω; 
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these are indicated in the figure as horizontal averages, one for each ω. It is also of interest 
to look at time and ensemble-averages, E [N(t)/t], shown in the figure as vertical averages. 
Note that N(t,ω)/t is the time-average number of renewals from 0 to t, whereas E [N(t)/t] 
averages also over the ensemble. Finally, to focus on arrivals in the vicinity of a particular 
time t, it is of interest to look at the ensemble-average E [N(t + δ) − N(t)] /δ. 

Given the strong law for N(t), one would hypothesize that E [N(t)/t] approaches 1/X as 
t → 1. One might also hypothesize that limt→1 E [N(t + δ) − N(t)] /δ = 1/X, subject 
to some minor restrictions on δ. These hypotheses are correct and are discussed in detail 
in what follows. This equality of time-averages and limiting ensemble-averages for renewal 
processes carries over to a large number of stochastic processes, and forms the basis of 
ergodic theory. These results are important for both theoretical and practical purposes. 
It is sometimes easy to find time averages (just like it was easy to find the time-average 
N(t,ω)/t from the strong law of large numbers), and it is sometimes easy to find limiting 
ensemble-averages. Being able to equate the two then allows us to alternate at will between 
time and ensemble-averages. 

0 

0 

0 

N(t,ω1) 
t 

N(t,ω2) 
t 

N(t,ω3) 
t 

Time and ensemble 
Average over (0, τ) 

✲ 

✲ 

✲ 

Time Ave. 
at ω2 

Time Ave. 
at ω1 

Time Ave. 
at ω3 

Ensemble Average at t 
(1/δ)E [N(t + δ) − N(t)] 

τ t 

Figure 4.3: The time average at a sample point ω, the time and ensemble average 
from 0 to a given τ , and the ensemble-average in an interval (t, t + δ]. 

Note that in order to equate time-averages and limiting ensemble-averages, quite a few con
ditions are required. First, the time-average must exist in the limit t →1 with probability 
one and also have a fixed value with probability one; second, the ensemble-average must 
approach a limit as t →1; and third, the limits must be the same. The following example, 
for a stochastic process very different from a renewal process, shows that equality between 
time and ensemble averages is not always satisfied for arbitrary processes. 

Example 4.3.1. Let {Xi; i ≥ 1} be a sequence of binary IID random variables, each taking 
the value 0 with probability 1/2 and 2 with probability 1/2. Let {Mn; n ≥ 1} be the product 
process in which Mn = Xn. Since Mn = 2n if X1 to Xn each take the value 2 X1X2 · · · 
(an event of probability 2−n) and Mn = 0 otherwise, we see that limn→1 Mn = 0 with 
probability 1. Also E [Mn] = 1 for all n ≥ 1. Thus the time-average exists and equals 0 
with probability 1 and the ensemble-average exists and equals 1 for all n, but the two are 
different. The problem is that as n increases, the atypical event in which Mn = 2n has a 
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probability approaching 0, but still has a significant effect on the ensemble-average. 

Further discussion of ensemble averages is postponed to Section 4.6. Before that, we briefly 
state and discuss the central limit theorem for counting renewal processes and then introduce 
the notion of rewards associated with renewal processes. 

Theorem 4.3.2 (Central Limit Theorem (CLT) for N(t)). Assume that the inter-
renewal intervals for a renewal counting process {N(t); t > 0} have finite standard deviation 
σ > 0. Then 

(
N(t) − t/X 

)

lim Pr < α = Φ(α). (4.9)
t→1 σX 

−3/2√
t 

1where Φ(y) = 
R y exp(−x2/2)dx. −1 

√
2π 

This says that the distribution function of N(t) tends to the Gaussian distribution with 

mean t/X and standard deviation σX 
−3/2√

t. 

✻❍ 
❅ ❍ α

√
n σ

n ✛ ✲❄❍
■ 

❅ 
X 

✟✟✟✟✟✟✟✟✟✟✟✟✟✟✟✟✟✟✟

α
√

✟ 

n σ 

Slope = 1 
X 

nX t 
E [Sn] 

Figure 4.4: Illustration of the central limit theorem (CLT) for renewal processes. A 
given integer n is shown on the vertical axis, and the corresponding mean, E [Sn] = nX 
is shown on the horizontal axis. The horizontal line with arrows at height n indicates α 
standard deviations from E [Sn], and the vertical line with arrows indicates the distance 
below (t/X). 

The theorem can be proved by applying Theorem 1.5.2 (the CLT for a sum of IID rv’s) to 
Sn and then using the identity {Sn ≤ t} = {N(t) ≥ n}. The general idea is illustrated in 
Figure 4.4, but the details are somewhat tedious, and can be found, for example, in [16]. 
We simply outline the argument here. For any real α, the CLT states that 

Pr
©
Sn ≤ nX + α

√
nσ

™ 
≈ Φ(α), 

1where Φ(α) = 
R α exp(−x2/2) dx and where the approximation becomes exact in the −1 

√
2π 

limit n →1. Letting 

t = nX + α
√

nσ, 

and using {Sn ≤ t} = {N(t) ≥ n}, 

Pr{N(t) ≥ n} ≈ Φ(α). (4.10) 
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Since t is monotonic in n for fixed α, we can express n in terms of t, getting 

t ασ
√

n t 
n = 

X 
− 

X 
≈ 

X 
− ασt1/2(X)−3/2 . 

Substituting this into (4.10) establishes the theorem for −α, which establishes the theorem 
since α is arbitrary. The omitted details involve handling the approximations carefully. 

4.4 Renewal-reward processes; time-averages 

There are many situations in which, along with a renewal counting process {N(t); t > 0}, 
there is another randomly varying function of time, called a reward function {R(t); t > 0}. 
R(t) models a rate at which the process is accumulating a reward. We shall illustrate many 
examples of such processes and see that a “reward” could also be a cost or any randomly 
varying quantity of interest. The important restriction on these reward functions is that R(t) 
at a given t depends only on the location of t within the inter-renewal interval containing 
t and perhaps other random variables local to that interval. Before defining this precisely, 
we start with several examples. 

Example 4.4.1. (Time-average residual life) For a renewal counting process {N(t), t > 
0}, let Y (t) be the residual life at time t. The residual life is defined as the interval from t 
until the next renewal epoch, i.e., as SN(t)+1 − t. For example, if we arrive at a bus stop at 
time t and buses arrive according to a renewal process, Y (t) is the time we have to wait for 
a bus to arrive (see Figure 4.5). We interpret {Y (t); t ≥ 0} as a reward function. The time-
average of Y (t), over the interval (0, t], is given by5 (1/t) 

R 
0 
t Y (τ)dτ . We are interested in the 

limit of this average as t →1 (assuming that it exists in some sense). Figure 4.5 illustrates 
a sample function of a renewal counting process {N(t); t > 0} and shows the residual life 
Y (t) for that sample function. Note that, for a given sample function {Y (t) = y(t)}, the 
integral 

R 
0 
t y(τ) dτ is simply a sum of isosceles right triangles, with part of a final triangle 

at the end. Thus it can be expressed as 

n(t)Z t 

y(τ)dτ =
1 X 

x 2 
i + 

Z t 

y(τ )dτ,
20 i=1 τ=sn(t) 

where {xi; 0 < i < 1} is the set of sample values for the inter-renewal intervals. 

Since this relationship holds for every sample point, we see that the random variable R t Y (τ)dτ can be expressed in terms of the inter-renewal random variables Xn as 

N(t)Z t 

Y (τ)dτ =
1 X 

X2 + 
Z t 

Y (τ )dτ.
2 n 

τ =0 n=1 τ =SN(t) 

5
R 
0 
t Y (τ)dτ is a rv just like any other function of a set of rv’s. It has a sample value for each sample 

function of {N(t); t > 0}, and its distribution function could be calculated in a straightforward but tedious 
way. For arbitrary stochastic processes, integration and differentiation can require great mathematical 
sophistication, but none of those subtleties occur here. 

0 
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X1 

X2 

N(t) 
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Figure 4.5: Residual life at time t. For any given sample function of the renewal 
process, the sample function of residual life decreases linearly with a slope of −1 from 
the beginning to the end of each inter-renewal interval. 

Although the final term above can be easily evaluated for a given SN(t)(t), it is more 
convenient to use the following bound: 

N(t) N(t)+1
1 X 

X2 1 
Z t 

Y (τ)dτ ≤ 
1 X 

Xn
2 . (4.11)

2t n ≤ 
t τ=0 2t 

n=1 n=1 

The term on the left can now be evaluated in the limit t → 1 (for all sample functions 
except a set of probability zero) as follows: 

PN(t) X2 PN(t) X2 N(t)n=1 n n=1 nlim 
2t 

= lim 
N(t) 2t

. (4.12)
t→1 t→1 

Consider each term on the right side of (4.12) separately. For the first term, recall that PN(t)limt 0 N(t) = 1 with probability 1. Thus as t → 1, n=1 Xn
2/N(t) goes through the →

same set of values as 
Pk

n=1 X
2/k as k →1. Thus, using the SLLN, n

PN(t) X2 Pk X2 
n=1 n n=1 n = E 

£
X2

§
lim = lim WP1. 
t→1 N(t) k→1 k 

The second term on the right side of (4.12) is simply N(t)/2t. By the strong law for renewal 
processes, limt→1 N(t)/2t = 1/(2E [X]) WP1. Thus both limits exist WP1 and 

PN(t) X2 E 
£
X2

§
lim n=1 n = WP1. (4.13)
t→1 2t 2E [X] 

The right hand term of (4.11) is handled almost the same way: 
PN(t)+1 X2 PN(t)+1 X2 N(t) + 1 N(t) E 

£
X2

§
lim n=1 n = lim n=1 n = (4.14)
t→1 2t t→1 N(t) + 1 N(t) 2t 2E [X] 

. 
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Combining these two results, we see that, with probability 1, the time-average residual life 
is given by 

R t E 
£
X2

§
lim τ=0 Y (τ) dτ 

= (4.15)
t→1 t 2E [X] 

. 

Note that this time-average depends on the second moment of X; this is X2 + σ2 ≥ X
2 , so 

the time-average residual life is at least half the expected inter-renewal interval (which is 
not surprising). On the other hand, the second moment of X can be arbitrarily large (even 
infinite) for any given value of E [X], so that the time-average residual life can be arbitrarily 
large relative to E [X]. This can be explained intuitively by observing that large inter-
renewal intervals are weighted more heavily in this time-average than small inter-renewal 
intervals. 

Example 4.4.2. As an example of the effect of improbable but large inter-renewal intervals, 
let X take on the value ≤ with probability 1 − ≤ and value 1/≤ with probability ≤. Then, for 
small ≤, E [X] ∼ 1, E 

£
X2

§ 
∼ 1/≤, and the time average residual life is approximately 1/(2≤) 

(see Figure 4.6). 
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Figure 4.6: Average Residual life is dominated by large interarrival intervals. Each 
large interval has duration 1/≤, and the expected aggregate duration between successive 
large intervals is 1 − ≤ 

Example 4.4.3. (time-average Age) Let Z(t) be the age of a renewal process at time t 
where age is defined as the interval from the most recent arrival before (or at) t until t, i.e., 
Z(t) = t − SN(t). By convention, if no arrivals have occurred by time t, we take the age to 
be t (i.e., in this case, N(t) = 0 and we take S0 to be 0). 

As seen in Figure 4.16, the age process, for a given sample function of the renewal process, is 
almost the same as the residual life process—the isosceles right triangles are simply turned 
around. Thus the same analysis as before can be used to show that the time average of 
Z(t) is the same as the time-average of the residual life, 

R t Z(τ) dτ E 
£
X2

§
lim τ=0 = WP1. (4.16)
t→1 t 2E [X] 
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Figure 4.7: Age at time t: For any given sample function of the renewal process, the 
sample function of age increases linearly with a slope of 1 from the beginning to the 
end of each inter-renewal interval. 

Example 4.4.4. (time-average Duration) Let Xe(t) be the duration of the inter-renewal 
interval containing time t, i.e., X(t) = XN(t)+1 = SN(t)+1 − SN(t) (see Figure 4.8). It is e

clear that Xe(t) = Z(t) + Y (t), and thus the time-average of the duration is given by 

lim 

R 
τ
t 
=0 X

e(τ) dτ 
= 

E 
£
X2

§ 

WP1. (4.17)
t→1 t E [X] 

Again, long intervals are heavily weighted in this average, so that the time-average duration 
is at least as large as the mean inter-renewal interval and often much larger. 

t 

eX(t) 

X5 
✲✛ 

S1 S2 S3 S4 S5 S6 

Figure 4.8: Duration Xe(t) = XN(t) of the inter-renewal interval containing t. 

4.4.1 General renewal-reward processes 

In each of these examples, and in many other situations, we have a random function of 
time (i.e., Y (t), Z(t), or Xe(t)) whose value at time t depends only on where t is in the 
current inter-renewal interval (i.e., on the age Z(t) and the duration Xe(t) of the current 
inter-renewal interval). We now investigate the general class of reward functions for which 
the reward at time t depends at most on the age and the duration at t, i.e., the reward 
R(t) at time t is given explicitly as a function6 R(Z(t),Xe(t)) of the age and duration at t. 

6This means that R(t) can be determined at any t from knowing Z(t) and X(t). It does not mean that 
R(t) must vary as either of those quantities are changed. Thus, for example, R(t) could depend on only one 
of the two or could even be a constant. 



4.4. RENEWAL-REWARD PROCESSES; TIME-AVERAGES 171 

For the three examples above, the function R is trivial. That is, the residual life, Y (t), is 
given by Xe(t) − Z(t) and the age and duration are given directly. 

We now find the time-average value of R(t), namely, limt→1 
1 

R t R(τ) dτ . As in examples t 0 
4.4.1 to 4.4.4 above, we first want to look at the accumulated reward over each inter-renewal 
period separately. Define Rn as the accumulated reward in the nth renewal interval, 

Z Sn 
Z Sn 

Rn = R(τ ) d(τ) = R[Z(τ),Xe(τ)] dτ. (4.18) 
Sn−1 Sn−1 

For residual life (see Example 4.4.1), Rn is the area of the nth isosceles right triangle in 
Figure 4.5. In general, since Z(τ ) = τ − Sn−1, 

Z Sn 
Z Xn 

Rn = R(τ−Sn−1,Xn) dτ = R(z,Xn) dz. (4.19) 
Sn−1 z=0 

Note that Rn is a function only of Xn, where the form of the function is determined by 
R(Z,X). From this, it is clear that {Rn; n ≥ 1} is essentially7 a set of IID random variables. 
For residual life, R(z,Xn) = Xn − z, so the integral in (4.19) is X2/2, as calculated by n

inspection before. In general, from (4.19), the expected value of Rn is given by 

xZ 1 Z 
E [Rn] = R(z, x) dz dFX (x). (4.20) 

x=0 z=0 

Breaking 
R 
0 
t R(τ) dτ into the reward over the successive renewal periods, we get 

Z t Z S1 
Z S2 

Z SN(t) 
Z t 

R(τ) dτ = R(τ) dτ + R(τ) dτ + + R(τ) dτ + R(τ)dτ· · · 
0 0 S1 SN(t)−1 SN(t) 

N(t) Z t 

= 
X 

Rn + R(τ ) dτ. (4.21) 
n=1 SN(t) 

The following theorem now generalizes the results of Examples 4.4.1, 4.4.3, and 4.4.4 to 
general renewal-reward functions. 

Theorem 4.4.1. Let {R(t); t > 0} ≥ 0 be a nonnegative renewal-reward function for a 
renewal process with expected inter-renewal time E [X] = X < 1. If E [Rn] < 1, then with 
probability 1 

t1 
Z 

E [Rn]
lim R(τ) dτ = . (4.22) 

τ=0t→1 t X 

Proof: Using (4.21), the accumulated reward up to time t can be bounded between the 
accumulated reward up to the renewal before t and that to the next renewal after t, 

PN(t) Rn 
R t R(τ) dτ 

PN(t)+1 Rn . (4.23)n=1 τ=0 n=1 

t 
≤ 

t 
≤ 

t 
7One can certainly define functions R(Z, X) for which the integral in (4.19) is infinite or undefined for 

some values of Xn, and thus Rn becomes a defective rv. It seems better to handle this type of situation 
when it arises rather than handling it in general. 
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The left hand side of (4.23) can now be broken into 

PN(t) Rn 
PN(t) Rn N(t)n=1 

t 
= n

N
=1 

(t) t
. (4.24) 

Each Rn is a given function of Xn, so the Rn are IID. As t →1, N(t) →1, and, thus, as 
we have seen before, the strong law of large numbers can be used on the first term on the 
right side of (4.24), getting E [Rn] with probability 1. Also the second term approaches 1/X 
by the strong law for renewal processes. Since 0 < X < 1 and E [Rn] is finite, the product 
of the two terms approaches the limit E [Rn] /X. The right-hand inequality of (4.23) is 
handled in almost the same way, 

PN(t)+1 Rn 
PN(t)+1 Rn N(t) + 1 N(t)n=1 = n=1 . (4.25)

t N(t) + 1 N(t) t 

It is seen that the terms on the right side of (4.25) approach limits as before and thus 
the term on the left approaches E [Rn] /X with probability 1. Since the upper and lower 
bound in (4.23) approach the same limit, (1/t) 

R 
0 
t R(τ) dτ approaches the same limit and 

the theorem is proved. 

The restriction to nonnegative renewal-reward functions in Theorem 4.4.1 is slightly ar
tificial. The same result holds for non-positive reward functions simply by changing the 
directions of the inequalities in (4.23). Assuming that E [Rn] exists (i.e., that both its 
positive and negative parts are finite), the same result applies in general by splitting an 
arbitrary reward function into a positive and negative part. This gives us the corollary: 

Corollary 4.4.1. Let {R(t); t > 0} be a renewal-reward function for a renewal process with 
expected inter-renewal time E [X] = X < 1. If E [Rn] exists, then with probability 1 

t1 
Z 

E [Rn]
lim R(τ) dτ = . (4.26)
t→1 t τ=0 X 

Example 4.4.5. (Distribution of Residual Life) Example 4.4.1 treated the time-average 
value of the residual life Y (t). Suppose, however, that we would like to find the time-average 
distribution function of Y (t), i.e., the fraction of time that Y (t) ≤ y as a function of y. The 
approach, which applies to a wide variety of applications, is to use an indicator function 
(for a given value of y) as a reward function. That is, define R(t) to have the value 1 for all 
t such that Y (t) ≤ y and to have the value 0 otherwise. Figure 4.9 illustrates this function 
for a given sample path. Expressing this reward function in terms of Z(t) and Xe(t), we 
have 

( 
1 ; X(t) − Z(t) ≤ y 

R(t) = R(Z(t),Xe(t)) = 
e

. 
0 ; otherwise 

Note that if an inter-renewal interval is smaller than y (such as the third interval in Figure

4.9), then R(t) has the value one over the entire interval, whereas if the interval is greater
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Figure 4.9: Reward function to find the time-average fraction of time that {Y (t) ≤ y}. 
For the sample function in the figure, X1 > y, X2 > y, and X4 > y, but X3 < y 

than y, then R(t) has the value one only over the final y units of the interval. Thus 
Rn = min[y,Xn]. Note that the random variable min[y,Xn] is equal to Xn for Xn ≤ y, and 
thus has the same distribution function as Xn in the range 0 to y. Figure 4.10 illustrates 
this in terms of the complementary distribution function. From the figure, we see that 

Z 1 Z y 

E [Rn] = E [min(X, y)] = Pr{min(X, y) > x} dx = Pr{X > x} dx. (4.27) 
x=0 x=0 

Pr{X > x}
Pr{min(X, y) > x} °°✠ 

✛ 
°°✒ ✲ 

x 
y 

Figure 4.10: Rn for distribution of residual life. 

Let FY (y) = limt→1(1/t) 
R t R(τ) dτ denote the time-average fraction of time that the0 

residual life is less than or equal to y. From Theorem 4.4.1 and Eq.(4.27), we then have 

E [Rn] 1 
Z y 

FY (y) = = Pr{X > x} dx WP1. (4.28)
X X x=0 

As a check, note that this integral is increasing in y and approaches 1 as y →1. Note also 
that the expected value of Y , calculated from (4.28), is given by E 

£
X2

§ 
/2X, in agreement 

with (4.15). 

The same argument can be applied to the time-average distribution of age (see Exercise 
4.12). The time-average fraction of time, FZ (z), that the age is at most z is given by 

z1 
Z 

FZ (z) = Pr{X > x} dx WP1. (4.29)
X x=0 

In the development so far, the reward function R(t) has been a function solely of the age 
and duration intervals, and the aggregate reward over the nth inter-renewal interval is a 
function only of Xn. In more general situations, where the renewal process is embedded in 
some more complex process, it is often desirable to define R(t) to depend on other aspects 
of the process as well. The important thing here is for {Rn; n ≥ 1} to be an IID sequence. 
How to achieve this, and how it is related to queueing systems, is described in Section 
4.5.3. Theorem 4.4.1 clearly remains valid if {Rn; n ≥ 1} is IID. This more general type 
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of renewal-reward function will be required and further discussed in Sections 4.5.3 to Rss7 
where we discuss Little’s theorem and the M/G/1 expected queueing delay, both of which 
use this more general structure. 

Limiting time-averages are sometimes visualized by the following type of experiment. For 
some given large time t, let T be a uniformly distributed random variable over (0, t]; T is 
independent of the renewal-reward process under consideration. Then (1/t) 

R 
0 
t R(τ) dτ is 

the expected value (over T ) of R(T ) for a given sample path of {R(τ ); τ>0}. Theorem 4.4.1 
states that in the limit t → 1, all sample paths (except a set of probability 0) yield the 
same expected value over T . This approach of viewing a time-average as a random choice 
of time is referred to as random incidence. Random incidence is awkward mathematically, 
since the random variable T changes with the overall time t and has no reasonable limit. 
It also blurs the distinction between time and ensemble-averages, so it will not be used in 
what follows. 

4.5 Random stopping trials 

Visualize performing an experiment repeatedly, observing independent successive sample 
outputs of a given random variable (i.e., observing a sample outcome of X1,X2, . . . where 
the Xi are IID). The experiment is stopped when enough data has been accumulated for 
the purposes at hand. 

This type of situation occurs frequently in applications. For example, we might be required 
to make a choice from several hypotheses, and might repeat an experiment until the hy
potheses are sufficiently discriminated. If the number of trials is allowed to depend on the 
outcome, the mean number of trials required to achieve a given error probability is typically 
a small fraction of the number of trials required when the number is chosen in advance. 
Another example occurs in tree searches where a path is explored until further extensions 
of the path appear to be unprofitable. 

The first careful study of experimental situations where the number of trials depends on the 
data was made by the statistician Abraham Wald and led to the field of sequential analysis 
(see [21]). We study these situations now since one of the major results, Wald’s equality, 
will be useful in studying E [N(t)] in the next section. Stopping trials are frequently useful 
in the study of random processes, and in particular will be used in Section 4.7 for the 
analysis of queues, and again in Chapter 7 as central topics in the study of Random walks 
and martingales. 

An important part of experiments that stop after a random number of trials is the rule for 
stopping. Such a rule must specify, for each sample path, the trial at which the experiment 
stops, i.e., the final trial after which no more trials are performed. Thus the rule for stopping 
should specify a positive, integer valued, random variable J , called the stopping time, or 
stopping trial, mapping sample paths to this final trial at which the experiment stops. 

We view the sample space as including the set of sample value sequences for the never-ending 
sequence of random variables X1,X2, . . . . That is, even if the experiment is stopped at the 
end of the second trial, we still visualize the 3rd, 4th, . . . random variables as having sample 
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values as part of the sample function. In other words, we visualize that the experiment 
continues forever, but that the observer stops watching at the end of the stopping point. 
From the standpoint of applications, the experiment might or might not continue after the 
observer stops watching. From a mathematical standpoint, however, it is far preferable to 
view the experiment as continuing. This avoids confusion and ambiguity about the meaning 
of IID rv’s when the very existence of later variables depends on earlier sample values. 

The intuitive notion of stopping a sequential experiment should involve stopping based on 
the data (i.e., the sample values) gathered up to and including the stopping point. For 
example, if X1,X2, . . . , represent the succesive changes in our fortune when gambling, we 
might want to stop when our cumulative gain exceeds some fixed value. The stopping trial 
n then depends on the sample values of X1,X2, . . . ,Xn. At the same time, we want to 
exclude from stopping trials those rules that allow the experimenter to peek at subsequent 
values before making the decision to stop or not.8 This leads to the following definition. 

Definition 4.5.1. A stopping trial (or stopping time9) J for a sequence of rv’s X1,X2, . . . , 
is a positive integer-valued rv such that for each n ≥ 1, the indicator rv I{J=n} is a function 
of {X1,X2, . . . ,Xn}. 

The last clause of the definition means that any given sample value x1, . . . , xn for X1, . . . ,Xn 

uniquely determines whether the corresponding sample value of J is n or not. Note that 
since the stopping trial J is defined to be a positive integer-valued rv, the events {J = n}
and {J = m} for m < n are disjoint events, so stopping at trial m makes it impossible to 
also stop at n for a given sample path. Also the union of the events {J = n} over n ≥ 1 
has probability 1. Aside from this final restriction, the definition does not depend on the 
probability measure and depends solely on the set of events {J = n} for each n. In many 
situations, it is useful to relax the definition further to allow J to be a possibly-defective rv. 
In this case the question of whether stopping occurs with probability 1 can be postponed 
until after specifying the disjoint events {J = n} over n ≥ 1. 

Example 4.5.1. Consider a Bernoulli process {Xn; n ≥ 1}. A very simple stopping trial 
for this process is to stop at the first occurrence of the string (1, 0). Figure 4.11 illustrates 
this stopping trial by viewing it as a truncation of the tree of possible binary sequences. 

The event {J = 2}, i.e., the event that stopping occurs at trial 2, is the event {X1=1, X2=0}. 
Similarly, the event {J = 3} is {X1=1, X2=1, X3=0} 

S
{X1=0, X2=1, X3=0}. The dis

jointness of {J = n} and {J = m} for n =6 m is represented in the figure by terminating 
the tree at each stopping node. It can be seen that the tree never dies out completely, and 
in fact, for each trial n, the number of stopping nodes is n − 1. However, the probability 
that stopping has not occurred by trial n goes to zero exponentially with n, which ensures 
that J is a random variable. 

8For example, poker players do not take kindly to a player who attempts to withdraw his bet when 
someone else wins the hand. Similarly, a statistician gathering data on product failures should not respond 
to a failure by then recording an earlier trial as a stopping time, thus not recording the failure. 

9Stopping trials are more often called stopping times or optional stopping times in the literature. In our 
first major application of a stopping trial, however, the stopping trial is the first trial n at which a renewal 
epoch Sn exceeds a given time t . Viewing this trial as a time generates considerable confusion. 
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Figure 4.11: A tree representing the set of binary sequences, with a stopping rule 
viewed as a pruning of the tree. The particular stopping rule here is to stop on the first 
occurrence of the string (1, 0). The leaves of the tree (i.e., the nodes at which stopping 
occurs) are marked with large dots and the intermediate nodes (the other nodes) with 
small dots. Note that each leaf in the tree has a one-to-one correspondence with an 
initial segment of the tree, so the stopping nodes can be unambiguously viewed either 
as leaves of the tree or initial segments of the sample sequences. 

Representing a stopping rule by a pruned tree can be used for any discrete random sequence, 
although the tree becomes quite unwieldy in all but trivial cases. Visualizing a stopping 
rule in terms of a pruned tree is useful conceptually, but stopping rules are usually stated in 
other terms. For example, we shortly consider a stopping trial for the interarrival intervals 
of a renewal process as the first n for which the arrival epoch Sn satisfies Sn > t for some 
given t > 0. 

4.5.1 Wald’s equality 

An important question that arises with stopping trials is to evaluate the sum SJ of the 
random variables up to the stopping trial, i.e., SJ = 

PJ
n=1 Xn. Many gambling strategies 

and investing strategies involve some sort of rule for when to stop, and it is important to 
understand the rv SJ (which can model the overall gain or loss up to that trial). Wald’s 
equality is very useful in helping to find E [SJ ]. 

Theorem 4.5.1 (Wald’s equality). Let {Xn; n ≥ 1} be a sequence of IID rv’s, each 
of mean X. If J is a stopping trial for {Xn; n ≥ 1} and if E [J ] < 1, then the sum 
SJ = X1 + X2 + + XJ at the stopping trial J satisfies· · · 

E [SJ ] = XE [J ] . (4.30) 

Proof: Note that Xn is included in SJ = 
PJ Xn whenever n ≤ J , i.e., whenever the n=1 

indicator function I = 1. Thus{J≥n} 

1
SJ = 

X 
XnI{J≥n} . (4.31) 

n=1 
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This includes Xn as part of the sum if stopping has not occurred before trial n. The event 
{J ≥ n} is the complement of {J < n} = {J = 1} 

S S
{J = n − 1}. All of these latter · · · 

events are determined by X1, . . . ,Xn−1 and are thus independent of Xn. It follows that Xn 

and {J < n} are independent and thus Xn and {J ≥ n} are also independent.10 Thus 

E 
£
XnI

§ 
= XE 

£
I

§ 
.{J≥n} {J≥n}

We then have 
hX1 i

E [SJ ] = E 
n=1 

XnI{J≥n} 

= 
X1 

E 
£
XnI

§ 
(4.32) 

n=1 {J≥n}

= 
X1 

XE 
£
I

§
n=1 {J≥n}

= XE [J ] . (4.33) 

The interchange of expectation and infinite sum in (4.32) is obviously valid for a finite sum, 
and is shown in Exercise 4.18 to be valid for an infinite sum if E [J ] < 1. The example 
below shows that Wald’s equality can be invalid when E [J ] = 1. The final step above 
comes from the observation that E 

£
I

§ 
= Pr{J ≥ n}. Since J is a positive integer rv, {J≥n}

E [J ] = 
P1

n=1 Pr{J ≥ n}. One can also obtain the last step by using J = 
P1

n=1 I{J≥n} (see 
Exercise 4.13). 

What this result essentially says in terms of gambling is that strategies for when to stop 
betting are not really effective as far as the mean is concerned. This sometimes appears 
obvious and sometimes appears very surprising, depending on the application. 

Example 4.5.2 (Stop when you’re ahead in coin tossing). We can model a (biased) 
coin tossing game as a sequence of IID rv’s X1,X2, . . . where each X is 1 with probability 
p and −1 with probability 1 − p. Consider the possibly-defective stopping trial J where J 
is the first n for which Sn = X1 + + Xn = 1, i.e., the first trial at which the gambler is · · · 
ahead. 

We first want to see if J is a rv, i.e., if the probability of eventual stopping, say θ = 
Pr{J < 1}, is 1. We solve this by a frequently useful trick, but will use other more 
systematic approaches in Chapters 5 and 7 when we look at this same example as a birth-
death Markov chain and then as a simple random walk. Note that Pr{J = 1} = p, i.e., 
S1 = 1 with probability p and stopping occurs at trial 1. With probability 1 − p, S1 = −1. 
Following S1 = −1, the only way to become one ahead is to first return to Sn = 0 for 
some n > 1, and, after the first such return, go on to Sm = 1 at some later trial m. The 
probability of eventually going from -1 to 0 is the same as that of going from 0 to 1, i.e., θ. 
Also, given a first return to 0 from -1, the probability of reaching 1 from 0 is θ. Thus, 

θ = p + (1 − p)θ2 . 

10This can be quite confusing initially, since (as seen in the example of Figure 4.11) Xn is not necessarily 
independent of the event {J = n}, nor of {J = n + 1}, etc. In other words, given that stopping has not 
occurred before trial n, then Xn can have a great deal to do with the trial at which stopping occurs. However, 
as shown above, Xn has nothing to do with whether {J < n} or {J ≥ n}. 
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This is a quadratic equation in θ with two solutions, θ = 1 and θ = p/(1 − p). For p > 1/2, 
the second solution is impossible since θ is a probability. Thus we conclude that J is a rv. 
For p = 1/2 (and this is the most interesting case), both solutions are the same, θ = 1, and 
again J is a rv. For p < 1/2, the correct solution11 is θ = p/(1 − p). Thus θ < 1 so J is a 
defective rv. 

For the cases where p ≥ 1/2, i.e., where J is a rv, we can use the same trick to evaluate 
E [J ], 

E [J ] = p + (1 − p)(1 + 2E [J ]). 

The solution to this is 
1 1 

E [J ] = = 
2(1 − p) 2p − 1

. 

We see that E [J ] is finite for p > 1/2 and infinite for p = 1/2. 

For p > 1/2, we can check that these results agree with Wald’s equality. In particular, since 
SJ is 1 with probability 1, we also have E [SJ ] = 1. Since X = 2p − 1 and E [J ] = 1/(2p − 1), 
Wald’s equality is satisfied (which of course it has to be). 

For p = 1/2, we still have SJ = 1 with probability 1 and thus E [SJ ] = 1. However X = 0 so 
XE [J ] has no meaning and Wald’s equality breaks down. Thus we see that the restriction 
E [J ] < 1 in Wald’s equality is indeed needed. These results are tabulated below. 

p > 12 p = 12 p < 12 

p .Pr{J < 1} 1 11−p 

1E [J ] 2p−11 1 

It is surprising that with p = 1/2, the gambler can eventually become one ahead with 
probability 1. This has little practical value, first because the required expected number 
of trials is infinite, and second (as will be seen later) because the gambler must risk a 
potentially infinite capital. 

4.5.2 Applying Wald’s equality to m(t) = E [N(t)] 

Let {Sn; n ≥ 1} be the arrival epochs and {Xn; n ≥ 1} the interarrival intervals for a 
renewal process. For any given t > 0, let J be the trial n for which Sn first exceeds t. Note 
that n is specified by the sample values of {X1, . . . ,Xn} and thus J is a possibly-defective 
stopping trial for {Xn; n ≥ 1}. 

Since n is the first trial for which Sn > t, we see that Sn−1 ≤ t and Sn > t. Thus N(t) 
is n − 1 and n is the sample value of N(t) + 1. Since this is true for all sample sequences, 
J = N(t) + 1. Since N(t) is a non-defective rv, J is also, so J is a stopping trial for 
{Xn; n ≥ 1}. 

11This will be shown when we view this example as a birth-death Markov chain in Chapter 5. 
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We can then employ Wald’s equality to obtain 

E 
£
SN(t)+1

§ 
= XE [N(t) + 1] = X[m(t) + 1]. (4.34) 

E 
£
SN(t)+1

§
m(t) = − 1. (4.35)

X 

As is often the case with Wald’s equality, this provides a relationship between two quantities, 
m(t) and E 

£
SN(t)+1

§
, that are both unknown. This will be used in proving the elementary 

renewal theorem by upper and lower bounding E 
£
SN(t)+1

§
. The lower bound is easy, since 

E 
£
SN(t)+1

§ 
≥ t, and thus m(t) ≥ t/X − 1. It follows that 

m(t) 1 1 
t 
≥ 

X 
− 

t
. (4.36) 

We derive an upper bound on E 
£
SN(t)+1

§ 
in the next section. First, however, as a san

tity check, consider Figure 4.12 which illustrates (4.35) for the case where each Xn is a 
deterministic rv where Xn = X with probability 1. 

✏✏✏✏✏✏✏✏✏✏✏✏✏✏✏✏✏✏✏✏✏✏✏✏ 

Slope = 1 
X 

t 

m(t) 

m(t) + 1 

0 E 
£
SN(t)

§ 
t E 

£
SN (t)+1

§ 

Figure 4.12: Illustration of (4.34) for the special case where X is deterministic. Note 
that m(t), as a function of t, is then the illustrated staircase function. On each increment 
of t by X, m(t) increases by one. Then m(t)+1 and E 

£
SN(t)+1

§ 
are two sides of a right 

triangle of slope 1/X, yielding (4.34). 

It might be puzzling why we used N(t)+1 rather than N(t) as a stopping trial for the epochs 
{Si; i ≥ 1} in this application of Wald’s equality. To understand this, assume for example 
that N(t) = n. When an observer sees the sample values of S1, . . . , Sn, with Sn < t, the 
observer typically cannot tell (on the basis of S1, . . . , Sn alone) whether any other arrivals 
will occur in the interval (Sn, t]. In other words, N(t) = n implies that Sn ≤ t, but Sn < t 
does not imply that N(t) = n. On the other hand, still assuming N(t) = n, an observer 
seeing S1, . . . , Sn+1 knows that N(t) = n. 

Any stopping trial (for an arbitrary sequence of rv’s {Sn; n ≥ 1}) can be viewed as an 
experiment where an observer views sample values s1, s2, . . . , in turn until the stopping rule 
is satisfied. The stopping rule does not permit either looking ahead or going back to change 
an earlier decision. Thus the rule: stop at N(t)+1 (for the renewal epochs {Sn; n ≥ 1}) 
means stop at the first sample value si that exceeds t. Stopping at the final sample value 
sn ≤ t is not necessarily possible without looking ahead to the following sample value. 
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4.5.3 Stopping trials, embedded renewals, and G/G/1 queues 

The above definition of a stopping trial is quite restrictive in that it refers only to a single 
sequence of rv’s. In many queueing situations, for example, there is both a sequence of 
interarrival times {Xi; i ≥ 1} and a sequence of service times {Vi; i ≥ 0}. Here Xi is the 
interarrival interval between customer i − 1 and i, where an initial customer 0 is assumed 
to arrive at time 0, and X1 is the arrival time for customer 1. The service time of customer 
0 is then V0 and each Vi, i > 0 is the service time of the corresponding ordinary customer. 
Customer number 0 is not ordinary in the sense that it arrives at the fixed time 0 and is 
not counted in the arrival counting process {N(t); t > 0}. 

Example 4.5.3 (G/G/1 queues:). Consider a G/G/1 queue (the single server case of 
the G/G/m queue described in Example 4.1.2). We assume that the customers are served 
in First-Come-First-Served (FCFS) order.12 Both the interarrival intervals {Xi; i ≥ 1} and 
the service times {Vi; i ≥ 0} are assumed to be IID and the service times are assumed to 
be independent of the interarrival intervals. Figure 4.13 illustrates a sample path for these 
arrivals and departures. 

s3 

Arrivals 

Departures0 
2 

3 
s1 

s2 

v0 ✲✛ 

v1 ✲✛ 

v2 ✲✛ 

v3 ✲✛ 

x1 ✲✛ 

x2 ✲✛ 

x3 ✲✛ 

wq 
1 ✲✛ 

wq 
2 ✲✛ 

x2 + wq = wq 
1 + v1✛ ✲ 

1 

0 

2 

Figure 4.13: Sample path of arrivals and departures from a G/G/1 queue. Customer 
0 arrives at time 0 and enters service immediately. Customer 1 arrives at time s1 = x1. 
For the case shown above, customer 0 has not yet departed, i.e., x1 < v0, so customer 1 
is queued for the interval w


q 
= v0 − x1 before entering service. As illustrated, customer 

1’s system time (queueing time plus service time) is w1 

q 
1 

+v1. Note that the sample = w
1 
path of arrivals in the figure is one plus the sample path of the arrival counting process 
{N(t); t > 0}, since the counting process, by convention, does not count the initial 
arrival at time 0. 

Customer 2 arrives at s2 = x1 + x2. For the case shown above, this is before customer 
1 departs at v0 + v1. Thus, customer 2’s wait in queue is w2 

q As

qq 

= v0 + v1 − x1 − x2. 
is also equal to customer 1’s system time, so w2illustrated above, x2 +wq +v1 −x2. 

Customer 3 arrives when the system is empty, so it enters service immediately with no 
= w12 

wait in queue, i.e., w
q 
3 = 0.


The figure illustrates a sample path for which X1 < V0, so arrival number 1 waits in 
queue for W1 

q = V0 − X1. If X1 ≥ V0, on the other hand, then customer one enters 
service immediately, i.e., customer one ‘sees an empty system.’ In general, then W1 

q = 
max(V0 − X1, 0). In the same way, as illustrated in the figure, if W q > 0, then customer 2 1 

12For single server queues, this is sometimes referred to as First-In-First-Out (FIFO) service. 
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waits for W q + V1 − X2 if positive and 0 otherwise. This same formula works if W q = 0, so 1 1 
W2 

q = max(W1 
q + V1 − X2, 0). In general, it can be seen that 

Wi
q = max(Wi

q 
−1 + Vi−1 − Xi, 0). (4.37) 

This equation will be analyzed further in Section 7.2 where we are interested in queueing 
delay and system delay. Here our objectives are simpler, since we only want to show that 
the subsequence of customer arrivals i for which the event {W q = 0} is satisfied form the i 
renewal epochs of a renewal process. To do this, first observe from (4.37) (using induction if 
desired) that W q is a function of (X1, . . . ,Xi) and (V0, . . . , Vi−1). Thus, if we let J be the i 
smallest i > 0 for which W q = 0, then IJ=i is a function of (X1, . . . ,Xi) and (V0, . . . , Vi−1).i 

We now interrupt the discussion of G/G/1 queues with the following generalization of the 
definition of a stopping trial. 

Definition 4.5.2 (Generalized stopping trials). A generalized stopping trial J for a 
sequence of pairs of rv’s (X1, V1), (X2, V2) . . . , is a positive integer-valued rv such that, for 
each n ≥ 1, the indicator rv I{J=n} is a function of X1, V1,X2, V2, . . . ,Xn, Vn. 

Wald’s equality can be trivially generalized for these generalized stopping trials. 

Theorem 4.5.2 (Generalized Wald’s equality). Let {(Xn, Vn); n ≥ 1} be a sequence 
of pairs of rv’s, where each pair is independent and identically distributed (IID) to all other 
pairs. Assume that each Xi has finite mean X. If J is a stopping trial for {(Xn, Vn); n ≥ 1}
and if E [J ] < 1, then the sum SJ = X1 + X2 + + XJ satisfies· · · 

E [SJ ] = XE [J ] . (4.38) 

The proof of this will be omitted, since it is the same as the proof of Theorem 4.5.1. In 
fact, the definition of stopping trials could be further generalized by replacing the rv’s Vi 

by vector rv’s or by a random number of rv’s , and Wald’s equality would still hold.13 

For the example of the G/G/1 queue, we take the sequence of pairs to be {(X1, V0), (X2, V1), . . . , }. 
Then {(Xn, Vn−1; n ≥ 1} satisfies the conditions of Theorem 4.5.2 (assuming that E [Xi] < 
1). Let J be the generalized stopping rule specifying the number of the first arrival to find 
an empty queue. Then the theorem relates E [SJ ], the expected time t > 0 until the first 
arrival to see an empty queue, and E [J ], the expected number of arrivals until seeing an 
empty queue. 

It is important here, as in many applications, to avoid the confusion created by viewing 
J as a stopping time. We have seen that J is the number of the first customer to see an 
empty queue, and SJ is the time until that customer arrives. 

There is a further possible timing confusion about whether a customer’s service time is 
determined when the customer arrives or when it completes service. This makes no differ
ence, since the ordered sequence of pairs is well-defined and satisfies the appropriate IID 
condition for using the Wald equality. 

13In fact, J is sometimes defined to be a stopping rule if I{J≥n} is independent of Xn, Xn+1, . . . for each 
n. This makes it easy to prove Wald’s equality, but quite hard to see when the definition holds, especially 
since I{J=n}, for example, is typically dependent on Xn (see footnote 7). 
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As is often the case with Wald’s equality, it is not obvious how to compute either quantity in 
(4.38), but it is nice to know that they are so simply related. It is also interesting to see that, 
although successive pairs (Xi, Vi) are assumed independent, it is not necessary for Xi and 
Vi to be independent. This lack of independence does not occur for the G/G/1 (or G/G/m) 
queue, but can be useful in situations such as packet networks where the interarrival time 
between two packets at a given node can depend on the service time (the length) of the 
first packet if both packets are coming from the same node. 

Perhaps a more important aspect of viewing the first renewal for the G/G/1 queue as a stop
ping trial is the ability to show that successive renewals are in fact IID. Let X2,1,X2,2, . . . 
be the interarrival times following J , the first arrival to see an empty queue. Conditioning 
on J = j, we have X2,1 =Xj+1, X2,2 =Xj+2, . . . ,. Thus {X2,k; k ≥ 1} is an IID sequence 
with the original interarrival distribution. Similarly {(X2,k, V2,k); k ≥ 1} is a sequence of 
IID pairs with the original distribution. This is valid for all sample values j of the stopping 
trial J . Thus {(X2,k, V2,k); k ≥ 1} is statistically independent of J and (Xi, Vi); 1 ≤ i ≤ J . 

The argument above can be repeated for subsequent arrivals to an empty system, so we 
have shown that successive arrivals to an empty system actually form a renewal process.14 

One can define many different stopping rules for queues, such as the first trial at which a 
given number of customers are in the queue. Wald’s equality can be applied to any such 
stopping rule, but much more is required for the stopping trial to also form a renewal point. 
At the first time when n customers are in the system, the subsequent departure times 
depend partly on the old service times and partly on the new arrival and service times, so 
the required independence for a renewal point does not exist. Stopping rules are helpful 
in understanding embedded renewal points, but are by no means equivalent to embedded 
renewal points. 

Finally, nothing in the argument above for the G/G/1 queue made any use of the FCFS 
service discipline. One can use any service discipline for which the choice of which customer 
to serve at a given time t is based solely on the arrival and service times of customers in 
the system by time t. In fact, if the server is never idle when customers are in the system, 
the renewal epochs will not depend on the service descipline. It is also possible to extend 
these arguments to the G/G/m queue, although the service discipline can affect the renewal 
points in this case. 

4.5.4 Little’s theorem 

Little’s theorem is an important queueing result stating that the expected number of cus
tomers in a queueing system is equal to the product of the arrival rate and the expected 
time each customer waits in the system. This result is true under very general conditions; 
we use the G/G/1 queue with FCFS service as a specific example, but the reason for the 
greater generality will be clear as we proceed. Note that the theorem does not tell us how 

14Confession by author: For about 15 years, I mistakenly believed that it was obvious that arrivals to an 
empty system in a G/G/m queue form a renewal process. Thus I can not expect readers to be excited about 
the above proof. However, it is a nice example of how to use stopping times to see otherwise murky points 
clearly. 
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to find either the expected number or expected wait; it only says that if one can be found, 
the other can also be found. 

d(τ ) 

a(τ ) 

s2 

s1 

s3 

w0 
✲✛ 

w1 
✲✛ 

w2 
✲✛ 

w3 ✲✛ 
♣♣♣ ♣♣♣ ♣♣♣ ♣♣♣ ♣♣♣ ♣♣♣ ♣♣♣ ♣♣♣

0 s r 
1 t
 s r 

2 

Figure 4.14: Sample path of arrivals, departures, and system waiting times for a G/G/1 
queue with FCFS service. The upper step function is the number of customer arrivals, 
including the customer at time 0 and is denoted a(τ). Thus a(τ) is a sample path of 
A(τ ) = N(τ) + 1, i.e., the arrival counting process incremented by 1 for the initial 
arrival at τ = 0. The lower step function, d(τ) is a sample path for D(τ), which is the 
number of departures (including customer 0) up to time τ . For each i ≥ 0, wi is the 
sample value of the system waiting time Wi for customer i. Note that Wi = Wi

q + Vi. 
r rThe figure also shows the sample values s1 and s2 of the first two arrivals that see an 

empty system (recall from Section 4.5.3 that the subsequence of arrivals that see an 
empty system forms a renewal process.) 

Figure 4.14 illustrates a sample path for a G/G/1 queue with FCFS service. It illustrates 
a sample path a(t) for the arrival process A(t) = N(t) + 1, i.e., the number of customer 
arrivals in [0, t], specifically including customer number 0 arriving at t = 0. Similarly, it 
illustrates the departure process D(t), which is the number of departures up to time t, again 
including customer 0. The difference, L(t) = A(t) − D(t), is then the number in the system 
at time t. 

Recall from Section 4.5.3 that the subsequence of customer arrivals for t > 0 that see an 
empty system form a renewal process. Actually, we showed a little more than that. Not only 
are the inter-renewal intervals, Xr = Si

r − Si
r 
−1 IID, but the number of customer arrivals ini 

each inter-renewal interval are IID, and the interarrival intervals and service times between 
r rinter-renewal intervals are IID. The sample values, s1 and s2 of the first two renewal epochs 

are shown in the figure. 

The essence of Little’s theorem can be seen by observing that 
R 
0 
Sr 

L(τ) dτ in the figure is
1 

the area between the upper and lower step functions, integrated out to the first time that 
the two step functions become equal (i.e., the system becomes empty). For the sample 
value in the figure, this integral is equal to w0 + w1 + w2. In terms of the rv’s, 

rZ S N(S1 
r)−1 

1 

L(τ) dτ = 
X 

Wi. (4.39) 
0 i=0 

The same relationship exists in each inter-renewal interval, and in particular we can define 
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Ln for each n ≥ 1 as 
Z Sr N(Sn

r )−1 
n 

Ln = L(τ) dτ = 
X 

Wi. (4.40) 
Sr 

n−1 i=N(Sn
r 
−1) 

The interpretation of this is far simpler than the notation. The arrival step function and 
the departure step function in Figure 4.14 are separated whenever there are customers in 
the system (the system is busy) and are equal whenever the system is empty. Renewals 
occur when the system goes from empty to busy, so the nth renewal is at the beginning of 
the nth busy period. Then Ln is the area of the region between the two step functions over 
the nth busy period. By simple geometry, this area is also the sum of the customer waiting 
times over that busy period. Finally, since the interarrival intervals and service times in 
each busy period are IID with respect to those in each other busy period, the sequence 
L1, L2, . . . , is a sequence of IID rv’s. 

The function L(τ) has the same behavior as a renewal reward function, but it is slightly 
more general, being a function of more than the age and duration of the renewal counting 
process {N r(t); t > 0} at t = τ . However the fact that {Ln; n ≥ 1} is an IID sequence 
lets us use the same methodology to treat L(τ) as was used earlier to treat renewal-reward 
functions. We now state and prove Little’s theorem. The proof is almost the same as that 
of Theorem 4.4.1, so we will not dwell on it. 

Theorem 4.5.3 (Little). For a FCFS G/G/1 queue in which the expected inter-renewal 
interval is finite, the limiting time-average number of customers in the system is equal, 
with probability 1, to a constant denoted as L. The sample-path-average waiting time per 
customer is also equal, with probability 1, to a constant denoted as W . Finally L = ∏W 
where ∏ is the customer arrival rate, i.e., the reciprocal of the expected interarrival time. 

Proof: Note that for any t > 0, 
R 
0 
t(L(τ) dτ can be expressed as the sum over the busy 

periods completed before t plus a residual term involving the busy period including t. The 
residual term can be upper bounded by the integral over that complete busy period. Using 
this with (4.40), we have 

Nr (t) t N(t) Nr (t)+1X 
Ln ≤ 

Z 
L(τ) dτ ≤ 

X 
Wi ≤ 

X 
Ln. (4.41) 

τ=0n=1 i=0 n=1 

Assuming that the expected inter-renewal interval, E [Xr], is finite, we can divide both sides 
of (4.41) by t and go to the limit t →1. From the same argument as in Theorem 4.4.1, 

PN(t) Wi 
R t L(τ) dτ E [Ln]

lim i=0 = lim τ =0 = with probability 1. (4.42)
t→1 t t→1 t E [Xr] 

The equality on the right shows that the limiting time average of L(τ) exists with probability 
1 and is equal to L = E [Ln] /E [Xr]. The quantity on the left of (4.42) can now be broken 
up as waiting time per customer multiplied by number of customers per unit time, i.e., 

PN(t) Wi 
PN(t) Wi N(t)

lim i=0 = lim i=0 lim . (4.43)
t→1 t t→1 N(t) t→1 t 
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From (4.42), the limit on the left side of (4.43) exists (and equals L) with probability 1. 
The second limit on the right also exists with probability 1 by the strong law for renewal 
processes, applied to {N(t); t > 0}. This limit is called the arrival rate ∏, and is equal to 
the reciprocal of the mean interarrival interval for {N(t)}. Since these two limits exist with 
probability 1, the first limit on the right, which is the sample-path-average waiting time per 
customer, denoted W , also exists with probability 1. 

Reviewing this proof and the development of the G/G/1 queue before the theorem, we 
see that there was a simple idea, expressed by (4.39), combined with a lot of notational 
complexity due to the fact that we were dealing with both an arrival counting process 
{N(t); t > 0} and an embedded renewal counting process {N r(t); t > 0}. The difficult 
thing, mathematically, was showing that {N r(t); t > 0} is actually a renewal process and 
showing that the Ln are IID, and this was where we needed to understand stopping rules. 

Recall that we assumed earlier that customers departed from the queue in the same order 
in which they arrived. From Figure 4.15, however, it is clear that FCFS order is not 
required for the argument. Thus the theorem generalizes to systems with multiple servers 
and arbitrary service disciplines in which customers do not follow FCFS order. In fact, all 
that the argument requires is that the system has renewals (which are IID by definition of 
a renewal) and that the inter-renewal interval is finite with probability 1. 

A(τ ) 

W1 
✲✛ 

W2 
✲✛ 

W3 
✲✛ 

♣♣♣ ♣♣♣ ♣♣♣ ♣♣♣ ♣♣♣ ♣♣♣ ♣♣♣ ♣♣♣♣♣♣ ♣♣♣ ♣♣♣

0 S1 t 

Figure 4.15: Arrivals and departures in a non-FCFS systems. The server, for example, 
could work simultaneously (at a reduced rate) on all customers in the system, and 
thus complete service for customers with small service needs before completing earlier 
arrivals with greater service needs. Note that the jagged right edge of the diagram does 
not represent number of deparatures, but this is not essential for the argument. 

For example, if higher priority is given to customers with small service times, then it is not 
hard to see that the average number of customers in the system and the average waiting 
time per customer will be decreased. However, if the server is always busy when there is 
work to be done, it can be seen that the renewal times are unaffected. Service discipines 
will be discussed further in Section 5.6. 

The same argument as in Little’s theorem can be used to relate the average number of 
customers in a single server queue (not counting service) to the average wait in the queue 
(not counting service). Renewals still occur on arrivals to an empty system, and the integral 
of customers in queue over a busy period is still equal to the sum of the queue waiting times. 

qLet Lq(t) be the number in the queue at time t and let L = limt→1(1/t) 
R t Lq(τ)dτ be the0 
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time-average queue wait. Letting W 
q be the sample-path-average waiting time in queue, 

L
q = ∏W 

q 
. (4.44) 

The same argument can also be applied to the service facility of a single server queue. The 
time-average of the number of customers in the server is just the fraction of time that the 
server is busy. Denoting this fraction by ρ and the expected service time by V , we get 

ρ = ∏V . (4.45) 

4.5.5 Expected queueing time for an M/G/1 queue 

For our last example of the use of renewal-reward processes, we consider the expected 
queueing time in an M/G/1 queue. We again assume that an arrival to an empty system 
occurs at time 0 and renewals occur on subsequent arrivals to an empty system. At any 
given time t, let Lq(t) be the number of customers in the queue (not counting the customer 
in service, if any) and let R(t) be the residual life of the customer in service. If no customer 
is in service, R(t) = 0, and otherwise R(t) is the remaining time until the current service is 
completed. Let U(t) be the waiting time in queue that would be experienced by a customer 
arriving at time t. This is often called the unfinished work in the queueing literature and 
represents the delay until all the customers currently in the system complete service. Thus 
the rv U(t) is equal to R(t), the residual life of the customer in service, plus the service 
times of each of the Lq(t) customers currently waiting in the queue. 

Lq (t)

U(t) = 
X 

VN(t)−i + R(t), (4.46) 
i=1 

where N(t) − i is the customer number of the ith customer in the queue at time t. Since 
Lq(t) is a function only of the interarrival times in (0, t) and the service times of the 
customers that have already been served, we see that for each sample value Lq(t) = `, the 
rv’s Ve1, . . . , Vè  each have the service time distribution FV . Thus, taking expected values, 

E [U(t)] = E [Lq(t)] E [V ] + E [R(t)] . (4.47) 

Figure 4.16 illustrates how to find the time-average of R(t). Viewing R(t) as a reward 
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V1 

✻ 

❄ 
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✲✛ 

0 S1 
r 

Figure 4.16: Sample value of the residual life function of customers in service. 

function, we can find the accumulated reward up to time t as the sum of triangular areas. 
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First, consider 
R 

R(τ)dτ from 0 to Sr , i.e., the accumulated reward up to the final Nr(t)

renewal epoch in [o, t]t. Note that Sr is not only a renewal epoch for the renewal Nr (t) 

process, but also an arrival epoch for the arrival process; in particular, it is the N(Sr )thNr(t)

arrival epoch, and the N(Sr ) − 1 earlier arrivals are the customers that have received Nr (t)
service up to time Sr Thus, Nr(t). 

Nr (t))−1 N(t)
Nr(t)

Z Sr 

R(τ) dτ = 

N(Sr 

X V 
2 
i 
2 

≤ 
X V 

2 
i 
2 

. 
0 i=0 i=0 

Nr (t)+1We can similarly upper bound the term on the right above by 
R
0 

Sr 

R(τ) dτ . We also 
know (from going through virtually the same argument several times) that (1/t) 

R 
τ
t 
=0 R(τ)dτ 

will approach a limit15 with probability 1 as t →1, and that the limit will be unchanged 
if t is replaced with Sr or Sr Thus, taking ∏ as the arrival rate, Nr(t) Nr (t)+1. 

R t PA(t) V 2 ∏E 
£
V 2

§
R(τ) dτ A(t)

lim 0 = lim i=1 i = WP1. 
t→1 t t→1 2A(t) t 2 

We will see in the next section that the time average above can be replaced with a limiting 
ensemble-average, so that 

∏E 
£
V 2

§
lim E [R(t)] = . (4.48)
t→1 2 

The next section also shows that there is a limiting ensemble-average form of (4.44), showing 
that limt→1 E [Lq(t)] = ∏W 

q . Substituting this plus (4.48) into (4.47), we get 

∏E 
£
V 2

§
lim E [U(t)] = ∏E [V ] W 

q + . (4.49)
t→1 2 

Thus E [U(t)] is asymptotically independent of t. It is now important to distinguish between 
E [U(t)] and W 

q. The first is the expected unfinished work at time t, which is the queueing 
delay that a customer would incur by arriving at t; the second is the sample-path-average 
expected queueing delay. For Poisson arrivals, the probability of an arrival in (t, t + δ] is 
independent of all earlier arrivals and service times, so it is independent of U(t)16 . Thus, 
in the limit t →1, each arrival faces an expected delay limt→1 E [U(t)], so limt→1 E [U(t)] 

qmust be equal to W . Substituting this into (4.49), we obtain the celebrated Pollaczek-
Khinchin formula, 

W 
q = 

∏E 
£
V 2

§

2(1 − ∏E [V ])
. (4.50) 

15In fact, one could simply take the limit without bringing in the renewal process, since it is clear by now 
that the renewal process justifies the limit with probability 1. 

16This is often called the PASTA property, standing for Poisson arrivals see time-averages. This holds 
with great generality, requiring only that time-averages exist and that the parameters of interest at a given 
time t are independent of future arrivals. At the same time, this property is somewhat vague, so it should 
be used to help the intuition rather than to prove theorems. 
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This queueing delay has some of the peculiar features of residual life, and in particular, if 
E 

£
V 2

§ 
= 1, the limiting expected queueing delay is infinite even when the expected service 

time is less than the expected interarrival interval. 

In trying to visualize why the queueing delay is so large when E 
£
V 2

§ 
is large, note that while 

a particularly long service is taking place, numerous arrivals are coming into the system, 
and all are being delayed by this single long service. In other words, the number of new 
customers held up by a long service is proportional to the length of the service, and the 
amount each of them are held up is also proportional to the length of the service. This 
visualization is rather crude, but does serve to explain the second moment of V in (4.50). 
This phenomenon is sometimes called the “slow truck effect” because of the pile up of cars 
behind a slow truck on a single lane road. 

For a G/G/1 queue, (4.49) is still valid, but arrival times are no longer independent of U(t), 
so that typically E [U(t)] =6 W 

q . As an example, suppose that the service time is uniformly 
distributed between 1−≤ and 1+≤ and that the interarrival interval is uniformly distributed 
between 2 − ≤ and 2 + ≤. Assuming that ≤ < 1/2, the system has no queueing and W 

q = 0. 
On the other hand, for small ≤, limt→1 E [U(t)] ∼ 1/4 (i.e., the server is busy half the time 
with unfinished work ranging from 0 to 1). 

4.6 Expected number of renewals 

The purpose of this section is to evaluate E [N(t)], denoted m(t), as a function of t > 0 for 
arbitrary renewal processes. We first find an exact expression, in the form of an integral 
equation, for m(t). This can be easily solved by Laplace transform methods in special 
cases. For the general case, however, m(t) becomes increasingly messy for large t, so we 
then find the asymptotic behavior of m(t). Since N(t)/t approaches 1/X with probability 1, 
we might expect m(t) to grow with a derivative m0(t) that asymptotically approaches 1/X. 
This is not true in general. Two somewhat weaker results, however, are true. The first, 
called the elementary renewal theorem (Theorem 4.6.1), states that limt→1 m(t)/t = 1/X. 
The second result, called Blackwell’s theorem (Theorem 4.6.2), states that, subject to some 
limitations on δ > 0, limt→1[m(t+δ)−m(t)] = δ/X. This says essentially that the expected 
renewal rate approaches steady state as t → 1. We will find a number of applications of 
Blackwell’s theorem throughout the remainder of the text. 

The exact calculation of m(t) makes use of the fact that the expectation of a nonnegative 
random variable is defined as the integral of its complementary distribution function, 

1
m(t) = E [N(t)] = 

X 
Pr{N(t) ≥ n} . 

n=1 

Since the event {N(t) ≥ n} is the same as {Sn ≤ t}, m(t) is expressed in terms of the 
distribution functions of Sn, n ≥ 1, as follows. 

1
m(t) = 

X 
Pr{Sn ≤ t} . (4.51) 

n=1 
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Although this expression looks fairly simple, it becomes increasingly complex with increasing 
t. As t increases, there is an increasing set of values of n for which Pr{Sn ≤ t} is significant, 
and Pr{Sn ≤ t} itself is not that easy to calculate if the interarrival distribution FX (x) is 
complicated. The main utility of (4.51) comes from the fact that it leads to an integral 
equation for m(t). Since Sn = Sn−1 + Xn for each n ≥ 1 (interpreting S0 as 0), and since 
Xn and Sn−1 are independent, we can use the convolution equation (1.11) to get 

Z t 

Pr{Sn ≤ t} = Pr{Sn−1 ≤ t − x} dFX (x) for n ≥ 2. 
x=0 

Substituting this in (4.51) for n ≥ 2 and using the fact that Pr{S1 ≤ t} = FX (t), we can 
interchange the order of integration and summation to get 

Z t 1
m(t) = FX (t) + 

X 
Pr{Sn−1 ≤ t − x} dFX (x) 

x=0 n=2 
Z t 1

= FX (t) + 
X 

Pr{Sn ≤ t − x} dFX (x) 
x=0 n=1 Z t 

= FX (t) + m(t − x)dFX (x) ; t ≥ 0. (4.52) 
x=0 

An alternative derivation is given in Exercise 4.22. This integral equation is called the 
renewal equation. The following alternative form is achieved by integration by parts.17 

Z t 

m(t) = FX (t) + FX (t − τ) dm(τ) ; t ≥ 0. (4.53) 
τ=0 

4.6.1 Laplace transform approach 

If we assume that X ≥ 0 has a density fX (x), and that this density has a Laplace transform18 

LX (s) = 
R 
0
1 fX (x)e−sxdx, then we can take the Laplace transform of both sides of (4.52). 

Note that the final term in (4.52) is the convolution of m with fX , so that the Laplace 
transform of m(t) satisfies 

Lm(s) = 
LX (s) + Lm(s)LX (s). s 

Solving for Lm(s), 

Lm(s) = 
s[1 

L

− 
X 

L

(
X 

s)
(s)]

. (4.54) 

17A mathematical subtlety with the Stieltjes integrals (4.52) and (4.53) will be discussed in Section 4.7.3. 
18Note that LX (s) = E 

£
e−sX 

§ 
= gX (−s) where g is the MGF of X. Thus the argument here could be 

carried out using the MGF. We use the Laplace transform since the mechanics here are so familiar to most 
engineering students 
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Example 4.6.1. As a simple example of how this can be used to calculate m(t), suppose 
fX (x) = (1/2)e−x + e−2x for x ≥ 0. The Laplace transform is given by 

LX (s) = 
1 

+
1

=
(3/2)s + 2 

2(s + 1) s + 2 (s + 1)(s + 2)
. 

Substituting this into (4.54) yields 

(3/2)s + 2 4 1 1 
Lm(s) = 

s2(s + 3/2) 
= 

3s2 + 9s 
− 

9(s + 3/2)
. 

We can solve for m(t), t ≥ 0, by taking the inverse Laplace transform, 

m(t) = 
4t 

+
1 − exp[−(3/2)t] 

.
3 9 

The procedure in this example can be used for any inter-renewal density fX (x) for which 
the Laplace transform is a rational function, i.e., a ratio of polynomials. In such cases, 
Lm(s) will also be a rational function. The Heaviside inversion formula (i.e., factoring the 
denominator and expressing Lm(s) as a sum of individual poles as done above) can then 
be used to calculate m(t). In the example above, there was a second order pole at s = 0 
leading to the linear term 4t/3 in m(t), there was a first order pole at s = 0 leading to the 
constant 1/9, and there was a pole at s = −3/2 leading to the exponentially decaying term. 

We now show that a second order pole at s = 0 always occurs when LX (s) is a rational 
function. To see this, note that LX (0) is just the integral of fX (x), which is 1; thus 1−LX (s) 
has a zero at s = 0 and Lm(s) has a second order pole at s = 0. To evaluate the residue 
for this second order pole, we recall that the first and second derivatives of LX (s) at s = 0 
are −E [X] and E 

£
X2

§ 
respectively. Expanding LX (s) in a power series around s = 0 then 

yields LX (s) = 1 − sE [X] + (s2/2)E 
£
X2

§ 
plus terms of order s3 or higher. This gives us 

1 − sX + (s2/2)E 
£
X2

§ 
+ 1 1 

√
E 

£
X2

§ ! 

Lm(s) = 
· · · 

= + 2 − 1 + (4.55) 
s2 

£
X − (s/2)E [X2] + 

§ 
s2X s 2X

· · · . 
· · · 

The remaining terms are the other poles of Lm(s) with their residues. For values of s with 
e−sx<(s) ≥ 0, we have |LX (s)| = | 

R 
fX (x)e−sxdx| ≤ 

R 
fX (x)| |dx ≤ 

R 
fX (x)dx = 1 with 

strict inequality except for s = 0. Thus LX (s) cannot have any poles on the imaginary axis 
or the right half plane, and 1 − LX (s) cannot have any zeros there other than the one at 
s = 0. It follows that all the remaining poles of Lm(s) are strictly in the left half plane. 
This means that the inverse transforms for all these remaining poles die out as t → 1. 
Thus the inverse Laplace transform of Lm(s) is 

E 
£
X2

§
m(t) = + − 1 + ≤(t)

t 

X 2X2 

t σ2 1 
= 

X 
+

2X2 − 
2

+ ≤(t) for t ≥ 0, (4.56) 

where limt→1 ≤(t) = 0. 
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We have derived (4.56) only for the special case in which fX (x) has a rational Laplace trans
form. For this case, (4.56) implies both the elementary renewal theorem (limt→1 m(t)/t = 
1/X) and also Blackwell’s theorem (limt→1[m(t + δ) − m(t)] = δ/X). We will interpret the 

meaning of the constant term σ2/(2X2) − 1/2 in Section 4.8. 

4.6.2 The elementary renewal theorem 

Theorem 4.6.1 (The elementary renewal theorem). Let {N(t); t > 0} be a renewal 
counting process with mean inter-renewal interval X . Then limt→1 E [N(t)] /t = 1/X. 

Discussion: We have already seen that m(t) = E [N(t)] is finite for all t > 0 (see Exercise 
4.2). The theorem is proven by establishing a lower and upper bound to m(t)/t and showing 
that each approaches 1/E [X] as t →1. The key element for each bound is (4.35), repeated 
below, which comes from the Wald equality. 

E 
£
SN(t)+1

§
m(t) = − 1. (4.57)

X 

Proof: The lower bound to m(t)/t comes by recognizing that SN(t)+1 is the epoch of the 
first arrival after t. Thus E 

£
SN(t)+1

§ 
> t. Substituting this into (4.57), 

m(t) 1 1 
t

> 
E [X] 

− 
t
. 

Clearly this lower bound approaches 1/E [X] as t → 1. The upper bound, which is more 
difficult19 and might be omitted on a first reading, is established by first truncating X(t) 
and then applying (4.57) to the truncated process. 

For an arbitrary constant b > 0, let X̆i = min(b,Xi). Since these truncated random variables 
are IID, they form a related renewal counting process {N̆(t); t > 0} with m̆(t) = E 

h
N̆(t)

i 

and S̆n = X̆1 + + X̆n. Since X̆i ≤ Xi for all i, we see that S̆n ≤ Sn for all n. Since· · · 
{Sn ≤ t} = {N(t) ≥ n}, it follows that N̆(t) ≥ N(t) and thus m̆(t) ≥ m(t). Finally, in the 

truncated process, S̆N̆(t)+1 ≤ t + b and thus E 
h
S̆N̆(t)+1 

i 
≤ t + b. Thus, applying (4.57) to 

the truncated process, 

m(t) m̆(t)
= 

E 
h
SN̆(t)+1 

i 

1 t + b

t 
≤ 

t tE 
h
X̆

i − 
t 
≤ 

tE 
h
X̆

i .


Next, choose b = 
√

t. Then 

m(t) 1 1 
t 
≤ 

E 
h
X̆

i + √
t E 

h
X̆

i . 

19The difficulty here, and the reason for using a truncation argument, comes from the fact that the residual 
life, SN(t)+1 − t at t might be arbitrarily large. We saw in Section 4.4 that the time-average residual life is 
infinite if E 

£
X2

§ 
is infinite. Figure 4.6 also illustrates why residual life can be so large. 
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Note finally that E 
h
X̆

i 
= 

R b[1−FX (x)] dx. Since b = 
√

t, we have limt→1 E 
h
X̆

i 
= E [X], 0 

completing the proof. 

Note that this theorem (and its proof) have not assumed finite variance. It can also be seen 

that the theorem holds when E [X] is infinite, since limt→1 E 
h
X̆

i 
= 1 in this case. 

Recall that N [t,ω]/t is the average number of renewals from 0 to t for a sample function ω, 
and m(t)/t is the average of this over ω. Combining with Theorem 4.3.1, we see that the 
limiting time and ensemble-average equals the time-average renewal rate for each sample 
function except for a set of probability 0. 

Another interesting question is to determine the expected renewal rate in the limit of large 
t without averaging from 0 to t. That is, are there some values of t at which renewals are 
more likely than others for large t? If the inter-renewal intervals have an integer distribution 
function (i.e., each inter-renewal interval must last for an integer number of time units), 
then each renewal epoch Sn must also be an integer. This means that N(t) can increase 
only at integer times and the expected rate of renewals is zero at all non-integer times. 

An obvious generalization of integer valued inter-renewal intervals is that of inter-renewals 
that occur only at integer multiples of some real number d > 0. Such a distribution is called 
an arithmetic distribution. The span of an arithmetic distribution is the largest number ∏ 
such that this property holds. Thus, for example if X takes on only the values 0, 2, and 6, 
its distribution is arithmetic with span ∏ = 2. Similarly, if X takes on only the values 1/3 
and 1/5, then the span is ∏ = 1/15. The remarkable thing, for our purposes, is that any 
inter-renewal distribution that is not an arithmetic distribution leads to a uniform expected 
rate of renewals in the limit of large t. This result is contained in Blackwell’s renewal 
theorem, which we state without proof.20 . Recall, however, that for the special case of an 
inter-renewal density with a rational Laplace transform, Blackwell’s renewal theorem is a 
simple consequence of (4.56). 

Theorem 4.6.2 (Blackwell). If a renewal process has an inter-renewal distribution that 
is non-arithmetic, then for each δ > 0, 

δ
lim [m(t + δ) − m(t)] = 

E [X]
. (4.58)

t→1 

If the inter-renewal distribution is arithmetic with span ∏, then 

∏
lim [m(t+∏) − m(t)] = (4.59)
t→1 E [X]

. 

Eq. (4.58) says that for non-arithmetic distributions, the expected number of arrivals in 
the interval (t, t + δ] is equal to δ/E [X] in the limit t → 1. Since the theorem is true for 
arbitrarily small δ, the theorem almost seems to be saying that m(t) has a derivative for 
large t, but this is not true. One can see the reason by looking at an example where X can 
take on only the values 1 and π. Then no matter how large t is, N(t) can only increase at 
discrete points of time of the form k + jπ where k and j are nonnegative integers. Thus 

20See Theorem 1 of Section 11.1, of [8]) for a proof 
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dm(t)/dt is either 0 or 1 for all t. As t gets larger, the jumps in m(t) become both smaller 
in magnitude and more closely spaced from one to the next. Thus 

£
m(t + δ) − m(t)

§
/δ can 

approach 1/E [X] as t →1 for any fixed δ (as the theorem says), but as δ gets smaller, the 
convergence in t gets slower. For the above example (and for all discrete non-arithmetic 
distributions), 

£
m(t + δ) − m(t)

§
/δ does not approach21 1/E [X] for any t as δ 0.→ 

For an arithmetic renewal process with span ∏, the asymptotic behavior of m(t) as t →1 is 
much simpler. Renewals can only occur at multiples of ∏, and since simultaneous renewals 
are not allowed, either 0 or 1 renewal occurs at each time k∏. Thus for any k. we have 

Pr{Renewal at ∏k} = m(∏k) − m(∏(k−1)), (4.60) 

where, by convention, we take m(0) = 0. Thus (4.59) can be restated as 

lim 
k→1 

Pr{Renewal at k∏} = 
∏ 

X 
. (4.61) 

The limiting behavior of m(t) is discussed further in the next section. 

4.7 Renewal-reward processes; ensemble-averages 

Theorem 4.4.1 showed that if a renewal-reward process has an expected inter-renewal in
terval X and an expected inter-renewal reward E [Rn], then the time-average reward is 
E [Rn] /X with probability 1. In this section, we explore the ensemble average, E [R(t)], as 
a function of time t. It is easy to see that E [R(t)] typically changes with t, especially for 
small t, but a question of major interest here is whether E [R(t)] approaches a constant as 
t →1. 

In more concrete terms, if the arrival times of busses at a bus station forms a renewal 
process, then the waiting time for the next bus, i.e., the residual life, starting at time t, can 
be represented as a reward function R(t). We would like to know if the expected waiting 
time depends critically on t, where t is the time since the renewal process started, i.e., the 
time since a hypothetical bus number 0 arrived. If E [R(t)] varies significantly with t, even 
as t → 1, it means that the choice of t = 0 as the beginning of the initial interarrival 
interval never dies out as t →1. 

Blackwell’s renewal theorem (and common sense) tell us that there is a large difference 
between arithmetic inter-renewal times and non-arithmetic inter-renewal times. For the 
arithmetic case, all renewals occur at multiples of the span ∏. Thus, for example, the 
expected waiting time (i.e., the expected residual life) decreases at rate 1 from each multiple 
of ∏ to the next, and it increases with a jump equal to the probability of an arrival at each 
multiple of ∏. For this reason, we usually consider various reward functions only at multiples 
of ∏. We would guess, then, that E [R(n∏)] approaches a constant as n →1. 

For the non-arithmetic case, on the other hand, the expected number of renewals in any 
small interval of length δ becomes independent of t as t → 1, so we might guess that 

21This must seem like mathematical nitpicking to many readers. However, m(t) is the expected number 
of renewals in (0, t], and how m(t) varies with t, is central to this chapter and keeps reappearing. 
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E [R(t)] approaches a limit as t →1. We would also guess that these asymptotic ensemble 
averages are equal to the appropriate time averages from Section 4.4. 

The bottom line for this section is that under very broad conditions, the above guesses are 
essentially correct. Thus the limit as t →1 of a given ensemble-average reward can usually 
be computed simply by finding the time-average and vice-versa. Sometimes time-averages 
are simpler, and sometimes ensemble-averages are. The advantage of the ensemble-average 
approach is both the ability to find E [R(t)] for finite values of t and to understand the rate 
of convergence to the asymptotic result. 

The following subsection is restricted to the arithmetic case. We will derive the joint 
distribution function of age and duration for any given time t, and then look at the limit as 
t →1. This leads us to arbitrary reward functions (such as residual life) for the arithmetic 
case. We will not look specifically at generalized reward functions that depend on other 
processes, but this generalization is quite similar to that for time-averages. 

The non-arithmetic case is analyzed in the remainder of the subsections of this section. 
The basic ideas are the same as the arithmetic case, but a number of subtle mathematical 
limiting issues arise. The reader is advised to understand the arithmetic case first, since the 
limiting issues in the non-arithmetic case can then be viewed within the intuitive context 
of the arithmetic case. 

4.7.1 Age and duration for arithmetic processes 

Let {N(t); t > 0} be an arithmetic renewal counting process with inter-renewal intervals 
X1,X2, . . . and arrival epochs S1, S2, . . . , where Sn = X1 + + Xn. To keep the notation · · · 
as uncluttered as possible, we take the span to be one and then scale to an arbitrary ∏ later. 
Thus each Xi is a positive integer-valued rv. 

Recall that the age Z(t) at any given t > 0 is Z(t) = t − SN(t) (where by convention S0 = 0) 
and the duration Xe(t) is Xe(t) = SN(t)+1(t) − SN(t). Since arrivals occur only at integer 
times, we initially consider age and duration only at integer times also. If an arrival occurs 
at integer time t, then SN(t) = t and Z(t) = 0. Also, if S1 > t, then N(t) = 0 and Z(t) = t 
(i.e., the age is taken to be t if no arrivals occur up to and including time t). Thus, for 
integer t, Z(t) is an integer-valued rv taking values from [0, t]. Since SN(t)+1 > t, it follows 
that Xe(t) is an integer-valued rv satisfying Xe(t) > Z(t). Since both are integer valued, 
Xe(t) must exceed Z(t) by at least 1 (or by ∏ in the more general case of span ∏). 

In order to satisfy Z(t) = i and Xe(t) = k for given i < t, it is necessary and sufficient 
to have an arrival epoch at t − i followed by an interarrival interval of length k, where 
k ≥ i + 1. For Z(t) = t and Xe(t) = k, it is necessary and sufficient that k > t, i.e., that the 
first inter-renewal epoch occurs at k > t. 

Theorem 4.7.1. Let {Xn; n ≥ 1} be the interarrival intervals of an arithmetic renewal 
process with unit span. Then the the joint PMF of the age and duration at integer time 
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t ≥ 1 is given by 

( pX (k) for i = t, k > t 

pZ(t),Xe (t)(i, k) = qt−i pX (k) for 0 ≤ i < t, k > i . (4.62) 

0 otherwise 

where qj = Pr{arrival at time j}. The limit as t →1 for any given 0 ≤ i < k is given by 

lim pZ(t),Xe (t)(i, k) = 
pX (k) 

. (4.63)
integer t→1 X 

Proof: The idea is quite simple. For the upper part of (4.62), note that the age is t if 
and only there are no arrivals in (0, t], which corresponds to X1 = k for some k > t. For 
the middle part, the age is i for a given i < t if and only if there is an arrival at t − i and 
the next arrival epoch is after t, which means that the corresponding interarrival interval k 
exceeds i. The probability of an arrival at t−i, i.e., qt−i, depends only on the arrival epochs 
up to and including time t − i, which should be independent of the subsequent interarrival 
time, leading to the product in the middle term of (4.62). To be more precise about this 
independence, note that for i < t, 

= Pr{arrival at t − i} = 
X 

(t − i). (4.64)qt−i pSn 

n≥1 

Given that Sn = t − i, the probability that Xn+1 = k is pX (k). This is the same for all n, 
establishing (4.62). 

For any fixed i, k with i < k, note that only the middle term in (4.62) is relevant as t →1. 
Using Blackwell’s theorem (4.61) to take the limit as t →1, we get (4.63) 

The probabilities in the theorem, both for finite t and asymptotically as t → 1, are illus
trated in Figure 4.17. The product form of the probabilities in (4.62) (as illustrated in the 
figure) might lead one to think that Z(t) and Xe(t) are independent, but this is incorrect 
because of the constraint that Xe(t) > Z(t). It is curious that in the asymptotic case, (4.63) 
shows that, for a given duration Xe(t) = k, the age is equally likely to have any integer value 
from 0 to k − 1, i.e., for a given duration, the interarrival interval containing t is uniformly 
distributed around t. 

The marginal PMF for Z(t) is calculated below using (4.62). 

( F
c (i) for i = tX 

.pZ(t)(i) = qt−i Fc (i) for 0 ≤ i < t (4.65)
X 

0 otherwise 
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pX (5) rr rr rrpX (4) 
1 3 

Z(3) r rr rr rpX (3) 
q1 2 

i r r rr r rpX (2) 
q2 1 

pX (4)r qqqq q q 1/X 
Z(1) pX (3)r r q q q 1/X 
i pX (2)r r r q q q 1/X 

pX (1)
0 r r r r r rpX (1) 

q3 

eX(3)k 
0 1 2 3 4 5 6 

a) Case where t = 3. 

0 r r r r 1/Xq q q
eX(1)k 

0 1 2 3 4 5 

b) Asymptotic case where t → 1 

Figure 4.17: Joint PMF, pXe (t)Z(t)(k, i) of Xe(t) and Z(t) in an arithmetic renewal 
process with span 1. In part a), t = 3 and the PMF at each sample point is the product 
of two terms, qt−i = Pr{Arrival at t − i} and pX (k). Part b) is the asymptotic case 
where t →1. Here the arrival probabilities become uniform. 

where Fc (i) = pX (i+1) + pX (i+2) + The marginal PMF for Xe(t) can be calculatedX · · · . 
directly from (4.62), but it is simplified somewhat by recognizing that 

qj = m(j) − m(j − 1). (4.66) 

Substituting this into (4.62) and summing over age, 

( pX (k)
£
m(t) − m(t−k)

§ 
for k < t 

pX(t)(k) = pX (k) m(t) for k = t . (4.67)e

pX (k)
£
m(t) + 1

§ 
for k > t 

The term +1 in the expression for k > t corresponds to the uppermost point for the given 
k in Figure 4.17a. This accounts for the possibility of no arrivals up to time t. It is 
not immediately evident that 

P
k pX(t)(k) = 1, but this can be verified from the renewal e

equation, (4.52). 

Blackwell’s theorem shows that the arrival probabilities tend to 1/X as t → 1, so the 
limiting marginal probabilities for age and duration become 

Xlim pZ(t)(i) = 
Fc (i) 

. (4.68)
integer t→1 X 

lim p (k) = 
k pX (k) 

. (4.69)
integer t→1 Xe (t) X 

The expected value of Z(t) and Xe(t) can also be found for all t from (4.62) and (4.63) 
respectively, but they don’t have a particularly interesting form. The asymptotic values as 
t → 1 are more simple and interesting. The asymptotic expected value for age is derived 
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below from (4.68).22 

lim E [Z(t)] = 
X 

i lim pZ(t)(i)
integer t→1 integer t→1 

i 

1 
1 1 1 

1 j−1

= 
X X 

i pX (j) = 
XX 

i pX (j)
X X

i=1 j=i+1 j=2 i=1 

=
1 

1
j(j − 1) 

pX (j)
X 

X 2 
j=2 

E 
£
X2

§ 
1 

=
2X 

− 
2
. (4.70) 

This limiting ensemble average age has the same dependence on E 
£
X2

§ 
as the time average 

in (4.16), but, perhaps surprisingly, it is reduced from that amount by 1/2. To understand 
this, note that we have only calculated the expected age at integer values of t. Since arrivals 
occur only at integer values, the age for each sample function must increase with unit slope 
as t is increased from one integer to the next. The expected age thus also increases, and then 
at the next integer value, it drops discontinuously due to the probability of an arrival at 
that next integer. Thus the limiting value of E [Z(t)] has a saw tooth shape and the value 
at each discontinuity is the lower side of that discontinuity. Averaging this asymptotic 
expected age over a unit of time, the average is E 

£
X2

§ 
/2X, in agreement with (4.16). 

As with the time average, the limiting expected age is infinite if E 
£
X2

§ 
= 1. However, for 

each t, Z(t) ≤ t, so E [Z(t)] < 1 for all t, increasing without bound as t →1 

The asymptotic expected duration is derived in a similar way, starting from (4.69) 

lim E 
h
Xe(t)

i 
= 

X 
lim kpX(t)(k)

integer t→1 integer t→1 
e

k 

k2 E 
£
X2

§
= 

X pX (k)
= . (4.71)

X X 
k 

This agrees with the time average in (4.17). The reduction by 1/2 seen in (4.70) is not 
present here, since as t is increased in the interval [t, t+1), X(t) remains constant. 

Since the asymptotic ensemble-average age differs from the time-average age in only a 
trivial way, and the asymptotic ensemble-average duration is the same as the time-average 
duration, it might appear that we have gained little by this exploration of ensemble averages. 
What we have gained, however, is a set of results that apply to all t. Thus they show how 
(in principle) these results converge as t →1. 

22Finding the limiting expectations from the limiting PMF’s requires interchanging a limit with an ex
pectation. This can be justified (in both (4.70) and (4.71)) by assuming that X has a finite second moment 
and noting that all the terms involved are positive, that Pr{arrival at j} ≤ 1 for all j, and that pX (k) ≤ 1 
for all k. 
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4.7.2 Joint age and duration: non-arithmetic case 

Non-arithmetic renewal processes are mathematically more complicated than arithmetic re
newal processes, but the concepts are the same. We start by looking at the joint probability 
of the age and duration, each over an incremental interval. (see Figure 4.18 (a)). 

Z(t)


✲° 
° 

° 
° 

° 
° 

° 
° 

° 
✲ t 

✲° 
° 

° 
° 

° 
° 

° 
° 

° 
✲ 

✲ 

✲ 

° 
° 
T B ✲✛ 

z+δ 

z 
A 

z+δ 

z 

x−δ 
x 

Z(t) 

Xe(t) Xe(t) 
(a) (b) 

Figure 4.18: Part (a): The incremental square region A of sample values for Z(t) 
and Xe(t) whose joint probability is specified in (4.73). The square is assumed to be 
inside the indicated semi-infinite trapezoidal region, i.e., to satisfy 0 ≤ z < z+δ ≤ t 
and z+2δ ≤ x. 

Part (b): Summing over discrete sample regions of Xe(t) to find the marginal 
probability Pr{z ≤ Z(t) < z+δ} = Pr{T } +Pr{B}, where T is the triangular area and 
B the set of indicated squares. 

Theorem 4.7.2. Consider an arbitrary renewal process with age Z(t) and duration Xe(t) 
at any given time t > 0. Let A be the event 

A = {z ≤ Z(t) < z+δ} 
\

{x−δ < Xe(t) ≤ x}, (4.72) 

where 0 ≤ z < z+δ ≤ t and z+2δ ≤ x. Then 

Pr{A} = 
£
m(t−z) − m(t−z−δ)

§ £
FX (x) − FX (x−δ)

§
. (4.73) 

If in addition the renewal process is non-arithmetic, 
£
FX (x) − FX (x−δ)

§
lim Pr{A} = . (4.74)
t→1 X 

Proof: Note that A is the box illustrated in Figure 4.18 (a) and that under the given 
conditions, Xe(t) > Z(t) for all sample points in A. Recall that Z(t) = t − SN(t) and 

Xe(t) = SN(t)+1 − SN(t) = XN(t)+1, so A can also be expressed as 

A = {t−z−δ < SN(t) ≤ t − z} 
\

{x − δ < XN(t)+1 ≤ x}. (4.75) 
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We now argue that A can also be rewritten as 
1

A = 
[ n

{t−z−δ < Sn ≤ t − z} 
\

{x − δ < Xn+1 ≤ x}
o 

. (4.76) 
n=1 

To see this, first assume that the event in (4.75) occurs. Then N(t) must have some positive 
sample value n, so (4.76) occurs. Next assume that the event in (4.76) occurs, which means 
that one of the events, say the nth, in the union occurs. Since Sn+1 = Sn + Xn+1 > t, we 
see that n is the sample value of SN(t) and (4.75) must occur. 

To complete the proof, we must find Pr{A}. First note that A is a union of disjoint events. 
That is, although more than one arrival epoch might occur in (t−z−δ, t−z], the following 
arrival epoch can exceed t for only one of them. Thus 

1 o
Pr{A} = 

X 
Pr

n
{t−z−δ < Sn ≤ t − z} 

\
{x − δ < Xn+1 ≤ x} . (4.77) 

n=1 

For each n, Xn+1 is independent of Sn, so 

Pr 
n
{t−z−δ < Sn ≤ t − z} 

\
{x − δ < Xn+1 ≤ x}

o 

= Pr
©
t−z−δ < Sn ≤ t − z

™£
F (x−δ

§
. 

Substituting this into (4.77) and using (4.51) to sum the series, we get 

c (x) − F
c 
X X 

Pr{A} = 
£
m(t−z) − m(t−z−δ)

§ £
FX (x) − FX (x−δ)

§
. 

This establishes (4.73). Blackwell’s theorem then establishes (4.74). 

It is curious that Pr{A} has such a simple product expression, where one term depends 
only on the function m(t) and the other only on the distribution function FX . Although 
the theorem is most useful as δ 0, the expression is exact for all δ such that the square→
region A satisfies the given constraints (i.e., A lies in the indicated semi-infinite trapezoidal 
region). 

4.7.3 Age Z(t) for finite t: non-arithmetic case 

In this section, we first use Theorem 4.7.2 to find bounds on the marginal incremental 
probability of Z(t). We then find the distribution function, FZ(t)(z), and the expected 
value, E [Z(t)] of Z(t). 

Corollary 4.7.1. For 0 ≤ z < z+δ ≤ t, the following bounds hold on Pr{z ≤ Z(t) < z+δ}. 

Pr{z ≤ Z(t) < z+δ}


Pr{z ≤ Z(t) < z+δ}


c (z+δ) (4.78)
≥
 X

£
m(t−z) − m(t−z−δ)

§
§
F


£
m(t−z) − m(t−z−δ) F
c 

X (z). (4.79)
≤


Proof*: As indicated in Figure 4.18 (b), Pr{z ≤ Z(t) < z+δ} = Pr{T } + Pr{B}, where T 
is the triangular region, 

T = {z ≤ Z(t) < z+δ} 
\

{Z(t) < X(t) ≤ z+δ},e
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and B is the rectangular region 

B = {z ≤ Z(t) < z+δ} 
\

{Xe(t) > z+δ}. 

It is easy to find Pr{B} by summing the probabilities in (4.73) for the squares indicated in 
Figure 4.18 (b). The result is 

Pr{B} = 
£
m(t−z) − m(t−z−δ)

§
F

to Pr{T } and start by finding an event that includes T . 

T = {z ≤ Z(t) < z + δ} 
\

{Z(t) < X(t) ≤ z + δ}e
[ h \ i 

c 

Since Pr 0, this establishes the lower bound in (4.78). We next need an upper bound T{ } ≥ 

+δ < S S < X δ= t t t{ − − ≤ − } { − ≤ }z z z+1n n n

+δ < S z < X δt t⊆ { − − ≤ − } { ≤ }z z z+1 ,n n

where the inclusion follows from the fact that for the event on the left to occur, S t≤ − zn 

n≥1 
[ h \ i 

n≥1 

and this implies that z ≤ t − Sn. 

Using the union bound, we then have 

(z+δ). (4.80)
X 

h X

c

i£
F

(z + δ)
§
. 

c 
X (z + δ)

§

Pr{T }
 ≤
 Pr{{t − z − δ < Sn ≤ t − z} (z) − F
X 

n≥1 £
m(t−z) − m(t−z−δ)

§£
F

Combining this with (4.80), we have (4.79). 

c 
X (z) − F
c=
 X 

The following corollary uses Corollary 4.7.1 to determine the distribution function of Z(t). 
The rather strange dependence on the existence of a Stieltjes integral will be explained after 
the proof. 

Corollary 4.7.2. If the Stieltjes integral 
R 
t
t 
−z F
c 

X (t − τ) dm(τ) exists for given t > 0 and

0 < z < t, then


Z t 

Pr{Z(t) ≤ z} = 
t−z 

F
c 
X (t − τ) dm(τ). (4.81)


Proof: First, partition the interval [0, z) into a given number ` of increments, each of size 
δ = z/`. Then 

`−1

Pr{Z(t) < z} = 
X 

Pr{kδ ≤ Z(t) < kδ + δ} . 
k=0 

Applying the bounds in 4.78 and 4.79 to the terms in this sum, 
`−1X h 

m 
° 
t − kδ) − m 

° 
t − kδ − δ

¢i
F
Pr{Z(t) < z}
 (kδ + δ) (4.82)
c 

X≥

k=0 

`−1Xh 
m 

° 
t − kδ

¢ 
− m 

° 
t − kδ − δ

¢i
FPr{Z(t) < z}
 ≤
 c 

X 

° 
kδ

¢
.
 (4.83)


k=0 
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These are, respectively, lower and upper Riemann sums for the Stieltjes integral 
R 
0 
z 

Thus, if this Stieltjes integral exists, then, letting δ = z/` 0,→ 
F
c 

X (t−τ) dm(τ).


tZ
Pr{Z(t) < z} = 

t−z 
F
c 

X (t − τ) dm(τ).


This is a convolution and thus the Stieltjes integral exists unless m(τ) and F
c 
X (t − τ) both


have a discontinuity at some τ ∈ [0, z] (see Exercise 1.12). If no such discontinuity exists, 
then Pr{Z(t) < z} cannot have a discontinuity at z. Thus, if the Stieltjes integral exists, 
Pr{Z(t) < z} = Pr{Z(t) ≤ z}, and, for z < t, 

Z t 

FZ(t)(z) = 
t−z 

F
c 
X (t − τ) dm(τ).


The above argument showed us that the values of z at which the Stieltjes integral in (4.81) 
fails to exist are those at which FZ(t)(z) has a step discontinuity. At these values we know 
that FZ(t)(z) (as a distribution function) should have the value at the top of the step (thus 
including the discrete probability that Pr{Z(t) = z}). In other words, at any point z of 
discontinuity where the Stieltjes integral does not exist, FZ(t)(z) is the limit23 of FZ(t)(z+≤) 
as ≤ > 0 approaches 0. Another way of expressing this is that for 0 ≤ z < t, FZ(t)(z) is the 
limit of the upper Riemann sum on the right side of (4.83). 

The next corollary uses an almost identical argument to find E [Z(t)]. As we will see, the 
Stieltjes integral fails to exist at those values of t at which there is a discrete positive 
probability of arrival. The expected value at these points is the lower Riemann sum for the 
Stieltjes integral. 

Corollary 4.7.3. If the Stieltjes integral 
R 
0 
t F
c 

X (t − τ) dm(τ) exists for given t > 0, then


Z t 

E [Z(t)] = F
c 
X (t) +
 (t − τ)F
c 

X (t − τ ) dm(τ ). (4.84)

0 

c 

c 

> t, which has probability F
other possible values of Z(t), we divide [0, t) into ` equal intervals of length δ = t/` each. 
Then E [Z(t)] can be lower bounded by 

`−1X 
X≥ 

Proof: Note that Z(t) = t if and only if X1 (t). For the
X 

E [Z(t)]
 (t) +
 kδ Pr{kδ ≤ Z(t) < kδ + δ}}
F

k=0 

`−1X 
kδ 

£
m(t−kδ) − m(t−kδ−δ)

§
Fc 

XF
 (t) +
 (kδ + δ).

k=0 

c 
X≥ 

23This seems to be rather abstract mathematics, but as engineers, we often evaluate functions with step 
discontinuities by ignoring the values at the discontinuities or evaluating these points by adhoc means. 
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where we used 4.78 for the second step. Similarly, E [Z(t)] can be upper bounded by 

`−1

F
X

≤ c 
XE [Z(t)]
 (t) +
 (kδ + δ)Pr{kδ ≤ Z(t) < kδ + δ}}


k=0 

`−1X
(kδ + δ)

£
m(t−kδ) − m(t−kδ−δ)

§
Fc 

X 

where we used 4.79 for the second step. These provide lower and upper Riemann sums 
to the Stieltjes integral in (4.81), completing the proof in the same way as the previous 
corollary. 

4.7.4 Age Z(t) as t →1: non-arithmetic case 

Next, for non-arithmetic renewal processes, we want to find the limiting values, as t →1, 
for FZ(t)(z) and E [Z(T )]. Temporarily ignoring any subtleties about the limit, we first view 
dm(t) as going to dt Thus from (4.81), 

X 
as t →1. 

cF≤ X (t) +
 (kδ).

k=0 

z1 
Z

lim Pr{Z(t) ≤ z} = 
t→1 X 

F
c 
X (τ)dτ. (4.85)


0 

If X has a PDF, this simplifies further to 

1
lim fZ(t)(z) = fX (z). (4.86)
t→1 X 

Note that this agrees with the time-average result in (4.29). Taking these limits carefully 
requires more mathematics than seems justified here, especially since the result uses Black
well’s theorem, which was not proven here. Thus we state (without proof) another theorem, 
equivalent to Blackwell’s theorem, called the key renewal theorem, that simplifies taking 
this type of limit. Essentially Blackwell’s theorem is easier to interpret, but the key renewal 
theorem is often easier to use. 

Theorem 4.7.3 (Key renewal theorem). Let r(x) ≥ 0 be a directly Riemann integrable 
function, and let m(t) = E [N(t)] for a non-arithmetic renewal process. Then 

Z t 1 
Z 1

lim r(t − τ)dm(τ) = r(x)dx. (4.87)
t→1 τ =0 X 0 

We first explain what directly Riemann integrable means. If r(x) is nonzero only over 
finite limits, say [0, b], then direct Riemann integration means the same thing as ordinary 
Riemann integration (as learned in elementary calculus). However, if r(x) is nonzero over 
[0, 1), then the ordinary Riemann integral (if it exists) is the result of integrating from 0 
to b and then taking the limit as b → 1. The direct Riemann integral (if it exists) is the 
result of taking a Riemann sum over the entire half line, [0, 1) and then taking the limit 
as the grid becomes finer. Exercise 4.25 gives an example of a simple but bizarre function 
that is Riemann integrable but not directly Riemann integrable. If r(x) ≥ 0 can be upper 
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bounded by a decreasing Riemann integrable function, however, then, as shown in Exercise 
4.25,r(x) must be directly Riemann integrable. The bottom line is that restricting r(x) to 
be directly Riemann integrable is not a major restriction. 

Next we interpret the theorem. If m(t) has a derivative, then Blackwell’s theorem would 
suggest that dm(t)/dt (1/X) dt, which leads to (4.87) (leaving out the mathematical →
details). On the other hand, if X is discrete but non-arithmetic, then dm(t)/dt can be 
intuitively viewed as a sequence of impulses that become smaller and more closely spaced 
as t → 1. Then r(t) acts like a smoothing filter which, as t → 1, smoothes these small 
impulses. The theorem says that the required smoothing occurs whenever r(t) is directly 
Riemann integrable. The theorem does not assert that the Stieltjes integral exists for all t, 
but only that the limit exists. For most applications to discrete inter-renewal intervals, the 
Stieltjes integral does not exist everywhere. Using the key renewal theorem, we can finally 
determine the distribution function and expected value of Z(t) as t → 1. These limiting 
ensemble averages are, of course, equal to the time averages found earlier. 

Theorem 4.7.4. For any non-arithmetic renewal process, the limiting distribution function 
and expected value of the age Z(t) are given by 

z1 
Z

lim FZ(t)(z) = F
c 
X (x) dx. (4.88)


t→1 

Furthermore, if E 
£
X2

§ 
< 1, then 

X
 0 

E 
£
X2

§
lim E [Z(t)] = . (4.89)
t z 2X→

Proof: For any given z > 0, let r(x) = F
(4.81) becomes


c 
X (x) for 0 ≤ x ≤ z and r(x) = 0 elsewhere. Then


Z t 

Pr{Z(t) ≤ z} = r(t − τ) dm(τ). 
0 

Taking the limit as t →1, 
Z t 

lim Pr{Z(t) ≤ z} = lim r(t − τ) dm(τ) 
0t→1 t→1 

z1 
Z 1 1 

Z 
= r(x) dx = cFX (x) dx, (4.90)


X
 X
0 0 

where in (4.90) we used the fact that F
 (x) is decreasing to justify using (4.87). This
c 
X 

establishes (4.88).


To establish (4.89), we again use the key renewal theorem, but here we let r(x) = x F
c (x).

(x) is directly Riemann integrable if E 

£
X2

§ 
< 1. 

taking the limit of (4.84 and then using (4.87), we have 
Exercise 4.25 shows that x F
 Then,
c 

X 

tZ
lim E [Z(t)] = lim
F
c 

X (t) +
 r(t − τ) dm(τ)

t→1 t→1 0 

1 
Z 1 1 

r(x) dx = 
Z 1 

xF
c 
X (x) dx.
=


X
 0 X
 0 

Integrating this by parts, we get (4.89).


X 



204 CHAPTER 4. RENEWAL PROCESSES 

4.7.5 Arbitrary renewal-reward functions: non-arithmetic case 

If we omit all the mathematical precision from the previous three subsections, we get a 
very simple picture. We started with (4.72), which gave the probability of an incremental 
square region A in the (Z(t),Xe(t)) plane for given t. We then converted various sums over 
an increasingly fine grid of such regions into Stieltjes integrals. These integrals evaluated 
the distribution and expected value of age at arbitrary values of t. Finally, the key renewal 
theorem let us take the limit of these values as t →1. 

In this subsection, we will go through the same procedure for an arbitrary reward function, 
say R(t) = R(Z(t),Xe(t)), and show how to find E [R(T )]. Note that Pr{Z(t) ≤ z} = 
E 

£
IZ(t)≤z

§ 
is a special case of E [R(T )] where R(t) is chosen to be IZ(t)≤z. Similarly, finding 

the distribution function at a given argument for any rv can be converted to the expectation 
of an indicator function. Thus, having a methodology for finding the expectation of an 
arbitrary reward function also covers distribution functions and many other quantities of 
interest. 

We will leave out all the limiting arguments here about converting finite incremental sums 
of areas into integrals, since we have seen how to do that in treating Z(t). In order to 
make this general case more transparent, we use the following shorthand for A when it is 
incrementally small: 

Pr{A} = m0(t − z)fX (x) dx dz, (4.91) 

where, if the derivatives exist, m0(τ) = dm(τ)/dτ and fX (x) = dFX (x)/dx. If the derivatives 
do not exist, we can view m0(τ) and fX (x) as generalized functions including impulses, or, 
more appropriately, view them simply as shorthand. After using the shorthand as a guide, 
we can put the results in the form of Stieltjes integrals and verify the mathematical details 
at whatever level seems appropriate. 

We do this first for the example of the distribution function of duration, Pr
n
X(t) ≤ x0 

o 
,e

where we first assume that x0 ≤ t. As illustrated in Figure 4.19, the corresponding reward 
function R(t) is 1 in the triangular region where X(t) ≤ x0 and Z(t) < X(t). It is 0e e
elsewhere. 
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Figure 4.19: Finding FXe (t)(x0) for x0 ≤ t and for x0 > t. 
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Pr
n   
Xe

o x0 x0 

(t) ≤ x0 = 
Z Z

m0(t − z)fX (x) dx dz 
z =0 x=z
x0  

= 
Z

m0(t−z)
£
FX (x0) − FX (z)

§
dz 

z=0   t 

= FX (x0)
£
m(t) − m(t−x0)

§
− 

Z
FX (t τ ) dm(τ ). (4.92) 

t x
−

− 0 

 
For the opposite case, where x0 > t, it is easier to find Pr

n
X(t) > x0 

o
. As shown in the 

figure, this is the region where 0 ≤ Z(t) ≤ t and X(t) > x0. There is a subtlety here in that 
the incremental areas we are using are only valid

e

e

n  for Z(t) < t. If the age is equal to  t, then 

no renewals have occured in (0, t], so that Pr Xe(t) > x c
0; Z(t) = t

o
= F
  

 (x0).  X Thus

n   t−  1
Pr Xe(t) > x c 

0 

o
= FX
  (x0) + 

Z Z
m0
(t − z)fX (x) dx dz 

z=0 x=x0 

= Fc 
X
  (x0) +  m(t)Fc

X (x0). (4.93)

As a sanity test, the renewal equation, (4.53), can be used to show that the sum of (4.92) 
and (4.93) at x0 = t is equal to 1 (as they must be if the equations are correct). 

 
We can now take the limit, limt→1 Pr

n
X(t) ≤ x0 

o
. For any given x0, (4.92) holds for e

sufficiently large t, and the key renewal theorem can be used since the integral has a finite 
range. Thus, 

x0 

lim Pr
n
X(t) ≤ x0 

o 
=

1 h 
x0FX (x0) − 

Z 
FX (x) dx

i 

t→1 
e

X 0 
x0 

=
1 

Z h
FX (x0) − FX (x)

i 
dx 

X 0Z
 x0 
c

h
FX (x0)

i 
dx. (4.94)


1

(x) − dFX 

c=

X 0 

It is easy to see that the right side of (4.94) is increasing from 0 to 1 with increasing x0, 
i.e., it is a distribution function. 

After this example, it is now straightforward to write down the expected value of an arbitrary 
renewal-reward function R(t) whose sample value at Z(t) = z and X(t) = x is denoted by 
R(z, x). We have 

Z 1 Z t Z 1
E [R(t)] = R(t, x) dFX (x) + R(z, x) dFX (x) dm(t − z). (4.95) 

x=t z=0 x=z 

The first term above arises from the subtlety discussed above for the case where Z(t) = t. 
The second term is simply the integral over the semi-infinite trapezoidal area in Figure 4.19. 

The analysis up to this point applies to both the arithmetic and nonarithmetic cases, but 
we now must assume again that the renewal process is nonarithmetic. If the inner integral, 
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i.e., 
R 
x
1 
=z R(z, x) dFX (x), as a function of z, is directly Riemann integrable, then not only 

can the key renewal theorem be applied to this second term, but also the first term must 
approach 0 as t →1. Thus the limit of (4.95) as t →1 is 

1 
Z 1 Z 1

lim E [R(t)] = R(z, x) dFX (x) dz.	 (4.96) 
z=0 x=zt→1 X 

This is the same expression as found for the time-average renewal reward in Theorem 4.4.1. 
Thus, as indicated earlier, we can now equate any time-average result for the nonarithmetic 
case with the corresponding limiting ensemble average, and the same equations have been 
derived in both cases. 

As a simple example of (4.96), let R(z, t) = x. Then E [R(t)] = E 
h
X(t)

i 
ande

x 

lim E 
h
Xe(t)

i 
=	

1 
Z 1 Z 1 

xdFX (x) dz = 
Z 1 Z 

xdz dFX (x) 
z=0 x=z	 x=0 z=0t→1	 X 

1 
Z 1 E 

£
X2

§
= x 2 dFX (x) = . (4.97)

X x=0 X 

After calculating the integral above by interchanging the order of integration, we can go 
back and assert that the key renewal theorem applies if E 

£
X2

§ 
is finite. If it is infinite, then 

it is not hard to see that limt→1 E 
h
X(t)

i 
is infinite also. e

It has been important, and theoretically reassuring, to be able to find ensemble-averages for 
nonarithmetic renewal-reward functions in the limit of large t and to show (not surprisingly) 
that they are the same as the time-average results. The ensemble-average results are quite 
tricky, though, and it is wise to check results achieved that way with the corresponding 
time-average results. 

4.8 Delayed renewal processes 

We have seen a certain awkwardness in our discussion of Little’s theorem and the M/G/1 
delay result because an arrival was assumed, but not counted, at time 0; this was necessary 
for the first inter-renewal interval to be statistically identical to the others. In this section, 
we correct that defect by allowing the epoch at which the first renewal occurs to be arbi
trarily distributed. The resulting type of process is a generalization of the class of renewal 
processes known as delayed renewal processes. The word delayed does not necessarily imply 
that the first renewal epoch is in any sense larger than the other inter-renewal intervals. 
Rather, it means that the usual renewal process, with IID inter-renewal times, is delayed 
until after the epoch of the first renewal. What we shall discover is intuitively satisfying 
— both the time-average behavior and, in essence, the limiting ensemble behavior are not 
affected by the distribution of the first renewal epoch. It might be somewhat surprising, 
however, to find that this irrelevance of the distribution of the first renewal epoch holds 
even when the mean of the first renewal epoch is infinite. 

To be more precise, we let {Xi; i≥1} be a set of independent nonnegative random variables. 
X1 has a given distribution function G(x), whereas {Xi; i ≥ 2} are identically distributed 
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with a given distribution function F(x). Thus a renewal process is a special case of a delayed 
renewal process for which G(x) = F(x). Let Sn = 

Pn
i=1 Xi be the nth renewal epoch. We 

first show that the SLLN still holds despite the deviant behavior of X1. 

Lemma 4.8.1. Let {Xi; i ≥ 2 be IID with a mean X satisfying E [ X ] < 1 and let X1 be 
a rv, independent of {Xi; i ≥ 2}. Let Sn = 

Pn Xi. Then lim Sn/n
|

=
|

X WP1.i=1 

Prrof: Note that 
Sn = 

X1 + 

P
i
n 
=2 Xi 

. 
n n n 

Since X1 is finite WP1, the first term above goes to 0 WP1 as n → 1. The second term 
goes to X, proving the lemma (which is thus a trivial variation of the SLLN). 

Now, for the given delayed renewal process, let N(t) be the number of renewal epochs up 
to and including time t. This is still determined by the fact that {N(t) ≥ n} if and only if 
{Sn ≤ t}). {N(t); t > 0} is then called a delayed renewal counting process. The following 
simple lemma follows from lemma 4.3.1. 

Lemma 4.8.2. Let {N(t); t > 0} be a delayed renewal counting process. Then limt→1 N(t) = 
1 with probability 1 and limt→1 E [N(t)] = 1. 

Proof: Conditioning on X1 = x, we can write N(t) = 1 + N 0(t − x) where N 0{t; t ≥ 0}
is the ordinary renewal counting process with inter-renewal intervals X2,X3, . . . . From 
Lemma 4.3.1, limt→1 N 0(t − x) = 1 with probability 1, and limt→1 E [N 0(t − x)] = 1. 
Since this is true for every finite x > 0, and X1 is finite with probability 1, the lemma is 
proven. 

Theorem 4.8.1 (Strong Law for Delayed Renewal Processes). Let N(t); t > 0 be 
the renewal counting process for a delayed renewal process where the inter-renewal intervals 
X2,X3, . . . , have distribution function F and finite mean X = 

R 1 [1 − F(x)] dx. Then x=0

lim 
N(t)

= 
1 

WP1. (4.98)
t→1 t X 

Proof: Using Lemma 4.8.1, the conditions for Theorem 4.3.2 are fulfilled, so the proof 
follows exactly as the proof of Theorem 4.3.1. . 

Next we look at the elementary renewal theorem and Blackwell’s theorem for delayed re
newal processes. To do this, we view a delayed renewal counting process {N(t); t > 0} as an 
ordinary renewal counting process that starts at a random nonnegative epoch X1 with some 
distribution function G(t). Define No(t − X1) as the number of renewals that occur in the 
interval (X1, t]. Conditional on any given sample value x for X1, {No(t − x); t−x > 0} is an 
ordinary renewal counting process and thus, given X1 = x, limt→1 E [No(t − x)] /(t − x) = 
1/X. Since N(t) = 1 + No(t − X1) for t > X1, we see that, conditional on X1 = x, 

lim 
E [N(t) | X1 =x] 

= lim 
E [No(t − x)] t − x 

=
1 

. (4.99)
t→1 t t→1 t − x t X 

Since this is true for every finite sample value x for X1, we we have established the following 
theorem: 
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Theorem 4.8.2 (Elementary Delayed Renewal Theorem). For a delayed renewal pro
cess with E [Xi] = X for i ≥ 2, 

lim 
E [N(t)] 

= 
1 

. (4.100)
t→1 t X 

The same approach gives us Blackwell’s theorem. Specifically, if {Xi; i≥2} is a sequence 
of IID non-arithmetic rv’s, then, for any δ > 0, Blackwell’s theorem for ordinary renewal 
processes implies that 

lim 
E [No(t − x + δ) − No(t − x)] 

= 
1 

. (4.101)
t→1 δ X 

Thus, conditional on any sample value X1 = x, limt→1 E [N(t+δ) − N(t) | X1 =x] = δ/X. 
Taking the expected value over X1 gives us limt→1 E [N(t + δ) − N(t)] = δ/X. The case 
in which {Xi; i≥2} are arithmetic with span ∏ is somewhat more complicated. If X1 is 
arithmetic with span ∏ (or a multiple of ∏), then the first renewal epoch must be at some 
multiple of ∏ and ∏/X gives the expected number of arrivals at time i∏ in the limit as 
i →1. If X1 is non-arithmetic or arithmetic with a span other than a multiple of ∏, then 
the effect of the first renewal epoch never dies out, since all subsequent renewals occur at 
multiples of ∏ from this first epoch. We ignore this rather ugly case and state the following 
theorem for the nice situations. 

Theorem 4.8.3 (Blackwell for Delayed Renewal). If {Xi; i≥2} are non-arithmetic, 
then, for all δ > 0, 

lim 
E [N(t + δ) − N(t)] 

= 
1 

. (4.102)
t→1 δ X 

If {Xi; i ≥ 2} are arithmetic with span ∏ and mean X and X1 is arithmetic with span m∏ 
for some positive integer m, then 

lim 
i→1 

Pr{renewal at t = i∏} = 
∏ 

X 
. (4.103) 

4.8.1 Delayed renewal-reward processes 

We have seen that the distribution of the first renewal epoch has no effect on the time 
or ensemble-average behavior of a renewal process (other than the ensemble dependence 
on time for an arithmetic process). This carries over to reward functions with almost no 
change. In particular, the generalized version of Theorem 4.4.1 is as follows: 

Theorem 4.8.4. Let {N(t); t > 0} be a delayed renewal counting process where the inter-
renewal intervals X2,X3, . . . have the distribution function F. Let Z(t) = t − SN(t), let 
X(t) = SN(t)+1 − SN(t), and let R(t) = R(Z(t),Xe(t)) be a reward function. Assume that e

xZ 1 Z 
E [Rn] = R(z, x) dz dF(x) < 1 . 

x=0 z=0 
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Then, with probability one, 

1 
Z t E [Rn]

lim R(τ)dτ = for n ≥ 2. (4.104)
t→1 t τ=0 X2 

We omit the proof of this since it is a minor variation of that of theorem 4.4.1. Finally, the 
equivalence of time and limiting ensemble averages holds as before, yielding 

lim E [R(t)] = 
E [Rn] 

. (4.105)
t→1 X2 

4.8.2 Transient behavior of delayed renewal processes 

Let m(t) = E [N(t)] for a delayed renewal process. As in (4.51), we have 

1 1
m(t) = 

X 
Pr{N(t) ≥ n} = 

X 
Pr{Sn ≤ t} . (4.106) 

n=1 n=1 

For n ≥ 2, Sn = Sn−1 + Xn where Xn and Sn−1 are independent. From the convolution 
equation (1.12), 

Z t 

Pr{Sn ≤ t} = Pr{Sn−1 ≤ t − x} dF(x) for n ≥ 2. (4.107) 
x=0 

For n = 1, Pr{Sn ≤ t} = G(t). Substituting this in (4.106) and interchanging the order of 
integration and summation, 

Z t 1
m(t) = G(t) + 

X 
Pr{Sn−1 ≤ t − x} dF(x) 

x=0 n=2 
Z t 1

= G(t) + 
X 

Pr{Sn ≤ t − x} dF(x) 
x=0 n=1 Z t 

= G(t) + m(t − x)dF(x) ; t ≥ 0. (4.108) 
x=0 

This is the renewal equation for delayed renewal processes and is a generalization of (4.52). 
It is shown to have a unique solution in [8], Section 11.1. 

There is another useful integral equation very similar to (4.108) that arises from breaking 
up Sn as the sum of X1 and Sbn−1 where Sbn−1 = X2 + +Xn m(t) be the expected . Letting b· · ·
number of renewals in time t for an ordinary renewal process with interarrival distribution F, 
a similar argument to that above, starting with Pr{Sn ≤ t} = 

R 
0 
t Pr

n
Sbn−1 ≤ t − x 

o 
dG(x) 

yields 
Z t 

m(t) = G(t) + m(t − x)dG(x). (4.109)b
x=0 
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This equation brings out the effect of the initial renewal interval clearly, and is useful in 
computation if one already knows bm(t). 

Frequently, the most convenient way of dealing with m(t) is through transforms. Following 
the same argument as that in (4.54), we get Lm(r) = (1/r)LG(r) + Lm(r)LF(r). Solving, 
we get 

Lm(r) = 
r[1 

L

− 
G

L

(r
F

)
(r)]

. (4.110) 

We can find m(t) from (4.110) by finding the inverse Laplace transform, using the same 
procedure as in Example 4.6.1. There is a second order pole at r = 0 again, and, evaluating 
the residue, it is 1/L0F(0) = 1/X2, which is not surprising in terms of Blackwell’s theorem. 
We can also expand numerator and denominator of (4.110) in a power series, as in (4.55). 
The inverse transform, corresponding to (4.56), is 

E 
£
X2

§
m(t) = 

X

t 
+

2X 
2 − 

X

X 
1 + ≤(t) for t → 0, (4.111) 

where limt→1 ≤(t) = 0. 

4.8.3 The equilibrium process 

Consider an ordinary non-arithmetic renewal process with an inter-renewal interval X of 
distribution F(x). We have seen that the distribution of the interval from t to the next 
renewal approaches FY (y) = (1/E [X]) 

R 
0 
y[1 − F(x)]dx as t → 1. This suggests that if we 

look at this renewal process starting at some very large t, we should see a delayed renewal 
process for which the distribution G(x) of the first renewal is equal to the residual life 
distribution FY (x) above and subsequent inter-renewal intervals should have the original 
distribution F(x) above. Thus it appears that such a delayed renewal process is the same as 
the original ordinary renewal process, except that it starts in “steady state.” To verify this, 
we show that m(t) = t/X is a solution to (4.108) if G(t) = FY (t). Substituting (t − x)/X 
for m(t − x), the right hand side of (4.108) is 

R 
0 
t [1 − F(x)]dx 

+ 

R 
0 
t(t − x)dF(x)

= 

R 
0 
t [1 − F(x)]dx 

+ 

R 
0 
t F(x)dx 

= 
t

,
X2 X X X X 

where we have used integration by parts for the first equality. This particular delayed 
renewal process is called the equilibrium process, since it starts off in steady state, and thus 
has no transients. 

4.9 Summary 

Sections 4.1 to 4.7 developed the central results about renewal processes that frequently 
appear in subsequent chapters. The chapter starts with the strong law for renewal processes, 
showing that the time average rate of renewals, N(t)/t, approaches 1/X with probability 
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1 as t → 1. This, combined with the strong law of large numbers, is the basis for most 
subsequent results about time-averages. Section 4.4 adds a reward function R(t) to the 
underlying renewal process. These reward functions are defined to depend only on the 
inter-renewal interval containing t, and are used to study many surprising aspects of renewal 
processes such as residual life, age, and duration. For all sample paths of a renewal process 
(except a subset of probabiity 0), the time-average reward for a given R(t) is a constant, 
and that constant is the expected aggregate reward over an inter-renewal interval divided 
by the expect length of an inter-renewal interval. 

The next topic, in Section 4.5 is that of stopping trials. These have obvious applications 
to situations where an experiment or game is played until some desired (or undesired) 
outcome (based on the results up to and including the given trial) occurs. This is a basic 
and important topic in its right, but is also needed to understand both how the expected 
renewal rate E [N(t)] /t varies with time t and how renewal theory can be applied to queueing 
situations. Finally, we found that stopping rules were helpful in understanding G/G/1 
queues, especially Little’s theorem, and to derive an understand the Pollaczek-Khinchin 
expression for the expected delay in an M/G/1 queue. 

This is followed, in Section 4.6, by an analysis of how E [N(t)] /t varies with t. This starts 
by using Laplace transforms to get a complete solution of the ensemble-average, E [N(t)] /t, 
as a function of t, when the distribution of the inter-renewal interval has a rational Laplace 
transform. For the general case (where the Laplace transform is irrational or non-existant), 
the elementary renewal theorem shows that limt→1 E [N(t)] /t = 1/X. The fact that the 
time-average (WP1) and the limiting ensemble-average are the same is not surprising, and 
the fact that the ensemble-average has a limit is not surprising. These results are so fun
damental to other results in probability, however, that they deserve to be understood. 

Another fundamental result in Section 4.6 is Blackwell’s renewal theorem, showing that the 
distribution of renewal epochs reach a steady state as t → 1. The form of that steady 
state depends on whether the inter-renewal distribution is arithmetic (see (4.59)) or non-
arithmetic (see (4.58)). 

Section 4.7 ties together the results on rewards in 4.4 to those on ensemble averages in 4.6. 
Under some very minor restrictions imposed by the key renewal theorem, we found that, for 
non-arithmetic inter-renewal distributions, limt→1 E [R(t)] is the same as the time-average 
value of reward. 

Finally, all the results above were shown to apply to delayed renewal processes. 

For further reading on renewal processes, see Feller,[8], Ross, [16], or Wolff, [22]. Feller still 
appears to be the best source for deep understanding of renewal processes, but Ross and 
Wolff are somewhat more accessible. 

4.10 Exercises 

Exercise 4.1. The purpose of this exercise is to show that for an arbitrary renewal process, 
N(t), the number of renewals in (0, t] is a (non-defective) random variable. 
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a) Let X1,X2, . . . , be a sequence of IID inter-renewal rv’s . Let Sn = X1 + + Xn· · · 
be the corresponding renewal epochs for each n ≥ 1. Assume that each Xi has a finite 
expectation X > 0 and, for any given t > 0, use the weak law of large numbers to show 
that limn→1 Pr{Sn ≤ t} = 0. 

b) Use part a) to show that limn→1 Pr{N ≥ n} = 0 and explain why this means that N(t) 
is a rv, i.e., is not defective. 

c) Now suppose that the Xi do not have a finite mean. Consider truncating each Xi to 
X̆i, where for any given b > 0, X̆i = min(Xi, b). Let N̆(t) be the renewal counting process 
for the inter-renewal intervals X̆i. Show that N̆(t) is non-defective for each t > 0. Show 
that N(t) ≤ N̆(t) and thus that N(t) is non-defective. Note: Large inter-renewal intervals 
create small values of N(t), and thus E [X] = 1 has nothing to do with potentially large 
values of N(t), so the argument here was purely technical. 

Exercise 4.2. The purpose of this exercise is to show that, for an arbitrary renewal process, 
N(t), the number of renewals in (0, t], has finite expectation. 

a) Let the inter-renewal intervals have the distribution FX (x), with, as usual, FX (0) = 0. 
Using whatever combination of mathematics and common sense is comfortable for you, 
show that numbers ≤ > 0 and δ > 0 must exist such that FX (δ) ≤ 1 − ≤. In other words, 
you are to show that a positive rv must take on some range of of values bounded away from 
zero with positive probability. 

b) Show that Pr{Sn ≤ δ} ≤ (1 − ≤)n . 

c) Show that E [N(δ)] ≤ 1/≤. 

d) Show that for every integer k, E [N(kδ)] ≤ k/≤ and thus that E [N(t)] ≤ t+δ for any ≤δ 
t > 0. 

e) Use your result here to show that N(t) is non-defective. 

Exercise 4.3. Let {Xi; i ≥ 1} be the inter-renewal intervals of a renewal process gener
alized to allow for inter-renewal intervals of size 0 and let Pr{Xi = 0} =α, 0 < α < 1. 
Let {Yi; i ≥ 1} be the sequence of non-zero interarrival intervals. For example, if X1 = 
x1>0, X2 = 0, X3 = x3>0, . . . , then Y1 =x1, Y2 =x3, . . . , . 

a) Find the distribution function of each Yi in terms of that of the Xi. 

b) Find the PMF of the number of arrivals of the generalized renewal process at each epoch 
at which arrivals occur. 

c) Explain how to view the generalized renewal process as an ordinary renewal process with 
inter-renewal intervals {Yi; i ≥ 1} and bulk arrivals at each renewal epoch. 

d) When a generalized renewal process is viewed as an ordinary renewal process with 
bulk arrivals, what is the distribution of the bulk arrivals? (The point of this part is to 
illustrate that bulk arrivals on an ordinary renewal process are considerably more general 
than generalized renewal processes.) 
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Exercise 4.4. Is it true for a renewal process that:


a) N(t) < n if and only if Sn > t?


b) N(t) ≤ n if and only if Sn ≥ t?


c) N(t) > n if and only if Sn < t?


Exercise 4.5. (This shows that convergence WP1 implies convergence in probability.) Let 
{Yn; n ≥ 1} be a sequence of rv’s that converges to 0 WP1. For any positive integers m 
and k, let 

A(m,k) = {ω : |Yn(ω)| ≤ 1/k for all n ≥ m}. 

a) Show that if limn→1 Yn(ω) = 0 for some given ω, then (for any given k) ω ∈ A(m,k) for 
some positive integer m. 

b) Show that for all k ≥ 1 

Pr
n[1 

A(m,k)
o 

= 1. 
m=1 

c) Show that, for all m ≥ 1, A(m,k) ⊆ A(m+1, k). Use this (plus (1.9)) to show that 

lim Pr{A(m,k)} = 1. 
m→1 

d) Show that if ω ∈ A(m,k), then |Ym(ω)| ≤ 1/k. Use this (plus part c) to show that 

lim Pr{ Ym > 1/k} = 0. 
m→1 

| | 

Since k ≥ 1 is arbitrary, this shows that {Yn; n ≥ 1} converges in probabiity. 

Exercise 4.6. In this exercise, we find an explicit expression for {ω : limn Yn = 0}. You 
may use whatever level of mathematical precision you feel comfortable with. 

a) Let {Yn; n ≥ 1} be a sequence of rv’s. Using the definition of convergence for a sequence 
of numbers, justify the following set equivalences: 

\1
{ω : lim Yn(ω) = 0} = 

k=1
{ω : there exists an m such that Yn(ω) ≤ 1/k for all n ≥ m}

n 
| | 

= 
\1 [1 

(ω) ≤ 1/k for all n ≥ m}
k=1 m=1

{ω : Yn

= 
\1 [1 \1 

(ω) ≤ 1/k}
n=m

{ω : Yn
k=1 m=1 

b) Explain how this shows that {ω : limn Yn(ω) = 0} must be an event. 

c) Use deMorgan’s laws to show that the complement of the above equivalence is 

{ω : lim Yn(ω) = 0}c = 
[1 \1 [1 

n=m
{ω : Yn(ω) > 1/k}

n k=1 m=1 
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d) Show that for {Yn; n ≥ 1} to converge WP1, it is necessary and sufficient to satisfy 

Pr
n\1 [

n

1 

=m
{Yn > 1/k}

o 
= 0 for all k ≥ 1 

m=1 

e) Show that for {Yn; n ≥ 1} to converge WP1, it is necessary and sufficient to satisfy 

lim Pr
n[

n

1 

=m
{Yn > 1/k}

o 
= 0 for all k ≥ 1 

m→1 

Hint: Use part a) of Exercise 4.7. Note: Part e) provides an equivalent condition that is 
often useful in establishing convergence WP1. It also brings out quite clearly the difference 
between convergence WP1 and convergence in probability. 

Exercise 4.7. Consider the event 
T 

m≥1 

S 
n≥m An where A1, A2, . . . , are arbitrary events. 

a) Show that 

lim Pr
n[

An 

o 
= 0 Pr

n\ [
An 

o 
= 0. 

m→1 n≥m 
⇐⇒ 

m≥1 n≥m 

Hint: Apply the complement of (1.9). 

b) Show that if 
P1 Pr{Am} < 1, then Pr

©T S 
An

™ 
= 0. Hint: Recall that m=1 m n≥m 

if 
P1 Pr{Am} < 1, then limm→1 Pr

©S 
An

™ 
= 0. Combine this with a). This m=1 n≥m 

well-known result is called the Borel-Cantelli lemma. 

c) The set Pr
©T 

m 

S 
n≥m An

™ 
is often referred to as the set of ω that are contained in 

infinitely many of the An. Without trying to be precise about what this latter statement 
means, explain why it is a good way to think about Pr

©T 
m 

S 
n≥m An

™
. Hint: Consider an 

ω that is contained in some finite number k of the sets An and argue that there must be an 
integer m such that ω ∈/ An for all n > m. 

Exercise 4.8. Let {Xi; i≥1} be the inter-renewal intervals of a renewal process and assume 
that E [Xi] = 1. Let b > 0 be an arbitrary number and X̆i be a truncated random variable 
defined by X̆i = Xi if Xi ≤ b and X̆i = b otherwise. 

a) Show that for any constant M > 0, there is a b sufficiently large so that E 
h
X̆i 

i 
≥ M . 

b) Let {N̆(t); t≥0} be the renewal counting process with inter-renewal intervals {X̆i; i ≥ 1}
and show that for all t > 0, N̆(t) ≥ N(t). 

c) Show that for all sample functions N(t,ω), except a set of probability 0, N(t,ω)/t < 2/M 
for all sufficiently large t. Note: Since M is arbitrary, this means that lim N(t)/t = 0 with 
probability 1. 

Exercise 4.9. Let Y (t) = SN(t)+1−t be the residual life at time t of a renewal process. First 
consider a renewal process in which the interarrival time has density fX (x) = e−x; x ≥ 0, 
and next consider a renewal process with density 

3 
fX (x) = 

(x + 1)4 ; x ≥ 0. 
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For each of the above densities, use renewal-reward theory to find: 

i) the time-average of Y (t) 

ii) the second moment in time of Y (t) (i.e., limT →1 
1 

R T Y 2(t)dt)T 0 

For the exponential density, verify your answers by finding E [Y (t)] and E 
£
Y 2(t)

§ 
directly. 

Exercise 4.10. Consider a variation of an M/G/1 queueing system in which there is no 
facility to save waiting customers. Assume customers arrive according to a Poisson process 
of rate ∏. If the server is busy, the customer departs and is lost forever; if the server is 
not busy, the customer enters service with a service time distribution function denoted by 
FY (y). 

Successive service times (for those customers that are served) are IID and independent of 
arrival times. Assume that customer number 0 arrives and enters service at time t = 0. 

a) Show that the sequence of times S1, S2, . . . at which successive customers enter service are 
the renewal times of a renewal process. Show that each inter-renewal interval Xi = Si −Si−1 

(where S0 = 0) is the sum of two independent random variables, Yi + Ui where Yi is the ith 
service time; find the probability density of Ui. 

b) Assume that a reward (actually a cost in this case) of one unit is incurred for each 
customer turned away. Sketch the expected reward function as a function of time for the 
sample function of inter-renewal intervals and service intervals shown below; the expectation 
is to be taken over those (unshown) arrivals of customers that must be turned away. 

✛
❄


Y1 ✛
❄

✲ Y1 ✛
❄

✲ Y1 ✲


S0 = 0 ❄
 S1 ❄
 S2 ❄


c) Let 
R t R(τ)dτ denote the accumulated reward (i.e., cost) from 0 to t and find the limit 

as t →1 
0 

of (1/t) 
R t R(τ)dτ . Explain (without any attempt to be rigorous or formal) why 0 

this limit exists with probability 1. 

d) In the limit of large t, find the expected reward from time t until the next renewal. Hint: 
Sketch this expected reward as a function of t for a given sample of inter-renewal intervals 
and service intervals; then find the time-average. 

e) Now assume that the arrivals are deterministic, with the first arrival at time 0 and 
the nth arrival at time n − 1. Does the sequence of times S1, S2, . . . at which subsequent 
customers start service still constitute the renewal times of a renewal process? Draw a sketch 

of arrivals, departures, and service time intervals. Again find limt→1 

≥R t R(τ) dτ
¥ 

/t.0 

Exercise 4.11. Let Z(t) = t−SN(t) be the age of a renewal process and Y (t) = SN(t)+1 − t 
be the residual life. Let FX (x) be the distribution function of the inter-renewal interval and 
find the following as a function of FX (x): 

a) Pr{Y (t)>x | Z(t)=s} 

b) Pr{Y (t)>x | Z(t+x/2)=s} 
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c) Pr{Y (t)>x | Z(t+x)>s} for a Poisson process. 

Exercise 4.12. Let FZ (z) be the fraction of time (over the limiting interval (0, 1) that 
the age of a renewal process is at most z. Show that FZ (z) satisfies 

1 
Z y 

FZ (z) = Pr{X > x} dx WP1. 
X x=0 

Hint: Follow the argument in Example 4.4.5. 

Exercise 4.13. a) Let J be a stopping rule and I be the indicator random variable 
of the event {J ≥ n}. Show that J = 

P 
n≥1 I{J≥n. 

{J≥n} 

b) Show that IJ≥1 ≥ IJ≥2 ≥ . . . , i.e., show that for each n > 1, IJ≥n(ω) ≥ IJ≥n+1(ω) for 
each ω ∈ ≠ (except perhaps for a set of probability 0). 

Exercise 4.14. a) Use Wald’s equality to compute the expected number of trials of a 
Bernoulli process up to and including the kth success. 

b) Use elementary means to find the expected number of trials up to and including the first 
success. Use this to find the expected number of trials up to and including the kth success. 
Compare with part a). 

Exercise 4.15. A gambler with an initial finite capital of d > 0 dollars starts to play 
a dollar slot machine. At each play, either his dollar is lost or is returned with some 
additional number of dollars. Let Xi be his change of capital on the ith play. Assume that 
{Xi; i=1, 2, . . . } is a set of IID random variables taking on integer values {−1, 0, 1, . . . }. 
Assume that E [Xi] < 0. The gambler plays until losing all his money (i.e., the initial d 
dollars plus subsequent winnings). 

a) Let J be the number of plays until the gambler loses all his money. Is the weak law 
of large numbers sufficient to argue that limn→1 Pr{J > n} = 0 (i.e., that J is a random 
variable) or is the strong law necessary? 

b) Find E [J ]. Hint: The fact that there is only one possible negative outcome is important 
here. 

Exercise 4.16. Let {Xi; i ≥ 1} be IID binary random variables with PX (0) = PX (1) = 
1/2. Let J be a positive integer-valued random variable defined on the above sample space 
of binary sequences and let SJ = 

P
i
J 
=1 Xi. Find the simplest example you can in which J 

is not a stopping trial for {Xi; i ≥ 1} and where E [X] E [J ] =6 E [SJ ]. Hint: Try letting J 
take on only the values 1 and 2. 

Exercise 4.17. Let J = min{n Sn≤b or Sn≥a}, where a is a positive integer, b is a neg
ative integer, and Sn = X1 + X2

|
+ + Xn. Assume that {Xi; i≥1} is a set of zero mean · · · 

IID rv’s that can take on only the set of values {−1, 0, +1}, each with positive probability. 
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a) Is J a stopping rule? Why or why not? Hint: The more difficult part of this is to argue 
that J is a random variable (i.e., non-defective); you do not need to construct a proof of 
this, but try to argue why it must be true. 

b) What are the possible values of SJ ? 

c) Find an expression for E [SJ ] in terms of p, a, and b, where p = Pr{SJ ≥ a}. 

d) Find an expression for E [SJ ] from Wald’s equality. Use this to solve for p. 

Exercise 4.18. Show that the interchange of expectation and sum in (4.32) is valid if 
E [J ] < 1. Hint: First express the sum as 

Pk
n
−
=1

1 XnIJ≥n + 
P1

n=k(Xn 
+ + Xn

−)IJ≥n and then 
consider the limit as k →1. 

Exercise 4.19. Consider an amnesic miner trapped in a room that contains three doors. 
Door 1 leads him to freedom after two-day’s travel; door 2 returns him to his room after 
four-day’s travel; and door 3 returns him to his room after eight-day’s travel. Suppose each 
door is equally likely to be chosen whenever he is in the room, and let T denote the time it 
takes the miner to become free. 

a) Define a sequence of independent and identically distributed random variables X1,X2, . . . 
and a stopping rule J such that 

J


T = 
X 

Xi.

i=1


b) Use Wald’s equality to find E [T ]. 

c) Compute E 
hPJ

i=1 Xi | J=n 
i 

and show that it is not equal to E [
P

i
n 
=1 Xi]. 

d) Use part c) for a second derivation of E [T ]. 

Exercise 4.20. a) Consider a renewal process for which the inter-renewal intervals have 
the PMF pX (1) = pX (2) = 1/2. Use elementary combinatorics to show that m(1) = 1/2, 
m(2) = 5/4, and m(3) = 15/8. 

b) Use elementary means to show that E 
£
SN(1)

§ 
= 1/2 and E 

£
SN(1)+1

§ 
= 9/4. Verify 

(4.35) in this case (i.e., for t = 1) and show that N(1) is not a stopping trial. Note also 
that the expected duration, E 

£
SN(1)+1 − SN(1)

§ 
is not equal to X. 

c) Consider a more general form of part a) where Pr{X = 1} = 1 − p and Pr{X = 2} = p. 
Let Pr{Wn = 1} = xn and show that xn satisfies the difference equation xn = 1 − pxn−1 

for n ≥ 1 where by convention x0 = 1. Use this to show that 

1 − (−p)n+1 

xn = 
1 + p

. (4.112) 

From this, solve for m(n) for n ≥ 1. 
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Exercise 4.21. Let {N(t); t > 0} be a renewal counting process generalized to allow for 
inter-renewal intervals {Xi} of duration 0. Let each Xi have the PMF Pr{Xi = 0} = 1 − ≤ ; 
Pr{Xi = 1/≤} = ≤. 

a) Sketch a typical sample function of {N(t); t > 0}. Note that N(0) can be non-zero (i.e., 
N(0) is the number of zero interarrival times that occur before the first non-zero interarrival 
time). 

b) Evaluate E [N(t)] as a function of t. 

c) Sketch E [N(t)] /t as a function of t. 

d) Evaluate E 
£
SN(t)+1

§ 
as a function of t (do this directly, and then use Wald’s equality as 

a check on your work).


e) Sketch the lower bound E [N(t)] /t ≥ 1/E [X] − 1/t on the same graph with part c).


f) Sketch E 
£
SN(t)+1 − t

§ 
as a function of t and find the time average of this quantity.


g) Evaluate E 
£
SN(t)

§ 
as a function of t; verify that E 

£
SN(t)

§ 
= E [X] E [N(t)].
6

Exercise 4.22. Let {N(t); t > 0} be a renewal counting process and let m(t) = E [N(t)] 
be the expected number of arrivals up to and including time t. Let {Xi; i ≥ 1} be the 
inter-renewal times and assume that FX (0) = 0. 

a) For all x > 0 and t > x show that E [N(t) X1 =x] = E [N(t − x)] + 1. 

b) Use part a) to show that m(t) = FX (t) + 
R
|

t m(t − x)dFX (x) for t > 0. This equation is 0 
the renewal equation derived differently in (4.52). 

c) Suppose that X is an exponential random variable of parameter ∏. Evaluate Lm(s) from 
(4.54); verify that the inverse Laplace transform is ∏t; t≥0. 

Exercise 4.23. a) Let the inter-renewal interval of a renewal process have a second order 
Erlang density, fX (x) = ∏2x exp(−∏x). Evaluate the Laplace transform of m(t) = E [N(t)]. 

b) Use this to evaluate m(t) for t ≥ 0. Verify that your answer agrees with (4.56). 

c) Evaluate the slope of m(t) at t = 0 and explain why that slope is not surprising. 

d) View the renewals here as being the even numbered arrivals in a Poisson process of rate 
∏. Sketch m(t) for the process here and show one half the expected number of arrivals for 
the Poisson process on the same sketch. Explain the difference between the two. 

Exercise 4.24. a) Let N(t) be the number of arrivals in the interval (0, t] for a Poisson 
process of rate ∏. Show that the probability that N(t) is even is [1 + exp(−2∏t)]/2. Hint: 
Look at the power series expansion of exp(−∏t) and that of exp(∏t), and look at the sum 
of the two. Compare this with 

P 
Pr{N(t) = n}. n even 

b) Let Ne(t) be the number of even numbered arrivals in (0, t]. Show that Ne(t) = N(t)/2 −
Iodd(t)/2 where Iodd(t) is a random variable that is 1 if N(t) is odd and 0 otherwise. 

c) Use parts a) and b) to find E 
h
Ne(t)

i 
. Note that this is m(t) for a renewal process with 

2nd order Erlang inter-renewal intervals. 
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Exercise 4.25. a) Consider a function r(z) ≥ 0 defined as follows for 0 ≤ z < 1: For 
each integer n ≥ 1 and each integer k, 1 ≤ k < n, r(z) = 1 for n + k/n ≤ z ≤ n + k/n +2−n . 
For all other z, r(z) = 0. Sketch this function and show that r(z) is not directly Riemann 
integrable. 

b) Evaluate the Riemann integral 
R 
0
1 r(z)dz. 

c) Suppose r(z) is decreasing, i.e., that r(z) ≥ r(y) for all y > z > 0. Show tht if r(z) is 
Riemann integrable, it is also directly Riemann integrable. 

d) Suppose f(z) ≥ 0, defined for z ≥ 0, is decreasing and Riemann integrable and that 
f(z) ≥ r(z) for all z ≥ 0. Show that r(z) is Directly Riemann integrable. 

e) Let X be a non-negative rv for which E 
£
X2

§ 
< 1. Show that x Fc (x) is directly X 

Riemann integrable. Hint: Consider yFc (y) + 
R 1 FX (x) dx and use Figure 1.7 (or use X y 

integration by parts) to show that this expression is decreasing in y. 

Exercise 4.26. Let Z(t), Y (t),Xe(t) denote the age, residual life, and duration at time t 
for a renewal counting process {N(t); t > 0} in which the interarrival time has a density 
given by f(x). Find the following probability densities; assume steady state. 

a) fY (t)(y | Z(t+s/2)=s) for given s > 0. 

b) fY (t),Z(t)(y, z). 

c) fY (t)(y | Xe(t)=x). 

d) fZ(t)(z | Y (t−s/2)=s) for given s > 0. 

e) fY (t)(y | Z(t+s/2)≥s) for given s > 0. 

Exercise 4.27. a) Find limt→1{E [N(t)]− t/X} for a renewal counting process {N(t); t > 
0} with inter-renewal times {Xi; i ≥ 1}. Hint: use Wald’s equation. 

b) Evaluate your result for the case in which X is an exponential random variable (you 
already know what the result should be in this case). 

c) Evaluate your result for a case in which E [X] < 1 and E 
£
X2

§ 
= Explain (very 1. 

briefly) why this does not contradict the elementary renewal theorem. 

Exercise 4.28. Customers arrive at a bus stop according to a Poisson process of rate ∏. 
Independently, buses arrive according to a renewal process with the inter-renewal interval 
distribution FX (x). At the epoch of a bus arrival, all waiting passengers enter the bus and 
the bus leaves immediately. Let R(t) be the number of customers waiting at time t. 

a) Draw a sketch of a sample function of R(t). 

b) Given that the first bus arrives at time X1 = x, find the expected number of customers 
picked up; then find E 

£R x R(t)dt
§
, again given the first bus arrival at X1 = x.0 

c) Find limt→1 
1 

R t R(τ )dτ (with probability 1). Assuming that FX is a non-arithmetic t 0 
distribution, find limt→1 E [R(t)]. Interpret what these quantities mean. 
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d) Use part c) to find the time-average expected wait per customer. 

e) Find the fraction of time that there are no customers at the bus stop. (Hint: this part 
is independent of a), b), and c); check your answer for E [X] 1/∏).ø 

Exercise 4.29. Consider the same setup as in Exercise 4.28 except that now customers 
arrive according to a non-arithmetic renewal process independent of the bus arrival process. 
Let 1/∏ be the expected inter-renewal interval for the customer renewal process. Assume 
that both renewal processes are in steady state (i.e., either we look only at t ¿ 0, or we 
assume that they are equilibrium processes). Given that the nth customer arrives at time 
t, find the expected wait for customer n. Find the expected wait for customer n without 
conditioning on the arrival time. 

Exercise 4.30. Let {N1(t); t > 0} be a Poisson counting process of rate ∏. Assume that 
the arrivals from this process are switched on and off by arrivals from a non-arithmetic 
renewal counting process {N2(t); t > 0} (see figure below). The two processes are indepen
dent. 

rate ∏ ✁❆ ✁❆ ✁❆ ✁❆ ✁❆ ✁❆ ✁❆ ✁❆ N1(t) 

rate ∞ 
✛ On ✲✁❆ ❆✁✛ On ✲❆✁ ❆✁✛ On ✲❆✁ N2(t) 

✁❆ ✁❆ ✁❆ ❆✁ NA(t) 

Let {NA(t); t ≥ 0} be the switched process; that is NA(t) includes arrivals from {N1(t); t > 
0} while N2(t) is even and excludes arrivals from {N1(t); t > 0} while N2(t) is odd. 

a) Is NA(t) a renewal counting process? Explain your answer and if you are not sure, look 
at several examples for N2(t). 

b) Find limt→1 
1 NA(t) and explain why the limit exists with probability 1. Hint: Uset 

symmetry—that is, look at N1(t) − NA(t). To show why the limit exists, use the renewal-
reward theorem. What is the appropriate renewal process to use here? 

c) Now suppose that {N1(t); t>0} is a non-arithmetic renewal counting process but not a 
Poisson process and let the expected inter-renewal interval be 1/∏. For any given δ, find 
limt→1 E [NA(t + δ) − NA(t)] and explain your reasoning. Why does your argument in (b) 
fail to demonstrate a time-average for this case? 

Exercise 4.31. An M/G/1 queue has arrivals at rate ∏ and a service time distribution 
given by FY (y). Assume that ∏ < 1/E [Y ]. Epochs at which the system becomes empty 
define a renewal process. Let FZ (z) be the distribution of the inter-renewal intervals and 
let E [Z] be the mean inter-renewal interval. 

a) Find the fraction of time that the system is empty as a function of ∏ and E [Z]. State 
carefully what you mean by such a fraction. 

b) Apply Little’s theorem, not to the system as a whole, but to the number of customers 
in the server (i.e., 0 or 1). Use this to find the fraction of time that the server is busy. 
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c) Combine your results in a) and b) to find E [Z] in terms of ∏ and E [Y ]; give the fraction 
of time that the system is idle in terms of ∏ and E [Y ]. 

d) Find the expected duration of a busy period. 

Exercise 4.32. Consider a sequence X1,X2, . . . of IID binary random variables. Let p and 
1 − p denote Pr{Xm = 1} and Pr{Xm = 0} respectively. A renewal is said to occur at time 
m if Xm−1 = 0 and Xm = 1. 

a) Show that {N(m); m ≥ 0} is a renewal counting process where N(m) is the number of 
renewals up to and including time m and N(0) and N(1) are taken to be 0. 

b) What is the probability that a renewal occurs at time m, m ≥ 2 ? 

c) Find the expected inter-renewal interval; use Blackwell’s theorem here. 

d) Now change the definition of renewal; a renewal now occurs at time m if Xm−1 = 1 and 
Xm = 1. Show that {N∗ ; m ≥ 0} is a delayed renewal counting process where N∗ is the m m 
number of renewals up to and including m for this new definition of renewal (N0 

∗ = N1 
∗ = 0). 

e) Find the expected inter-renewal interval for the renewals of part d). 

f) Given that a renewal (according to the definition in (d)) occurs at time m, find the 
expected time until the next renewal, conditional, first, on Xm+1 = 1 and, next, on Xm+1 = 
0. Hint: use the result in e) plus the result for Xm+1 = 1 for the conditioning on Xm+1 = 0. 

g) Use your result in f) to find the expected interval from time 0 to the first renewal 
according to the renewal definition in d). 

h) Which pattern requires a larger expected time to occur: 0011 or 0101 

i) What is the expected time until the first occurrence of 0111111? 

Exercise 4.33. A large system is controlled by n identical computers. Each computer 
independently alternates between an operational state and a repair state. The duration 
of the operational state, from completion of one repair until the next need for repair, is 
a random variable X with finite expected duration E [X]. The time required to repair a 
computer is an exponentially distributed random variable with density ∏e−∏t. All operating 
durations and repair durations are independent. Assume that all computers are in the repair 
state at time 0. 

a) For a single computer, say the ith, do the epochs at which the computer enters the repair 
state form a renewal process? If so, find the expected inter-renewal interval. 

b) Do the epochs at which it enters the operational state form a renewal process? 

c) Find the fraction of time over which the ith computer is operational and explain what 
you mean by fraction of time. 

d) Let Qi(t) be the probability that the ith computer is operational at time t and find 
limt→1 Qi(t). 
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e) The system is in failure mode at a given time if all computers are in the repair state at 
that time. Do the epochs at which system failure modes begin form a renewal process? 

f) Let Pr{t} be the probability that the the system is in failure mode at time t. Find 
limt→1 Pr{t}. Hint: look at part d). 

g) For δ small, find the probability that the system enters failure mode in the interval 
(t, t + δ] in the limit as t →1. 

h) Find the expected time between successive entries into failure mode. 

i) Next assume that the repair time of each computer has an arbitrary density rather than 
exponential, but has a mean repair time of 1/∏. Do the epochs at which system failure 
modes begin form a renewal process? 

j) Repeat part f) for the assumption in (i). 

Exercise 4.34. Let {N1(t); t>0} and {N2(t); t>0} be independent renewal counting pro
cesses. Assume that each has the same distribution function F(x) for interarrival intervals 
and assume that a density f(x) exists for the interarrival intervals. 

a) Is the counting process {N1(t) + N2(t); t > 0} a renewal counting process? Explain. 

b) Let Y (t) be the interval from t until the first arrival (from either process) after t. Find 
an expression for the distribution function of Y (t) in the limit t → 1 (you may assume 
that time averages and ensemble-averages are the same). 

c) Assume that a reward R of rate 1 unit per second starts to be earned whenever an arrival 
from process 1 occurs and ceases to be earned whenever an arrival from process 2 occurs. 

Assume that limt→1(1/t) 
R t R(τ) dτ exists with probability 1 and find its numerical value. 0 

d) Let Z(t) be the interval from t until the first time after t that R(t) (as in part c) changes 
value. Find an expression for E [Z(t)] in the limit t →1. Hint: Make sure you understand 
why Z(t) is not the same as Y (t) in part b). You might find it easiest to first find the 
expectation of Z(t) conditional on both the duration of the {N1(t); t > 0} interarrival 
interval containing t and the duration of the {N2(t); t ≥ 0} interarrival interval containing 
t; draw pictures! 

Exercise 4.35. This problem provides another way of treating ensemble-averages for renewal-
reward problems. Assume for notational simplicity that X is a continuous random variable. 

a) Show that Pr{one or more arrivals in (τ, τ + δ)} = m(τ +δ)−m(τ)−o(δ) where o(δ) ≥ 0 
and limδ 0 o(δ)/δ = 0. →

b) Show that Pr
n
Z(t) ∈ [z, z + δ), X(t) ∈ (x, x + δ)

o 
is equal to [m(t − z) − m(t − z − δ) −e

o(δ)][FX (x + δ) − FX (x)] for x ≥ z + δ. 

c) Assuming that m0(τ) = dm(τ)/dτ exists for all τ , show that the joint density of Z(t), 
Xe(t) is fZ(t),Xe (t)(z, x) = m0(t − z)fX (x) for x > z. 

d) Show that E [R(t)] = 
R t R 

x
1 
=z R(z, x)fX (x)dxm0(t − z)dz z=0 
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Exercise 4.36. This problem is designed to give you an alternate way of looking at ensemble-
averages for renewal-reward problems. First we find an exact expression for Pr

©
SN(t) > s

™
. 

We find this for arbitrary s and t, 0 < s < t. 

a) By breaking the event {SN(t) > s}into subevents {SN(t) > s,N(t) = n}, explain each of 
the following steps: 

1
Pr

©
SN(t) > s

™ 
=	

X 
Pr{t ≥ Sn > s, Sn+1 > t}


n=1

1 Z t 

= 
X 

Pr{Sn+1>t | Sn =y} dFSn (y) 
n=1 y=s 

Z t 

y=s 

1
(t−y) d 

X 
FSn (y)c 

XF
=

n=1 Z t 

(t−y) dm(y) where m(y) = E [N(y)] .
c 
X = F


y=s 

b) Show that for 0 < s < t < u, 

Pr
©
SN(t) > s, SN(t)+1 > u

™ 
= 

Z t 

F
c 
X (u − y) dm(y).


y=s 

c) Draw a two dimensional sketch, with age and duration as the axes, and show the region 
of (age, duration) values corresponding to the event {SN (t) > s, SN(t)+1 > u}. 

d) Assume that for large t, dm(y) can be approximated (according to Blackwell) as (1/X)dy, 
where X = E [X]. Assuming that X also has a density, use the result in parts b) and c) to 
find the joint density of age and duration. 

Exercise 4.37. In this problem, we show how to calculate the residual life distribution 
Y (t) as a transient in t. Let µ(t) = dm(t)/dt where m(t) = E [N(t)], and let the interarrival 
distribution have the density fX (x). Let Y (t) have the density fY (t)(y). 

a) Show that these densities are related by the integral equation 
Z y 

µ(t + y) = fY (t)(y) + µ(t + u)fX (y − u)du. 
u=0 

b) Let Lµ,t(r) = 
R 
y≥0 µ(t + y)e−rydy and let LY (t)(r) and LX (r) be the Laplace transforms 

of fY (t)(y) and fX (x) respectively. Find LY (t)(r) as a function of Lµ,t and LX . 

c) Consider the inter-renewal density fX (x) = (1/2)e−x + e−2x for x ≥ 0 (as in Example 
4.6.1). Find Lµ,t(r) and LY (t)(r) for this example. 

d) Find fY (t)(y). Show that your answer reduces to that of (4.28) in the limit as t →1. 

e) Explain how to go about finding fY (t)(y) in general, assuming that fX has a rational 
Laplace transform. 
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Exercise 4.38. Show that for a G/G/1 queue, the time-average wait in the system is the 
same as limn→1 E [Wn]. Hint: Consider an integer renewal counting process {M(n); n ≥ 0}
where M(n) is the number of renewals in the G/G/1 process of Section 4.5.3 that have 
occurred by the nth arrival. Show that this renewal process has a span of 1. Then consider 
{Wn; n ≥ 1} as a reward within this renewal process. 

Exercise 4.39. If one extends the definition of renewal processes to include inter-renewal 
intervals of duration 0, with Pr{X=0} = α, show that the expected number of simultane
ous renewals at a renewal epoch is 1/(1 − α), and that, for a non-arithmetic process, the 
probability of 1 or more renewals in the interval (t, t + δ] tends to (1 − α)δ/E [X] + o(δ) as 
t →1. 

Exercise 4.40. The purpose of this exercise is to show why the interchange of expectation 
and sum in the proof of Wald’s equality is justified when E [J ] < 1 but not otherwise. 
Let X1,X2, . . . , be a sequence of IID rv’s, each with the distribution FX . Assume that 
E [|X|] < 1. 

a) Show that Sn = X1 + + Xn is a rv for each integer n > 0. Note: Sn is obviously · · · 
a mapping from the sample space to the real numbers, but you must show that it is finite 
with probability 1. Hint: Recall the additivity axiom for the real numbers. 

b) Let J be a stopping trial for X1,X2, . . . . Show that SJ = X1 + XJ is a rv. Hint: 
Represent Pr{SJ } as 

P1
n=1 Pr{J = n} Sn. 

· · · 

c) For the stopping trial J above, let J (k) = min(J, k) be the stopping trial J truncated 
to integer k. Explain why the interchange of sum and expectation in the proof of Wald’s 
equality is justified in this case, so E [SJ(k) ] = XE 

£
J (k)

§
. 

d) In parts d), e), and f), assume, in addition to the assumptions above, that FX (0) = 0, 
i.e., that the Xi are positive rv’s. Show that limk→1 E [SJ(k) ] < 1 if E [J ] < 1 and 
limk→1 E [SJ(k) ] = 1 if E [J ] = 1. 

e) Show that 

Pr{SJ(k) > x} ≤ Pr{SJ > x} 

for all k, x. 

f) Show that E [SJ ] = XE [J ] if E [J ] < 1 and E [SJ ] = 1 if E [J ] = 1. 

g) Now assume that X has both negative and positive values with nonzero probability and 
let X+ = max(0,X) and X− = min(X, 0). Express SJ as SJ 

+ + SJ
− where SJ 

+ = 
PJ

i=1 Xi 
+ 

and S− = 
PJ Xi

−. Show that E [SJ ] = XE [J ] if E [J ] < 1 and that E [Sj ] is undefined J i=1 
otherwise. 

Exercise 4.41. This is a very simple exercise designed to clarify confusion about the roles 
of past, present, and future in stopping rules. Let {Xn; n ≥ 1} be a sequence of IID binary 
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rv’s , each with the pmf pX (1) = 1/2, pX (0) = 1/2. Let J be a positive integer-valued rv 
that takes on the sample value n of the first trial for which Xn = 1. That is, for each n ≥ 1, 

{J = n} = {X1=0, X2=0, . . . ,Xn−1=0, Xn=1}. 

a) Use the definition of stopping trial, Definition 4.5.1 in the text, to show that J is a 
stopping trial for {Xn; n ≥ 1}. 

b) Show that for any given n, the rv’s Xn and IJ=n are statistically dependent. 

c) Show that for every m > n, Xn and IJ=m are statistically dependent. 

d) Show that for every m < n, Xn and IJ=m are statistically independent. 

e) Show that Xn and IJ≥n are statistically independent. Give the simplest characterization 
you can of the event {J ≥ n}. 

f) Show that Xn and IJ>n are statistically dependent. 

Note: The results here are characteristic of most sequences of IID rv’s. For most people, 
this requires some realignment of intuition, since {J≥n} is the union of {J = m} for all 
m ≥ n, and all of these events are highly dependent on Xn. The right way to think of this 
is that {J≥n} is the complement of {J<n}, which is determined by X1, . . . ,Xn−1. Thus 
{J≥n} is also determined by X1, . . . ,Xn−1 and is thus independent of Xn. The moral of 
the story is that thinking of stopping rules as rv’s independent of the future is very tricky, 
even in totally obvious cases such as this. 

Exercise 4.42. Assume a friend has developed an excellent program for finding the steady-
state probabilities for finite-state Markov chains. More precisely, given the transition matrix 
[P], the program returns limn→1 P n for each i. Assume all chains are aperiodic. ii 

a) You want to find the expected time to first reach a given state k starting from a different 
state m for a Markov chain with transition matrix [P ]. You modify the matrix to [P 0] where 
P 0 = 1, P 0 = 0 for j =6 m, and P 0 = Pij otherwise. How do you find the desired firstkm kj ij
passage time from the program output given [P 0] as an input? (Hint: The times at which a 
Markov chain enters any given state can be considered as renewals in a (perhaps delayed) 
renewal process). 

b) Using the same [P 0] as the program input, how can you find the expected number of 
returns to state m before the first passage to state k? 

c) Suppose, for the same Markov chain [P ] and the same starting state m, you want to 
find the probability of reaching some given state n before the first-passage to k. Modify [P ] 
to some [P 00] so that the above program with P 00 as an input allows you to easily find the 
desired probability. 

d) Let Pr{X(0) = i} = Qi, 1 ≤ i ≤ M be an arbitrary set of initial probabilities for the 
same Markov chain [P ] as above. Show how to modify [P ] to some [P 000] for which the 
steady-state probabilities allow you to easily find the expected time of the first-passage to 
state k. 
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Exercise 4.43. Consider a ferry that carries cars across a river. The ferry holds an integer 
number k of cars and departs the dock when full. At that time, a new ferry immediately 
appears and begins loading newly arriving cars ad infinitum. The ferry business has been 
good, but customers complain about the long wait for the ferry to fill up. 

a) Assume that cars arrive according to a renewal process. The IID interarrival times 
have mean X, variance σ2 and moment generating function gX (r). Does the sequence of 
departure times of the ferries form a renewal process? Explain carefully. 

b) Find the expected time that a customer waits, starting from its arrival at the ferry 
terminal and ending at the departure of its ferry. Note 1: Part of the problem here is to 
give a reasonable definition of the expected customer waiting time. Note 2: It might be 
useful to consider k = 1 and k = 2 first. 

c Is there a ‘slow truck’ phenomenon (a dependence on E 
£
X2

§
) here? Give an intuitive 

explanation. Hint: Look at k = 1 and k = 2 again. 

d) In an effort to decrease waiting, the ferry managers institute a policy where no customer 
ever has to wait more than one hour. Thus, the first customer to arrive after a ferry 
departure waits for either one hour or the time at which the ferry is full, whichever comes 
first, and then the ferry leaves and a new ferry starts to accumulate new customers. Does 
the sequence of ferry departures form a renewal process under this new system? Does the 
sequence of times at which each successive empty ferry is entered by its first customer form 
a renewal process? You can assume here that t = 0 is the time of the first arrival to the 
first ferry. Explain carefully. 

e) Give an expression for the expected waiting time of the first new customer to enter an 
empty ferry under this new strategy. 
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