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Solutions to final examination 

Problem 1: A final exam is started at time 0 for a class of n students. Each student 
is allowed to work until completing the exam. It is known that each student’s time to 
complete the exam is exponentially distributed with density fX (x) = �e��x; x � 0. The 
times X1, . . . , Xn are IID. 

a) Let Z be the time at which the last student finishes. Show that Z has a distribution 
function FZ (z) given by [1 � exp(��z]n . 

b) Let T1 be the time at which the first student leaves. Show that the probability density 
of T1 is given by n�e�n�t . For each i, 2  i  n, let Ti be the interval from the departure 
of the i � 1st student to that of the ith. Show that the density of each Ti is exponential 
and find the parameter of that exponential density. Explain why each Ti is independent. 
Finally note that Z = 

Pn Ti.i=1 

Solution 1a): Note that Z  t if and only if Xi  t for each i, 1  n, so 

n

Pr{Z  t} = 
Y 

Pr{Xi  t} = [1 � exp(��t)]n 

i=1 

Solution 1b): You can view T1 as the time of the first arrival out of n Poisson processes 
each of rate �. Thus T1 is exponential with parameter n�. More directly yet, T1 > t if 
and only if Xi > t for 1  i  t, so Pr{T1 > t} = [exp(��t)]n = exp(�n�t). The time T2 

is the remaining time until the next student out of the remaining n � 1 finishes. Because 
of the memorylessness of the exponential distribution, each of these n � 1 students has 
an exponential time to go, so Pr{T2 > t2} = exp(�(n � 1)�t2). Each of these times-to-go 
is independent of T1, so T2 is independent of T1. 

In the same way Ti is exponential wih parameter (n � i + 1)� and is independent of the 
earlier Ti’s. Finally the remaining time T1 from the next to last to the last student is 
exponential with parameter �. It is curious and somewhat unintuitive that the expected 
times between departures increases with the longest time 1/� for the last (but of course 
this is a property of exponential rv’s rather than real students). 

Note also that Z = 
Pn T1 has the very simple distribution given in part a). This was i=1 

the reason for this problem, to derive the distribution function of a sum of exponential 
rv’s of harmonically related expected values. 
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Problem 2: A Yule process is a continuous time version of a branching process with 
the special property that the process never decreases. The process starts at time 0 with 
one organism. This organism splits into two organisms after a time Y1 with the density 
fY1 (y) = �e��y, y � 0. Each of these two organisms splits into two more organisms 
after independent exponentially distributed delays, each with this same density �e��y. In 
general, each old and new organism continues to split forever after a delay y with this 
same density � exp(��y). 

a) Let T1 be the time at which the first organism splits, and for each i > 1, let Ti be 
the interval from the i � 1st splitting until the ith. Show that Ti is exponential with 
parameter i� and explain why the Ti are independent. 

b) For each n � 1, let the continuous rv Sn be the time at which the nth splitting occurs, 
i.e., Sn = T1 + + Tn. Find a simple expression for the distribution function of Sn.· · · 
Hint: look carefully at the solution to parts a) and b) of problem 1. 

c) Let X(t) be the number of organisms at time t > 0. Express the distribution function 
of X(t) for each t > 0 in terms of Sn for each n. Show that X(t) is a rv for each t > 0 
(i.e., show that X(t) is finite WP1). 

d) Find E [X(t)] for each t > 0. 

e) Is {X(t); t � 0} a countable-state Markov process? Explain carefully. If so describe 
the embedded Markov chain and identify each state as positive recurrent, null recurrent, 
or transient. 

f) Is {X(t); t � 0} an irreducible countable-state Markov process? 

g) Is {Sn; n � 1} either a martingale or a submartingale? 

h) Now suppose the births of a Yule process (viewing the original organism as being born 
at time 0) constitute the input to a queueing process (each birth enters the queue at 
its time of birth). The queue has a single server and whenever n organisms are in the 
system (queue plus server), the time to completion of service for the given organism is 
exponential with rate µn. This means that if a new organism enters the queue while the 
server is busy, the service rate changes according to the new number in the system. Let 
Z(t) be the number in the system at time t. 

h(i): Is {Z(t); t � 0} a countable-state Markov process? 

h(ii): Is Z(t) a rv for each t > 0 no matter what the µn are? 
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Solution 2a) After the i�1st splitting, there are i organisms. The time until each splits is 
exponential with parameter �, so the time until the first of them splits is exponential with 
paramter i�. For each organism, the time until the next split is exponential, independent 
of how it has been since the last split, and thus the time Ti is independent of T1, . . . , Ti�1. 

Solution 2b) Sn = T1 + Tn where Ti; 1  i  n are independent and exponential with · · · 
parameters �, 2�, . . . , n�. This has the same distribution as the rv Z in problem 1, and 
thus Pr{Sn  t} = [1 � e��t]n . 

Solution 2c) The number of splittings up to time t is one less than the number of 
organisms at time t, so the event {Sn  t} is the same as the event {X(t) � n + 1} = 
{X(t) > n}. Thus 

Pr{X(t) > n} = Pr{Sn  t} = [1 � e��t]n 

For each finite t, 1 � e��t < 1, so limn!1[1 � e��t]n = 0. Since X(t) is nonnegative and 
its complementary distribution function goes to 0 with increasing n, it is a rv. 

Solution 2d) By integrating the complementary distribution function over n for a given 
t, we get 

1 �tE [X(t)] = 1 + [1 � e��t] + [1 � e��t]2 + · · · =
1 � [1 � e��t]

= e 

Solution 2e) The sample space for {X(t); t � 0} is countable (i.e., the positive integers). 
Given that X(t) = n for given t, the time to the next state change is exponential with 
parameter (n � 1)�, independent of the states at all previous times. Thus {X(t); t � 0}
is a countable state Markov process. 

The embedded chain for {X(t); t � 0} has a single transition of probability 1 from each 
state n to n + 1. All states of the embedded chain are thus transient. 

Solution 2f) This Markov process is not irreducible since not all states communicate 
with each other. In fact no two states communicate. 

Solution 2g) The sequence {Sn; n � 1} is a submartingale since E [|Sn|] < 1 for all 
n � 1 and E [Sn | Sn�1, . . . , S1] � Sn�1. This follows because Sn = Sn�1 + Tn where 
Tn � 0 is the time from the n � 1st splitting until the nth. This fact does not appear to 
be very useful. 

Solution 2h) There were two possible interpretations here. In the first, which most people 
followed, an organism dies at the end of its service, so that the state of the queue equals the 
number of organisms. In this case, the transition rate from state i to i +1 is i�, transition 
times are exponential, and we have a Markov process. The state space for {Z(t); t � 0}
is non-negative valued and thus countable. Also limn!1 Pr{Z(t) > n}  Pr{X(t) > n}
so Z(t) is a rv for each t. For the other interpretation, organisms continue to split after 
service, and then the number i of organisms in the queue no longer determines the rate 
of transitions from ‘state’ i to i + 1 and the process is not Markov. 

The first interpretation is of interest since it allows us to generate a family of Markov 
processes for which the ‘steady state‘ pi exist but 

P 
pi⌫i = 1 and the state is always 

finite WP1. 
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Problem 3: A random walk {Sn; n � 1}, with Sn = 
Pn

i=1 Xi , has the following 
probability density for each Xi 

e�x 
;

8
e�e�1 �1  x  1 

fX (x) = 
< 

: 
= 0 ; elsewhere. 

a) Find the values of r for which g(r) = E [exp(rX)] = 1. Hint: these values turn out to 
be integers. 

b) Let P↵ be the probability that the random walk ever crosses a threshold at some given 
↵ > 0. Use the Wald identity to find an upper bound to P↵ of the form P↵  e�↵A where 
A is a constant that does not depend on ↵. Evaluate A. Hint: you may assume that 
the Wald identity applies to a single threshold at ↵ > 0 without any lower threshold or 
assume another threshold at some � < 0. 

c) Use the Wald identity to find a lower bound to P↵ of the form P↵ � Be�↵A where A 
is the same as in part b) and B > 0 is a constant that does not depend on ↵. Hint: Keep 
it simple — you are not being asked to find the tightest possible such bound. If you use 
2 thresholds, find your lower bound in the limit � ! �1. 

Solution 3a: We integrate to find g(r), 

Z 1 e�xerx er�1 � e�(r�1) 

g(r) = dx = 
�1 e � e�1 (r � 1)(e � e�1) 

We know that g(0) = 1 for any rv, and using the hint, we see pretty easily that g(2) = 1. 
Since g(r) is convex, it can have at most 2 solutions to g(r) = 1, so r = 0 and r = 2 are 
the only solutions. Note that r = 2 is the r⇤ of all the exponential bounds on a positive 
threshold crossing of a rv with negative expectation. 

Solution 3b: Consider a stopping rule where stopping occurs when Sn first exceeds ↵. 
The Wald identity then says that E [exp(rSJ � J�(r))] = 1. This applies for any r such 
that �(r) = ln(g(r) exists. In particular, at r = 2, �(r) = 0 so the Wald identity reduces 
to E [exp(2SJ ] = 1. We can write this as 

Pr{SJ � ↵} E [exp(2SJ ) | SJ � ↵] = 1. (1) 

Lower bounding SJ by ↵ for the conditioning above, 

Pr{SJ � ↵}  e�2↵ 

Solution 3c: The simplest lower bound comes from observing that, since Xi 2 [�1, +1], 
it is not possible for SJ to exceed ↵ by more than 1. Thus upper bounding SJ by ↵ + 1, 
we get 

Pr{SJ � ↵} � exp(�2(↵ + 1) = e�2 e�2↵ 
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Problem 4: A queueing system has four queues in the configuration shown. Each queue 
is identical, with a single server with IID exponential service times, each with density 
µe�µx. The service times are IID both within each queue and between each queue. 

The left most queue (queue 1, say) is M/M/1 with an input which is a Poisson process 
of rate � < µ. Assume that this process started at time �1. The inputs to the other 
queues are indicated in the figure below. More specifically, each output from queue 1 
is switched to one of the intermediate queues, say queues 2 and 3. Each output goes to 
queue 2 with probability Q and to queue 3 with probabiity 1-Q. These switching decisions 
are independent of the inputs and outputs from queue 1. The outputs from queues 2 and 
3 are them combined and pass into queue 4. 
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a) Describe the output process from queue 1. That is, describe whether it is a renewal 
process, and if so, whether it is a Poisson process. At what rate do customers leave queue 
1? What can you say about the relation between the outputs and the inputs of queue 1? 

b) Describe the input processes to queues 2 and 3. Are they Poisson, and if so, of what 
rate? What is the relationship between the input process to queue 2 and that to queue 
3? 

c) Describe the output processes from queues 2 and 3. Are they Poisson, and what is 
the relationship between them? What is the rate at which customers leave each of these 
queues? 

d) Describe the input and output process for queue 4 (whether they are Poisson, what 
their rates are, and whether they are independent)? 

e) Find the expected delay through the entire system for those customers going through 
queue 2. 

Solution 4a: From Burke’s theorem, the output process from queue 1 is a Poisson process 
of rate �. For any t, the output epochs before t are independent of the input epochs after 
t. Similarly, by reversibility, the output epochs after t are independent of the input epochs 
before t. 

Solution 4b: The switching simply splits one Poisson process into two independent 
Poisson processes. Thus the input to queue 2 is a Poisson process of rate Q� and the 
input process to queue 3 is a Poisson process of rate (1 � Q)�. 
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Solution 4c: By Burke’s theorem, again, the outputs from Queue 2 and that from Queue 
3 are Poisson. The two are independent of each other since the inputs are independent. 

Solution 4d: When these two independent Poisson processes from queues 2 and 3 are 
combined, we get a Poisson process of rate �. Thus Queue 4 is also an M/M/1 queue and 
its output is Poisson at rate � and the input and output bear the same relationship as 
that in queue 1. 

Solution 4e: The expected delay is the sum of the expected delays through the 3 queues, 
i.e., µ�

1 
� + µ�

1 
Q� + µ�

1 
� . One can go one step further here and claim that the 3 waiting 

times are independent of each other. 
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