6.270: Autonomous Robot Design Competition

- Assignment 2: General Comments
- More on sensors
- Servos
- RF receiver
- Robot control and state
 machines
- Threads
- Assignment 3 handed out

LECTURE 3: Advanced Techniques

2005: Attack of the Drones

Delinquent Teams

- Assignment 2 teams not finished: – 11, 14, 15, 18, 22, 40, 55
- Assignment 3 handed out today, due tonight!!

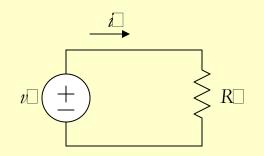
Rules Clarifications

- Are prices measured in 1-u or 100-u quantities?
 - We'll use 100-u quantities for pricing purposes
- Can we use rubber bands to add friction with game balls?
 - Yes
- Can we disable an opponent?
 - You cannot intentionally damage or flip
 - You can drive into the other robot or push them around
- Can we cut apart the baseplate and glue it back together?
 - Yes, but things glued together are not structural

2005: Attack of the Drones

Power Usage

- Your HandyBoard has 8 rechargable 1.5 volt batteries built in
- They don't last too long when driving actuators
- Next week, we'll give you high capacity lead acid batteries from Hawker to power actuators


Some 6.002/8.02 Lovin'

- Voltage, Current, Resistance: V = I · R
 Resistance: ohms (Ω)
 Current: amps (A)
 Voltage: volts (V)
- Power: $P = I \cdot V$

2005: Attack of the Drones

Shorting the Batteries

- $\iota = 6 \text{ V}, \text{ R} = 0.02 \Omega$
- - Household wiring rated 15
 A
- *p*□= 1800 W
 - Thirty 60-watt light bulbs
- Lesson: ensure battery leads are well-insulated!

2005: Attack of the Drones

Phototransistors

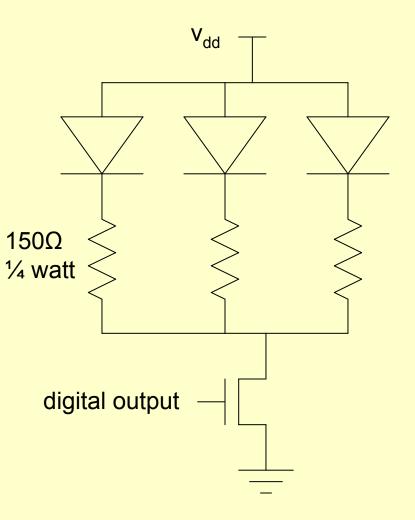
- It's an art
- Need to figure out an effective way of reading the color off the board or object
 - Factors: glossiness, ambient lighting
 - It's not really color; it's grayscale
 - Contest night
 - Wear and tear of contest board
 - Can't rely on just light provided by the world alone

6.270 Autonomous Robot Design Competition

2005: Attack of the Drones

Providing Your Own Light

- LEDs are polarized, and you must use a resistor
- Light dispersion
 - What is the best way to put LEDs
 - For color detection, look for reflection at an angle, not perpendicular to surface

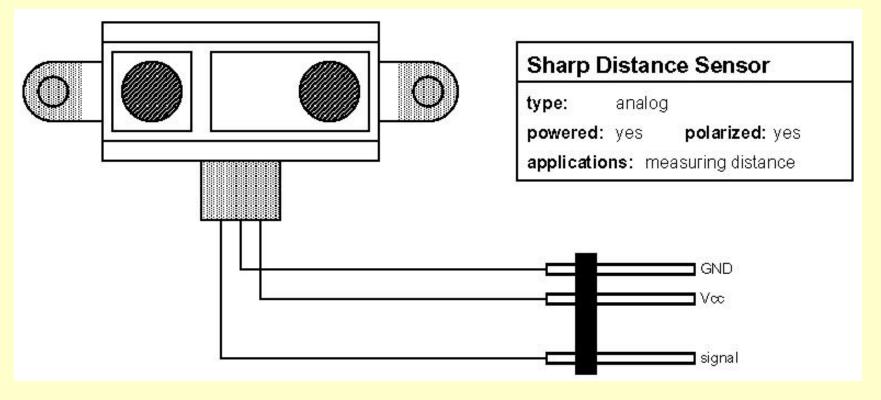

Providing Your Own Light

- Turning LED on and off gives more info
- Use FET to turn multiple LEDs on and off using the digital output
- See handouts page for FET datasheet

2005: Attack of the Drones

Wiring Multiple LEDs

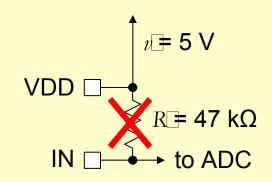
 Use a separate resistor for each LED

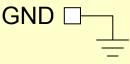

Shielding

- Control the light made available to the sensor
- Help focus what the sensor is looking at
- Cardboard, heat shrink (black), electrical tape
- Some things aren't as opaque as you think
- Calibration (and 60-second set-up time)

2005: Attack of the Drones

Distance Sensor

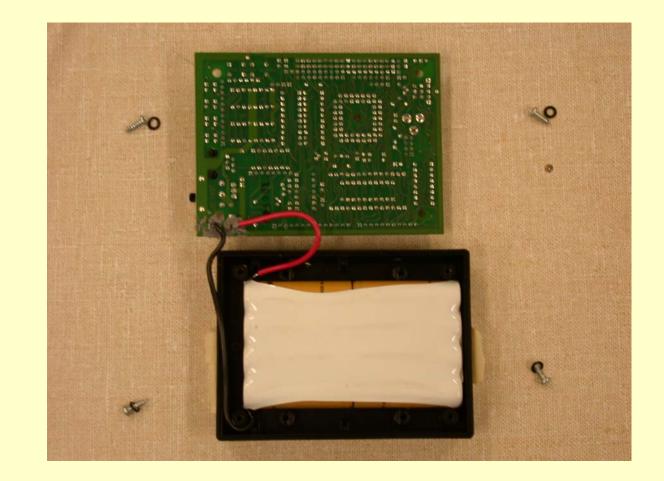

• Follow hookup instructions in the notes



2005: Attack of the Drones

Distance Sensor on the HB

- Distance sensor provides variable voltage output
- Must disconnect internal pull-up resistor

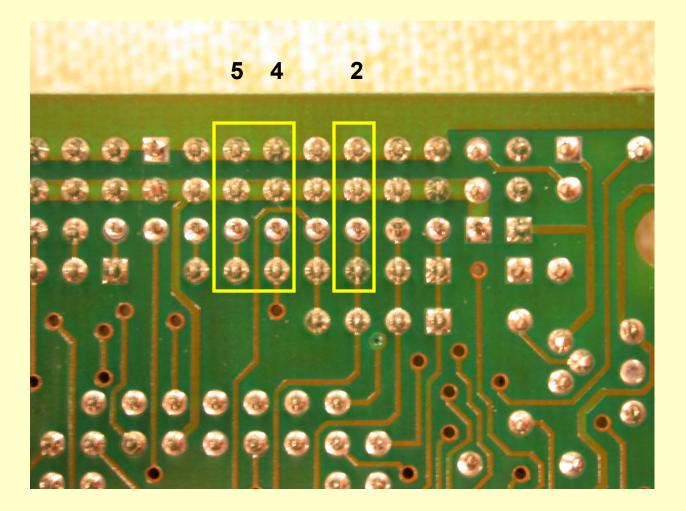


6.270 Autonomous Robot Design Competition

2005: Attack of the Drones

Disconnecting the $47k\Omega$ Pull-Up

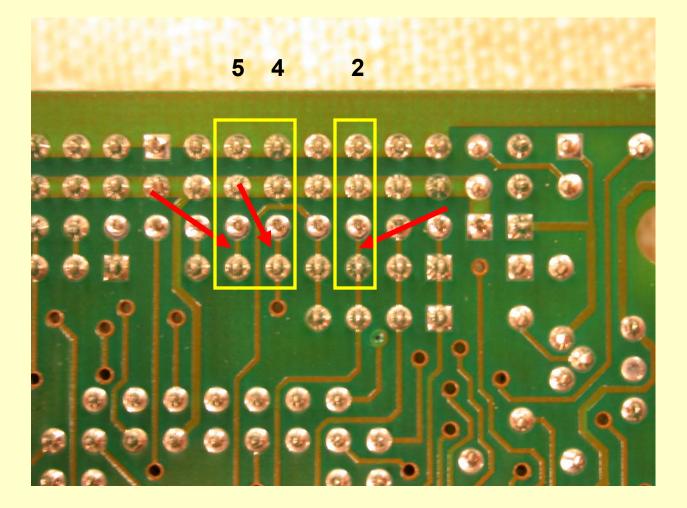
 Remove main HB
 PCB from
 the plastic
 case



6.270 Autonomous Robot Design Competition

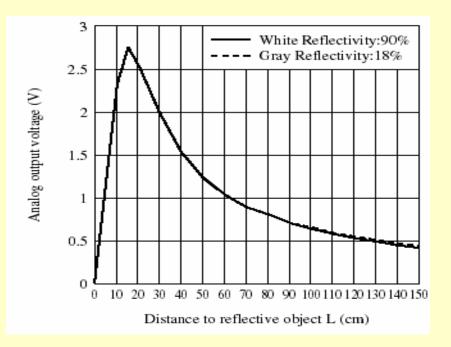
2005: Attack of the Drones

Disconnecting the $47k\Omega$ Pull-Up


Analog
 Inputs 2,
 4, and 5
 can be
 modified

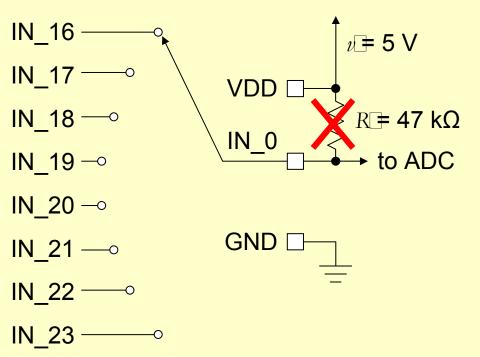
2005: Attack of the Drones

Disconnecting the $47k\Omega$ Pull-Up


 Cut traces (make sure you know where!)

2005: Attack of the Drones

Distance Sensor


Range: 15-150 cm
 6-60 in

2005: Attack of the Drones

Distance Sensor

- You probably don't need more than 3
- But if you're really *that* needy, cut port 0 or 1

2005: Attack of the Drones

The Gyroscope

- Gives you a rate of rotation
- You can integrate to get a position

 Usually accurate to within a couple of degrees
 over 60 seconds
- Example code given on contestant's information page

Gyroscope Considerations

• Reducing drift and inaccuracy

- Correct gyroscope data when you know what it must be
 - Backed against a wall
- Use relative positioning
 - Make turns based on a change of 90 degrees, rather than turning to 270 absolute degrees

Gyroscope Usage

- You can have ONE gyroscope
 - 5 sensor points
 - Talk to us about how to hook it up
 - We will not replace broken gyroscopes
 - Use any analog sensor port

6.270 Autonomous Robot Design Competition

2005: Attack of the Drones

The RF Receiver

- Lets us give you information during the match:
 - Start/end of match
 - Vote tally
 - Position of robots

Using the RF receiver

- First thing in your code:
 - rf team = YOURTEAMNUMBER;
 - rf_enable();
- This will disable the IC interface
 - To turn on your handyboard without enabling RF, hold START while turning on
- Plug your telephone cable into the HandyBoard and the RF receiver

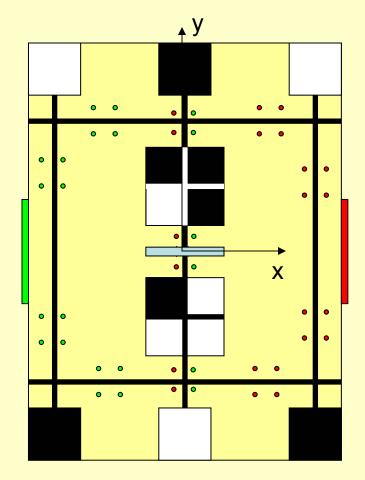
Start/stop of match

- Use the function start_machine()
 (described in the course notes)
- Will automatically start your robot when the match begins, and stop it when the match ends

2005: Attack of the Drones

Voting Information

- rf_vote_red
- rf_vote_green
- rf_vote_winner
 - You need some way of determining a winner when there is a tie
 - All automagically updated


Position Information

- rf_x0, rf_y0
- rf_x1, rf_y1
 - Tell you the x and y coordinates of the two robots
 - No guarantees about which of the two robots you will be
 - Consistent during the match, but not across matches
 - Also automagically updated

2005: Attack of the Drones

Position Information

- rf_x0, rf_y0
- rf_x1, rf_y1
 - Approximately 8000 units per foot
 - Center of table is (0,0)

Position Information

- How do we determine the position information?
 - You'll be required to put a colored swatch (which we provide) on top of your robot
 - We look at the table and find the swatches
 - More details later

The Bigger Picture

2005: Attack of the Drones

The Bigger Picture

- You have tools:
 - Sensors
 - Actuators
 - Mechanical chassis
 - Task-specific mechanical devices
 - Processor
- How to put it all together?

2005: Attack of the Drones

The Bigger Picture

- Combining Sensors
 - Servo + distance sensor
 - Servo + beacon
 - Beacon + distance sensor
- Do you even need sensors?
 - Wall following / going straight
 - Making precise turns

What Are the Sensors Doing?

- They prevent you from dead reckoning
- What matters is where the robot is, not where it thinks it is
- Provide information to make decisions

6.270 Autonomous Robot Design Competition

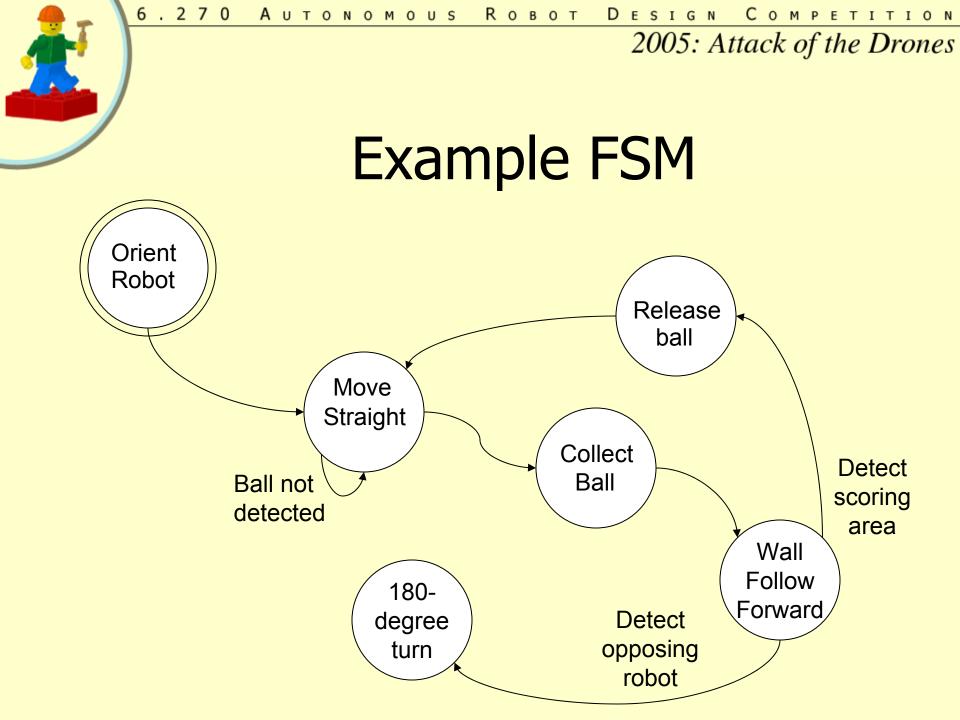
2005: Attack of the Drones

The AI: How to Code a Robot

- Programming language is easy; programming style is difficult, especially with a team (any 6.170 alums?)
- Some patterns have emerged in regards to having an effective coding style
 - Finite State Machines
 - Control
 - Coding Techniques

Finite State Machines

• What is a finite state machine (FSM)?


- Defines what the robot should do at a given point in time
- Each state has predefined outputs
- Transitions to other states depend on inputs
- Why?
 - Effective way of thinking about your strategy
 - Define what to do for any combination of inputs

6.270 Autonomous Robot Design Competition

2005: Attack of the Drones

Implementing a State Machine

- Each action is a state
 - Moving forward
 - Turning
- Actuators are outputs of the FSM
- Sensor inputs determine next state

2005: Attack of the Drones

Coding an FSM

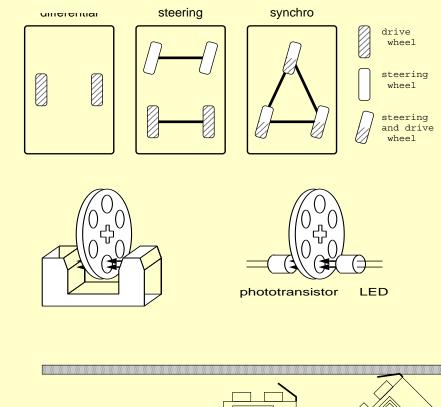
- While loops
 - Continue an action until input is received
- Multithreading
 - Processes that determine the inputs
 - Processes that determine outputs and state transitions
- Don't do it the 6.111 PAL 20V10 way
 - Don't need a variable to keep track of what state you're in
 - Instead think conceptually; think before you code

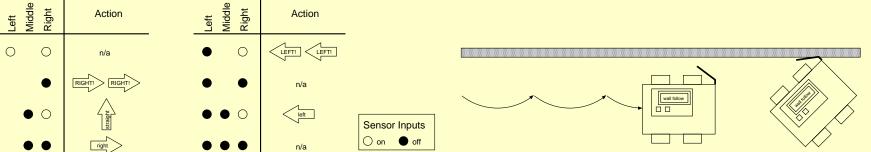
2005: Attack of the Drones

FSM Issues

- Inputs
 - Check only those that matter at that state
 - Determine what is important
- Storing State
 - Make your robot smarter
 - Use the state as well as the inputs to determine action
 - Store last actions in state variables
 - Helpful if robot gets disoriented

6.270 **К**овот AUTONOMOUS DESIGN COMPETITION

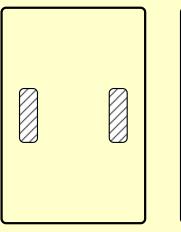

2005: Attack of the Drones

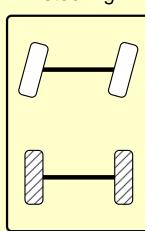

Driving Straight

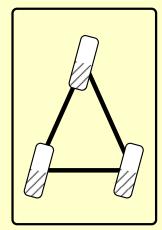
- Drive mechanism
- Line following
- Shaft encoding
- Wall following

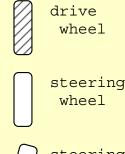
Action

0

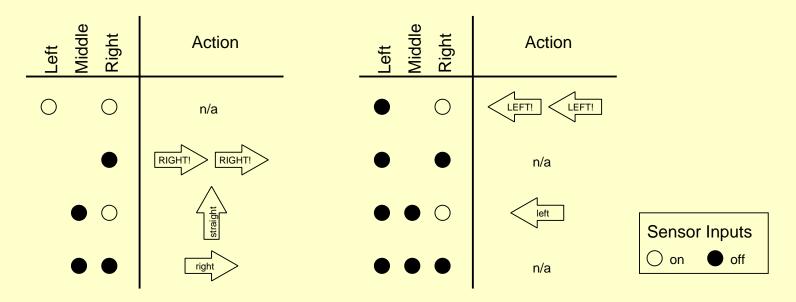



Action


2005: Attack of the Drones


Drive Mechanisms

- Differential Drive
- Synchro Drive (servos)
- Rack-and-Pinion Drive (car)
- Independent Drive (gearboxes; Assignment 2)



2005: Attack of the Drones

Line Following

- Use set of light sensors to look at color under robot
- Set of lines and contrasts on board
- Follow contrast

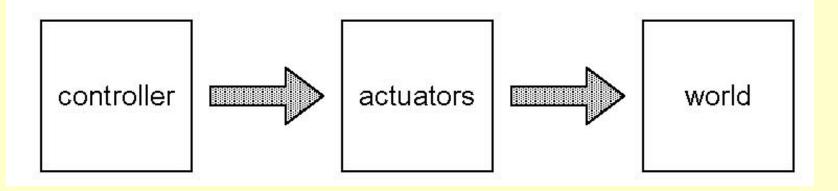
2005: Attack of the Drones

Line Following

```
if prev_state == hard_right
then keep turning right
if prev_state == hard_left
keep turning left
n/a
if prev_state == right
turn left
if prev state == left
```

turn right

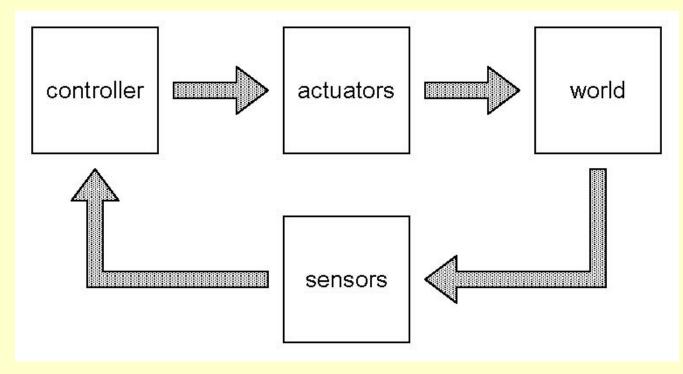
2005: Attack of the Drones


Control Systems

- Robots are deaf, dumb, and blind
 Only capable of following explicit instructions
- Control systems required to create desired motions

2005: Attack of the Drones

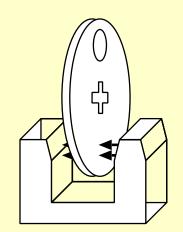
Open Loop Control

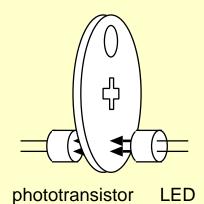

- Simply a set of sequential instructions
- Does not rely on external inputs
 - Dead reckoning / using timing
- Errors accumulate

6.270 Autonomous Robot Design Competition

2005: Attack of the Drones

Feedback Control


- Sense environment to correct errors
- Avoid dead reckoning


6.270 Autonomous Robot Design Competition

2005: Attack of the Drones

Shaft Encoding

- Breakbeam sensor + pulley
- Count interruptions to find revolutions
- Driving straight
- Useful for:
 - Turning
 - Moving a specific distance
 - Better than timing
 - Doesn't rely on battery charge

2005: Attack of the Drones

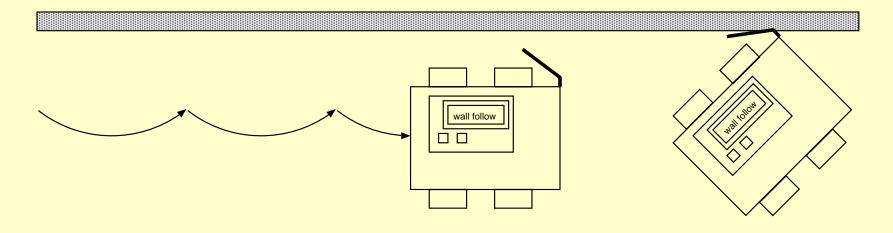
Shaft Encoding

- Works better on some ports:
 - Ports 7 and 8 have hardware counters (faster, more accurate)
 - Others use software counters
 - If you need more than 2, try using ports 2-6
- Both wheels may not turn at same speed
- Use revolutions for feedback
- Determine difference in speed and adjust
- Hint: place encoder high in gear train

2005: Attack of the Drones

Pseudo-Code

if (right encoder value - left encoder value) > 100 ticks slow down right wheel or speed up left wheel


if (left encoder value - right encoder value) > 100 ticks slow down left wheel or speed up right wheel 6.270 Autonomous Robot Design Competition

2005: Attack of the Drones

Wall Following

- Easy way to go straight
- Simple to implement
 - Bump sensors on side
 - Distance sensors

while (...) { if (sensor hit) steer away from wall else steer towards wall

Driving Straight—Advantages and Disadvantages

- Shaft encoding
 - Relies on initial alignment
 - Relatively fast
 - Can be tricked by slipping
- Line following
 - Robust
 - Relatively slow
- Wall following
 - Requires continuous stretch of wall
 - Can be fast

Code Implementation

- Start on paper
- Use functions and comments

 Code is then legible for everyone on your team and for us (impounding)

6.270 Autonomous Robot Design Competition

2005: Attack of the Drones

Programming Methodology

- Top-down programming

 Good for initial design
 Overall view without details
- Bottom-up programming
 Good for code creation
 - Allows individual testing of functions

6.270 Autonomous Robot Design Competition

2005: Attack of the Drones

Programming Methodology

- Figure out the actions you want to take
- Figure out the functions you need
- Implement
- Test
- Integrate into other code
- Repeat

Testing and Debugging

- Most important part of the design
- Significant testing is necessary to do well

 Things will break
 - Things will happen that you don't expect
 - Try to see these things in advance
- Test and debug incrementally

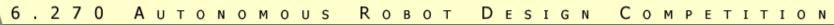
Hints

- Test sensors before mounting
- Test small pieces of code before combining into larger procedures
- Use the LCD screen
- Remember mechanical reliability

2005: Attack of the Drones

Error Detection

- Your robot will mess up
- How can it find out what's wrong?
- Timeouts are key


Timeouts

- Detect when robot is stuck in a state

 Probably waiting for input bump into wall, light reading
- Force out of stuck state
 - Error correcting routines

Error Correction

- Try again, harder
- Back up, try again
- Wiggle around
- Guess what it should try next
- Skip to next part of routine
- Line following: what to do about the n/a states
 - In this case, using an FSM may help you figure out what to do

Quick Note on Threads

Quick Note on Threads

- What is a Thread?
 - Separate task running at the same time
 - Allows you to multi-task
 - Motors run and watch if a sensor is pressed
- How does one processor run two threads?
 - Executes a process certain number of ticks (ms)
 - Processor switches from one thread to another

2005: Attack of the Drones

The Methods for Threading

- int start_process(function_call(),
 [TICKS], [STACK_SIZE]);
 - Default run is 5 ticks, or 5 ms
 - Stack size is by default 256 bytes
 - Returns process ID (pid) of the new process
 - You shouldn't need to pass ticks or stack_size
- int kill_process(int pid)
 - Returns 0 (process was destroyed), 1 (process not found)

2005: Attack of the Drones

Interacting in IC

- kill_all
 - Kill all currently running processes
- ps
 - Prints out list of process status
 - Provides:
 - Process ID
 - Status code
 - Program counter
 - Stack pointer
 - Stack pointer origin
 - Number of ticks
 - Name of function that is currently executing
- Refer to Handy Board manual for more information

6.270 Autonomous Robot Design Competition

2005: Attack of the Drones

Example

main() {
 while (true) {
 go forward
 wait until sensor
 pressed
 go backward
 wait until sensor
 pressed
}

main() {
 while (true) {
 while (vote is tied)
 play tone 1
 while (red is winning)
 play tone 2
 while (green is winning)
 play tone 3

Example

move() {
 while (true) {
 go forward
 wait until sensor
 pressed
 go backward
 wait until sensor
 pressed

watch_vote() {
 while (true) {
 while (vote is tied)
 play tone 1
 while (red is winning)
 play tone 2
 while (green is winning)
 play tone 3

Example

```
void move() { ... }
void watch_vote() { ... }
void main() {
    int move_pid;
    int watch_vote_pid;
    move_pid = start_process(move());
    watch_vote_pid = start_process(watch_vote());
    sleep(60);
    kill_process(watch_vote_pid);
    kill_process(move_pid);
}
```

2005: Attack of the Drones

Why Was the Example Easy?

- Threads are independent of each other
- Do not share any common variables, or common information
- Did not attempt to communicate or change each other's state

How Threads Can Communicate

- Communicate through global variables
- Variables declared above and outside of all functions are global variables (like C)
- One thread can use the global variable that another thread is changing

2005: Attack of the Drones

For the Contest

- You will be using threads, even if you don't know it
 - We provide start code that makes sure that you start and stop at the right times: start_machine()
- See Appendix A for more details

2005: Attack of the Drones

Thread Tips

- Outside of start_machine(), you most likely won't need threads
 - Work around threads with control statements: for, while, if...then...else, return, break
- Don't use reset_system_timer()
 - Our start system code depends on the timer
- Don't sleep(); use while loops

```
sleep(3.0); float start time = seconds();
```

```
while (seconds() - start_time < 3.0) {
    /* check for anything (like sensor inputs) */
    if (you_really_need_to_leave_the_while_loop)
        break;
}</pre>
```

Your Winning Strategy

- Sufficient sensors and AI to determine location of robot
- Be able to react to potential problems that the robot might face
- Be aware of your limitations
 - Amount of LEGO
 - Power and speed of the motors
 - Robot size
 - Time of the round (60 seconds)
 - How long until Tuesday, January 25, 5:00 pm

Your Winning Strategy

• Reliability and robustness are the keys

90% reliability means 43% chance of not failing in 8 rounds

– KISS

- Leave a lot of time for testing and debugging

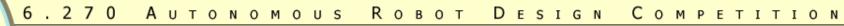
Impossible to counter every opposing strategy, so don't try

2005: Attack of the Drones

Assignment 3

- Due Friday night (TONIGHT!) at 11:45 pm
- One task to complete:
 - 1. Romeo and Juliet
- Pick up assignment after lecture

2005: Attack of the Drones


Assignment 4

- Due Tuesday night (January 11) at 11:45 pm
- Two tasks to complete:
 - 1. Discuss with your Organizer/TA pair your strategy
 - 2. Submit a one-page write up of intentions

2005: Attack of the Drones

What's Next

- No workshops today
- Monday, January 10, and Tuesday, January 11
 - Workshop 5 Servos, Sensors, and Shaft Encoders
 - Using analog sensors
 - Servo the other motor
 - Shaft encoding with breakbeam sensor
 - Gyroscopes
 - Workshop 6 Advanced LEGO
 - Using the unique pieces
 - Interesting gadgets
 - Workshop 7 Code & Sensors II: Advanced Techniques
 - Open vs. closed loop control
 - Line following
- Don't forget to sign up for workshops in lab!

Good LUCK!