
6 . 2 7 0 : A U T O N O M O U S R O B O T

D E S I G N C O M P E T I T I O N

• Assignment 2: General
Comments

•	 More on sensors
•	 Servos
•	 RF receiver
•	 Robot control and state

machines
• 	Threads
•	 Assignment 3 handed out

LECTURE 3: Advanced Techniques

Delinquent Teams

• Assignment 2 teams not finished:

– 11, 14, 15, 18, 22, 40, 55

• Assignment 3 handed out today, due
tonight!!

Rules Clarifications

•	 Are prices measured in 1-u or 100-u quantities?
–	 We’ll use 100-u quantities for pricing purposes

•	 Can we use rubber bands to add friction with game

balls?

– Yes

•	 Can we disable an opponent?
–	 You cannot intentionally damage or flip
–	 You can drive into the other robot or push them around

•	 Can we cut apart the baseplate and glue it back
together?
–	 Yes, but things glued together are not structural

Power Usage

• Your HandyBoard has 8 rechargable 1.5
volt batteries built in

• They don’t last too long when driving
actuators

• Next week, we’ll give you high capacity
lead acid batteries from Hawker to power
actuators

Some 6.002/8.02 Lovin’

• Voltage, Current, Resistance: V = I · R

i
– Resistance: ohms (Ω)

– Current: amps (A) v
 R

– Voltage: volts (V)

• Power: P = I · V

Shorting the Batteries

•	 v = 6 V, R = 0.02 Ω

•	 i = 300 A

–	 Household wiring rated 15

A

•	 p = 1800 W
–	 Thirty 60-watt light bulbs

•	 Lesson: ensure battery
leads are well-insulated!

i

v R

Phototransistors

• It’s an art

•	 Need to figure out an effective way of reading the color

off the board or object
–	 Factors: glossiness, ambient lighting
–	 It’s not really color; it’s grayscale
–	 Contest night
–	 Wear and tear of contest board
–	 Can’t rely on just light provided by the world alone

Providing Your Own Light

• LEDs are polarized, and you must use a resistor

• Light dispersion

– What is the best way to put LEDs
– For color detection, look for reflection at an angle, not

perpendicular to surface

Providing Your Own Light

• Turning LED on and off gives more info

• Use FET to turn multiple LEDs on and off
using the digital output

• See handouts page for FET datasheet

Wiring Multiple LEDs
vdd

• Use a separate
resistor for each
LED

150Ω
¼ watt

digital output

Shielding

• Control the light made available to the
sensor

• Help focus what the sensor is looking at

• Cardboard, heat shrink (black), electrical

tape
• Some things aren’t as opaque as you think

• Calibration (and 60-second set-up time)

Distance Sensor

• Follow hookup instructions in the notes

Distance Sensor on the HB

• Distance sensor provides

v = 5 Vvariable voltage output

VDD
• Must disconnect internal R = 47 kΩ

IN to ADCpull-up resistor

GND

Disconnecting the 47kΩ Pull-Up

•	 Remove
main HB
PCB from
the plastic
case

Disconnecting the 47kΩ Pull-Up

• Analog
Inputs 2,
4, and 5
can be
modified

5 4 2

Disconnecting the 47kΩ Pull-Up

• Cut traces
(make
sure you
know
where!)

5 4 2

Distance Sensor

•	 Range: 15-150 cm
– 6-60 in

Distance Sensor

• You probably 	
IN_16

don’t need more IN_17
than 3 IN_18

IN_19• But if you’re really
IN_20that needy, cut
IN_21

port 0 or 1	 IN_22

IN_23

R = 47 kΩ

v = 5 V

to ADC

GND

IN_0

VDD

The Gyroscope

• Gives you a rate of rotation

• You can integrate to get a position

– Usually accurate to within a couple of degrees

over 60 seconds

• Example code given on contestant’s
information page

Gyroscope Considerations

• Reducing drift and inaccuracy

– Correct gyroscope data when you know what

it must be
• Backed against a wall

– Use relative positioning

• Make turns based on a change of 90 degrees,

rather than turning to 270 absolute degrees

Gyroscope Usage

• You can have ONE gyroscope
– 5 sensor points
– Talk to us about how to hook it up

– We will not replace broken gyroscopes
– Use any analog sensor port

The RF Receiver

•	 Lets us give you
information during
the match:
– Start/end of match

– Vote tally

– Position of robots

Using the RF receiver

•	 First thing in your code:

–	rf_team = YOURTEAMNUMBER;
–	rf_enable();

•	 This will disable the IC interface

– To turn on your handyboard without enabling RF,

hold START while turning on

•	 Plug your telephone cable into the HandyBoard
and the RF receiver

Start/stop of match

• Use the function start_machine()
(described in the course notes)

• Will automatically start your robot when
the match begins, and stop it when the
match ends

Voting Information

• rf_vote_red

• rf_vote_green
• rf_vote_winner

– You need some way of determining a winner
when there is a tie

– All automagically updated

Position Information

• rf_x0, rf_y0

• rf_x1, rf_y1
– Tell you the x and y coordinates of the two robots
– No guarantees about which of the two robots you will

be
• Consistent during the match, but not across matches

– Also automagically updated

Position Information

y

• rf_x0, rf_y0
• rf_x1, rf_y1

– Approximately 8000

units per foot

– Center of table is (0,0)

x

x

Position Information

• How do we determine the position
information?
– You’ll be required to put a colored swatch

(which we provide) on top of your robot

– We look at the table and find the swatches

– More details later

The Bigger Picture

The Bigger Picture

• You have tools:
– Sensors
– Actuators
– Mechanical chassis
– Task-specific mechanical devices
– Processor

• How to put it all together?

The Bigger Picture

• Combining Sensors
– Servo + distance sensor
– Servo + beacon
– Beacon + distance sensor

• Do you even need sensors?

– Wall following / going straight
– Making precise turns

What Are the Sensors Doing?

• They prevent you from dead reckoning

• What matters is where the robot is, not
where it thinks it is

• Provide information to make decisions

The AI: How to Code a Robot

•	 Programming language is easy; programming
style is difficult, especially with a team (any
6.170 alums?)

•	 Some patterns have emerged in regards to
having an effective coding style
– Finite State Machines

– Control
– Coding Techniques

Finite State Machines

• What is a finite state machine (FSM)?

– Defines what the robot should do at a given point in

time
– Each state has predefined outputs
– Transitions to other states depend on inputs

• Why?
– Effective way of thinking about your strategy

– Define what to do for any combination of inputs

Implementing a State Machine

• Each action is a state
– Moving forward
– Turning

• Actuators are outputs of the FSM
• Sensor inputs determine next state

Example FSM

bot
Release

ball

Move

Straight

Collect Detect
Ball not Ball scoring
detected area

180-
degree

turn

Wall
Follow

Detect Forward
opposing

robot

Orient
Robot

Move
Straight

Release
ball

Collect
Ball

Coding an FSM

• While loops
– Continue an action until input is received

• Multithreading
– Processes that determine the inputs
– Processes that determine outputs and state transitions

• Don’t do it the 6.111 PAL 20V10 way
– Don’t need a variable to keep track of what state you’re in
– Instead think conceptually; think before you code

FSM Issues

• Inputs
– Check only those that matter at that state
– Determine what is important

• Storing State
– Make your robot smarter

• Use the state as well as the inputs to determine action
• Store last actions in state variables

– Helpful if robot gets disoriented

Driving Straight
differential steering synchro

drive

 wheel

steering

 wheel

• Drive mechanism
steering

and drive

 wheel

• Line following

• Shaft encoding

•
LEDphototransistor

off

Sensor Inputs

on

Action

Le
ft

M
id

dl
e

R
ig

ht

 s
tr

ai
gh

t

right

LEFT!

RIGHT!

left

n/a LEFT!

RIGHT!

Action

Le
ft

M
id

dl
e

R
ig

ht

n/a

n/a

wall follow

wall
 fo

llo
w

Wall following

Drive Mechanisms

• Differential Drive

• Synchro Drive (servos)
• Rack-and-Pinion Drive (car)
• Independent Drive (gearboxes; Assignment 2)

differential steering synchro

drive

 wheel

steering

 wheel

steering

and drive

 wheel

Line Following

• Use set of light sensors to look at color under robot

• Set of lines and contrasts on board

• Follow contrast

off

Sensor Inputs

on

Action

Le
ft

M
id

dl
e

R
ig

ht

 s
tr

ai
gh

t

right

LEFT!

RIGHT!

left

n/a LEFT!

RIGHT!

Action

Le
ft

M
id

dl
e

R
ig

ht

n/a

n/a

Line Following

if prev_state == hard_right
n/a then keep turning right

if prev_state == hard_left
keep turning left

if prev_state == right
n/a

turn left

if prev_state == left

turn right

Control Systems

• Robots are deaf, dumb, and blind

– Only capable of following explicit instructions

• Control systems required to create desired
motions

Open Loop Control

• Simply a set of sequential instructions

• Does not rely on external inputs
– Dead reckoning / using timing

• Errors accumulate

Feedback Control

• Sense environment to correct errors

• Avoid dead reckoning

Shaft Encoding

•	 Breakbeam sensor +
pulley

•	 Count interruptions to find
revolutions

•	 Driving straight
•	 Useful for:

–	 Turning
–	 Moving a specific distance
–	 Better than timing

•	 Doesn’t rely on battery
charge

phototransistor LED

Shaft Encoding

• Works better on some ports:

– Ports 7 and 8 have hardware counters (faster, more

accurate)
– Others use software counters
– If you need more than 2, try using ports 2-6

• Both wheels may not turn at same speed

• Use revolutions for feedback
• Determine difference in speed and adjust

• Hint: place encoder high in gear train

Pseudo-Code

if (right encoder value – left encoder

value) > 100 ticks
slow down right wheel or speed up left
wheel

if (left encoder value – right encoder

value) > 100 ticks
slow down left wheel or speed up right
wheel

Wall Following

• Easy way to go straight
while (…) {

if (sensor hit)

• Simple to implement steer away from wall

– Bump sensors on side else
steer towards wall

– Distance sensors }

wall follow

wall
 fo

llo
w

Driving Straight—Advantages
and Disadvantages

• Shaft encoding
– Relies on initial alignment
– Relatively fast
– Can be tricked by slipping

•	 Line following
– Robust
– Relatively slow

• Wall following
– Requires continuous stretch of wall
– Can be fast

Code Implementation

• Start on paper
• Use functions and comments

– Code is then legible for everyone on your
team and for us (impounding)

Programming Methodology

• Top-down programming

– Good for initial design
– Overall view without details

• Bottom-up programming
– Good for code creation
– Allows individual testing of functions

Programming Methodology

• Figure out the actions you want to take

• Figure out the functions you need

• Implement
• Test
• Integrate into other code
• Repeat

Testing and Debugging

• Most important part of the design

• Significant testing is necessary to do well

– Things will break
– Things will happen that you don’t expect

– Try to see these things in advance

• Test and debug incrementally

Hints

• Test sensors before mounting

• Test small pieces of code before
combining into larger procedures

• Use the LCD screen
• Remember mechanical reliability

Error Detection

• Your robot will mess up
• How can it find out what’s wrong?

• Timeouts are key

Timeouts

• Detect when robot is stuck in a state

– Probably waiting for input – bump into wall,

light reading

• Force out of stuck state

– Error correcting routines

Error Correction

• Try again, harder

• Back up, try again
• Wiggle around
• Guess what it should try next
• Skip to next part of routine
• Line following: what to do about the n/a states

– In this case, using an FSM may help you figure out
what to do

Quick Note on Threads

Quick Note on Threads

• What is a Thread?

– Separate task running at the same time
– Allows you to multi-task

• Motors run and watch if a sensor is pressed

• How does one processor run two threads?

• Executes a process certain number of ticks (ms)
• Processor switches from one thread to another

The Methods for Threading

• int start_process(function_call(),
[TICKS], [STACK_SIZE]);
– Default run is 5 ticks, or 5 ms
– Stack size is by default 256 bytes
– Returns process ID (pid) of the new process
– You shouldn’t need to pass ticks or stack_size

• int kill_process(int pid)
– Returns 0 (process was destroyed), 1 (process not

found)

Interacting in IC

• kill_all
– Kill all currently running processes

• ps
– Prints out list of process status

– Provides:

• Process ID
• Status code
• Program counter
• Stack pointer
• Stack pointer origin
• Number of ticks
• Name of function that is currently executing

• Refer to Handy Board manual for more information

Example
main() { main() {

while (true) { while (true) {

go forward while (vote is tied)

wait until sensor play tone 1

pressed while (red is winning)

go backward play tone 2

wait until sensor while (green is winning)

}
}

pressed

}
}

play tone 3

Example
move() { watch_vote() {

while (true) { while (true) {

go forward while (vote is tied)

wait until sensor play tone 1

pressed while (red is winning)

go backward play tone 2

wait until sensor while (green is winning)

}
}

pressed

}
}

play tone 3

Example

void move() { … }
void watch_vote() { … }

void main() {
int move_pid;
int watch_vote_pid;
move_pid = start_process(move());
watch_vote_pid = start_process(watch_vote());
sleep(60);
kill_process(watch_vote_pid);
kill_process(move_pid);

}

Why Was the Example Easy?

• Threads are independent of each other

• Do not share any common variables, or

common information
• Did not attempt to communicate or

change each other’s state

How Threads Can Communicate

• Communicate through global variables

• Variables declared above and outside of all
functions are global variables (like C)

• One thread can use the global variable
that another thread is changing

For the Contest

• You will be using threads, even if you
don’t know it
– We provide start code that makes sure that

you start and stop at the right times:
start_machine()

• See Appendix A for more details

Thread Tips

• Outside of start_machine(), you most likely won’t need threads
–	 Work around threads with control statements: for, while,

if…then…else, return, break

• Don’t use reset_system_timer()

–	 Our start system code depends on the timer
• Don’t sleep(); use while loops

sleep(3.0); float start_time = seconds();

while (seconds() - start_time < 3.0) {
/* check for anything (like sensor inputs) */
if (you_really_need_to_leave_the_while_loop)

break;
}

Your Winning Strategy

•	 Sufficient sensors and AI to determine location of robot

•	 Be able to react to potential problems that the robot

might face
•	 Be aware of your limitations

–	 Amount of LEGO
–	 Power and speed of the motors
–	 Robot size
–	 Time of the round (60 seconds)
–	 How long until Tuesday, January 25, 5:00 pm

Your Winning Strategy

• Reliability and robustness are the keys

– 90% reliability means 43% chance of not

failing in 8 rounds

– KISS

– Leave a lot of time for testing and debugging
• Impossible to counter every opposing

strategy, so don’t try

Assignment 3

•	 Due Friday night (TONIGHT!) at 11:45
pm

•	 One task to complete:
1. Romeo and Juliet

•	 Pick up assignment after lecture

Assignment 4

•	 Due Tuesday night (January 11) at 11:45
pm

•	 Two tasks to complete:

1. Discuss with your Organizer/TA pair your

strategy
2. Submit a one-page write up of intentions

What’s Next

• No workshops today
• Monday, January 10, and Tuesday, January 11

– Workshop 5 – Servos, Sensors, and Shaft Encoders
• Using analog sensors
• Servo – the other motor
• Shaft encoding with breakbeam sensor
• Gyroscopes

– Workshop 6 – Advanced LEGO
• Using the unique pieces
• Interesting gadgets

– Workshop 7 – Code & Sensors II: Advanced Techniques
• Open vs. closed loop control
• Line following

• Don’t forget to sign up for workshops in lab!

Good LUCK!

