
6 . 2 7 0 : A U T O N O M O U S R O B O T

D E S I G N C O M P E T I T I O N

• Assignment 1: General
Comments

•	 Sensor store and $30
Electronics Rule

•	 Electronics review
•	 Handy Board hardware and

interface
•	 Sensors and motors
•	 Interactive C development

environment
•	 Assignment 2 handed out

LECTURE 2: Building the Basic Robot

Teams NOT Checked Off

• You know who you are!

• We think you are:

– 6, 47, 48

Updates

• Course notes

• Assignment 2

Rules Clarifications

• Scoring moving balls
– We score the match once all game objects have stopped moving

• Programming the HandyBoard without IC
– You can try (but you shouldn’t)

• Position and orientation?
– You can’t tell your robot about position/orientation

• How many servos?
– We’ll talk about that in a second

•	 Can we melt rubber bands and dip LEGO in them?
– No.

•	 Can we add things like a PIC?
– Yes.

Other general announcements

• Don’t wander into the office

– If you need something, ask a staff member

(should be nearby)

• Staff parts (motors, sensors, etc…)
– Please don’t take these
– They’re for looking at or use where they live

The Contest: Points and Dollars

• Two sensor budgets for every team

– 30 (of your) dollars
– 20 “sensor points”

• See Chapter 2 of course notes for more
details

Spending Your Money
($30 Electronics Rule)

•	 May be spent on electronics and actuators (and related parts)
–	 Sorry, you can’t buy more LEGO
–	 We sell things at cost – our prices are probably the best you’ll find
–	 Provide receipts, or fair estimates; and make sure we agree before you

buy
–	 General rule of thumb – we should be able to get 500 of your part at

the same price you’re claiming
–	 If you’re getting free samples, they don’t count as free

•	 Make sure you know what you are doing
•	 Check out our stuff before you start looking elsewhere
•	 Tools do not count towards the allotment
•	 Replacements for servos do not count towards your $30 allotment—

only based on what’s on your final robot

A Little More About the
Servos…

•	 Yes, you have 6 servo ports
•	 But you can only have 4 (or maybe 5) servos

•	 Each cost $10

– Except the old ones, which are $7
•	 To replace broken, $15; does not count towards

$30 allotment
•	 For those wishing to get the servo elsewhere:

– Futaba S3003

Sensor Points

•	 Sensor points can go to mechanical switches, sensors,
LEDs, and motors
–	 We have some sensors you haven’t seen yet
–	 Full catalog of components available are displayed by the 6.270

office
•	 Generally, LEDs, mechanical switches, and

phototransistors cost 1 point
•	 Motors cost 1 point
•	 Distance sensors costs 3 points
•	 Be sure to test similar sensors; not all are the same

Trading

•	 You can trade sensors using our point scheme

•	 You can trade sensors in your original kit with the sensor

store, but we’ll be picky (“like-new condition”)
•	 If you want to purchase a replacement from us, it’s $5

or the cost of the part, whichever is higher (won’t cost
towards the $30; we’re not an electronics store)

•	 NO LEGO TRADING, unless it’s for color

–	 … well, don’t trade gray for black pegs, either

What Are Sensors?

• Devices that change resistance due to
– Light
– Pressure

– Position (angle)

– etc…

• Range is limited (with IC: analog 0 to 255;
digital 0 to 1)

HandyBoard Sensor Inputs

v = 5 V

VCC
R = 47 kΩ

IN to ADC

GND

HandyBoard Sensor Inputs

•	 HandyBoard has digital and analog hardware
ports
– You can read both types of ports as digital or analog

values
– BUT, digital ports read as analog values always give 0

or 255
– Analog ports read as digital values use a cutoff to

decide if it is 0 or 1
– Analog ports: 0-6, 16-31

– Digital ports: 7-15

Expansion Board Sensor Inputs

•	 Expansion inputs IN_16
are multiplexed IN_17

•	 Need to read IN_18

inputs twice IN_19

when using a IN_20

different IN_21

expansion port IN_22

IN_23

R = 47 kΩ

v = 5 V

to ADC

GND

IN_0

VCC

Sensors

• Potentiometer

• Phototransistor

• Breakbeam
• Distance

Sensor Connection

VCC SIGNAL GND

Sensors

• Bumpers

• Internal sensors
• One terminal to GND, other to Signal (IN)

• NC (normally closed) vs. NO (normally

open)

Potentiometers (Variable
Resistors)

• Useful for precise

shaft encoding

Phototransistor

• More sensitive to IR than to visible light

• Polarized
• More in Lecture 3

Breakbeam Sensors

• Shaft Encoding

•	 Works on certain HB
ports

• Count number of
interruptions

•	 More in Lecture 3

Sharp Distance Sensor

•	 Useful for measuring
distances from 6.5” to
a couple feet

•	 3 sensor points
•	 More in lecture 3

Sharp Distance Sensor

• Response curve

The Gyroscope!

• Now, a word from Analog Devices

Motors

•	 Two kinds of motors
available

•	 Need to “LEGOize”
motors

•	 Can use glue or tape
to mount them

Motor Connections

•	 Three pins
•	 Use first and third pin

•	 Current can flow
either direction,
motor runs in either
direction

Motors

Interactive C

• Originally developed for 6.270 by Randy
Sargent

• Supports Handy Board, RugWarrior and
RugWarrior Pro

Where to Develop

• Work at Lab
– IC 3.1

– Laptops in lab
• Work at Home

– IC 3.2 for Windows

– http://www.kipr.org

Starting Off: Download pcode

•	 Initially do this to load machine instructions and libraries
to HB
–	 IC provides some libraries, 6.270 provides more
–	 Be sure HB has been charged

•	 May want to do this if HB is acting strangely
•	 Set HB to download mode (hold STOP and turn on)

Starting IC

• Add 6.270 locker

• Type: ic
• Make sure HB is on

– LCD: IC v3.1
SMOOTHPWM with
beating heart

• Prompt: C>

Basic Commands

• load <filename>

– IC looks in current directory first, then IC library path
– Several files may be loaded into IC at once
– A program can be defined in multiple files
– Downloads all loaded files to HandyBoard

• unload <filename>
– Unloads the named file
– Re-downloads remaining files

Basic Commands

• help
– Help screen of IC commands

• quit
– Exits IC
– <Ctrl-C> also works

Editing

• IC has a line editor and command history

• Scan through history with Ï and Ð arrows

or <Ctrl-P> (previous command) and

<Ctrl-N> (next command) respectively

KEY MAPPINGS

<Ctrl-A> beginning of line <Ctrl-E> end of line
<Ctrl-B> back one character <Ctrl-F> forward one character
<Ctrl-D> delete character <Ctrl-K> kill line

C

• At prompt, C-language expression may be entered
• End with semicolon

– Example:
C> 6 * 10;

Downloading 7 bytes (addresses C200-C206): 7 loaded

Returned <int> 60

• Can also evaluate series of expressions by creating a block with
curly braces

– Example:

C> { int i = 10; printf(“%d\n”, i); }

Downloading 22 bytes (addresses C200-C215): 22 loaded

(LCD displays “10”)

Program Development

• Develop in favorite editor (vi, emacs,
Notepad)

• In IC: load <filename>
• Reboot HB by turning it off then on

How the HB Runs Code

• When turned on, HB runs main()
function

• Reset HB without running main()

– Hold START button while turning on
– HB will display IC 3.1 SMOOTHPWM
– Files are not lost

How the HB Runs Code

•	 Global variables initialized whenever reset
condition occurs

•	 Reset occurs when
– New code downloaded

–	main() is run
– System hardware is reset

•	 Local variables initialized when function
containing them is called

Conflicting Files

• Occurs when multiple files downloaded
have a main() (or any other) function

• Error occurs
• See the manual for more details

Persistent Global Variables

• Special uninitialized global variable

• Preface with keyword persistent:
persistent int i

• Initial values cannot be specified in declaration

• These variables keep their state when:

– HB is turned off and on
– main() is run
– System reset occurs

Persistent Variables

•	 If declared at the beginning of the code, before
any function or other non-persistent globals,
they will be re-assigned to the same location in
memory when code is re-compiled

•	 Can preserve values over multiple downloads

• If program is divided into multiple files, all

persistent variables should be in one file

– File should be placed first in the load ordering of the

files

Why Use Persistent Variables?

• Store calibration and configuration values
that do not need to be re-calculated every
time

• Robot learning algorithms

List Files (.lis)

• List multiple files needed for download in
a .lis file

• Remember: if you have persistent
variables in code, ensure that file
containing them is listed first

• load <listfile> loads files in the
order prescribed

Printing to LCD

• Only 31 characters (16 x 2 – ♥)

• Characters printed beyond final character

position are cut off
• printf() treats the LCD screen as one

long line instead of two
• Cannot print long 32-bit integers

Arrays and Pointers

• Arrays are one-dimensional only
• Pointers to only data items and arrays

Motors

• void fd(int m)
• void bk(int m)
• void off(int m)

motor ports: 0 ≤ m ≤ 5
• void alloff()
• void ao()

• void motor(int m, int speed)
-100 ≤ speed ≤ 100 100: full forward -100: full backward

More About Motors

• motor(m,0) and off(m) are the same
command

• Motor ports 4 and 5 do not have speed
controls
– They turn on full power
– speed parameter does not matter

Servos

• void disable_servos()

• void enable_servos()
– Must be called for servos to work
– Disable servos when processor performance is

needed

• void servo(int port, int period)
0 ≤ port ≤ 5 0 ≤ period ≤ 4000 (≈180°)

Sensors

• int analog(int port)
– Returns integer between 0 and 255

• int digital(int port)
– Returns 0 (false) or 1 (true)

0 ≤ port ≤ 31

• You can plug analog sensors into digital
ports and vice versa

Other Doodads

• int stop_button()
• int start_button()

– Returns 1 (pressed) or 0 (released)

• void start_press()
• void stop_press()

– Waits for button to be pressed and released
– Beeps afterwards

• int knob()
– Returns position of knob as integer between 0 to 255

Time

• void reset_system_time()

– Reset time to 0 milliseconds

• long mseconds()
• float seconds()

– 1 millisecond resolution
– int vs. float (the period)

• void sleep(float sec)
– At sec or a little longer than sec seconds

• void msleep(long msec)
– At msec or longer than msec milliseconds

Tones

• void beep()

• And for the bored:
• void tone(float freq, float length)

– freq Hertz for length seconds

• void set_beeper_pitch(float freq)

Assignment 2

•	 Due Thursday night (TOMORROW!) at 11:45 pm

•	 Four tasks to complete:

1. Build and test the expansion board
2. Build and test the RF receiver
3. Build a robot (guidelines are enumerated in assignment)
4. Program the robot to move around

•	 Pick up assignment after lecture
•	 Assignment 3 is dependent on the robot you made for

Assignment 2
•	 The robot just needs to work: remember that it doesn’t

have to be the best robot you’ve ever made

What’s Next

•	 Wednesday, January 5, and Thursday, January 6

•	 Workshop 3 – Electronics Assembly

– How to solder
– Soldering RF receiver (Assignment 2)

•	 Workshop 4 – Code & Sensors I: Basic Control
and Robot Skills
– Programming the HB (Assignment 2)

•	 Don’t forget to sign up on the 6th floor lab

