MASSACHUSETTS INSTITUTE OF TECHNOLOGY

Department of Electrical Engineering and Computer Science

6.301 Solid State Circuits

Final Exam

December 15, 2008
180 minutes

1. This examination consists of four problems. Work all problems.
2. This examination is closed book.
3. Please summarize your solutions in the spaces provide in this examination packet. Draw all sketches neatly and clearly where requested. Remember to label ALL important features of any sketches.
4. All problems have equal weight.
5. Make sure that your name is on this packet and on each examination booklet. Good luck.

General equations, worst case OCT:

$$
\begin{gathered}
R_{10}=r_{\pi} \| \frac{\left(R_{1}+R_{2}\right)}{1+g_{m} R_{2}} \\
R_{20}=\underbrace{R_{1} \|\left[r_{\pi}+(\beta+1) R_{2}\right]}_{R_{\|}}+R_{3}+\frac{g_{m} r_{\pi} R_{\|} R_{3}}{r_{\pi}+(\beta+1) R_{2}}
\end{gathered}
$$

Problem 1 OCT's and transfer functions

Consider the following amplifier:

- $\beta \rightarrow \infty$
- $C_{\pi}=0$
- $C_{\mu}=100 \mathrm{fF}$
- $C_{o}=C_{i n}=1 \mathrm{pF}$
- Assume $I_{c 1}=I_{c 2}=I_{c 3}=I_{c 4}$
- Do not ignore the Early effect.
(a) Solve for the following transfer functions
- $\frac{v_{\text {out }}}{i_{\text {in }}}$
- $\frac{v_{f}}{v_{o u t}}$
- $v_{i n}\left(v_{f}, i_{i n}\right)$
(b) Approximate the 3 dB frequency $\left(f_{3 d B}\right)$ using the method of open circuit time constants. Make reasonable approximations.

Problem 2 Op amps

A three-stage BJT op-amp is shown below. Assume $V_{B E, o n}=0.7 \mathrm{~V}, \beta=100, V_{A}=2.5 \mathrm{~V}, \frac{k T}{q}=25 \mathrm{mV}$.

(a) Calculate all collector currents
(b) Calculate the low-frequency gain of each stage. Include r_{π} 's and r_{o} 's in your calculation.
(c) Explain the function of the 2nd stage.
(d) The dynamics of the amplifier are dominated by C_{1}. Estimate the location of the lowest frequency pole in terms of C_{1} and quantities involved in part (b).

Problem 3 Op Amp applications

Note: For parts (a) and (b) you may assume the op amps and diodes are ideal.
(a) Derive the voltage v_{o} as a function of v_{I} and v_{A} in the following circuit

(b) Derive v_{A} as a function of v_{I} in the following circuit when:

1. $v_{I}>0$
2. $v_{I}<0$

(c) What function is implemented by the following circuit? Give both a qualitative and quantitative $\left(\frac{v_{o}}{v_{I}}\right)$ answer.

(d) Now consider the diodes to be nonideal (i.e., they have a forward drop of 0.6 V when conducting). What is the output voltage v_{A} of the circuit in part (b) under this condition?

Problem 4 Charge Control

An inverter circuit is shown below

The transistor has negligible space-charge layer capacitances. In this case, the charge control equations are

$$
\begin{aligned}
i_{C} & =\frac{q_{F}}{\tau_{F}}-q_{R}\left(\frac{1}{\tau_{R}}+\frac{1}{\tau_{B R}}\right)-\frac{d q_{R}}{d t} \\
i_{B} & =\frac{q_{F}}{\tau_{B F}}+\frac{d q_{F}}{d t}+\frac{q_{R}}{\tau_{B R}}+\frac{d q_{R}}{d t} \\
i_{E} & =\frac{q_{F}}{\tau_{B F}}-q_{F}\left(\frac{1}{\tau_{F}}+\frac{1}{\tau_{B F}}\right)-\frac{d q_{F}}{d t}
\end{aligned}
$$

When the transistor is in saturation

$$
i_{B}-i_{B o}=\frac{q_{S}}{\tau_{S}}+\frac{d q_{S}}{d t}
$$

The transistor parameters are

$\tau_{F}=1 \mathrm{~ns}$	$\beta_{F}=100$	$\tau_{B F}=100 \mathrm{~ns}$	$\tau_{S}=15.1 \mathrm{~ns}$
$\tau_{R}=2 \mathrm{~ns}$	$\beta_{R}=5$	$\tau_{B R}=10 \mathrm{~ns}$	

(a) The circuit is initially configured with switch 1 open and switch 2 closed. Input voltage $v_{I}(t)$ is a 10.7 volt step and the initial value of the capacitor voltage is zero. Find $i_{C}(t)$ valid for all time slightly greater than zero.
(b) Switch 1 is now closed. Other conditions remain the same as for part (a). Find the value of R that makes i_{C} a constant for all time slightly greater than zero.
(c) Switches 1 and 2 are now both opened. With $v_{I}(t)$ a 10.7 V step and zero initial capacitor voltage, the voltage $v_{o}(t)$ is given by the following graph

What are the values of delay time T_{D} and τ_{1} ? You may express T_{D} in terms of logarithms if you wish.
(d) The circuit is now operated with switch 1 closed and switch 2 open, $R=2.5 \mathrm{k} \Omega$, and v_{I} a constant 10.7 volts. After equilibrium is reached switch 2 is closed. What is the value of i_{C} slightly after the switch is closed? What is the final value of i_{C} ?

MIT OpenCourseWare
http://ocw.mit.edu

6.301 Solid-State Circuits

Fall 2010

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

