6.301 Solid-State Circuits

Recitation 14: Op-Amps and Assorted Other Topics
Prof. Joel L. Dawson

First, let's take a moment to further explore device matching for current mirrors:

and ask what happens when Q_{1} and Q_{2} operate at different temperatures. It turns out that grinding through the math doesn't yield a great deal of insight:

$$
\frac{I_{1}}{I_{2}}=\frac{I_{S 1} \exp \left[\frac{q V_{B E}}{k T_{1}}\right]}{I_{S 2} \exp \left[\frac{q V_{B E}}{k T_{2}}\right]}=\frac{I_{S 1}}{I_{S 2}} \exp \left[\frac{q V_{B E}}{k}\left(\frac{1}{T_{1}}-\frac{1}{T_{2}}\right)\right]
$$

We must consider, too that the saturation currents I_{S} are temperature-dependent as well. It turns out that I_{S} can be written

$$
I_{S}=\frac{T^{\gamma}}{E} \exp \left(-\frac{q V_{G 0}}{k T}\right)
$$

Where E, γ are constants and $V_{G 0}$ is the bandgap voltage. All I can say here is that if Q_{1} and Q_{2} are at different temperatures, $I_{1} \neq I_{2}$. End of story.

6.301 Solid-State Circuits

Recitation 14: Op-Amps and Assorted Other Topics
Prof. Joel L. Dawson

Next, let's take a moment to consider carefully a (true) statement that Prof. Roberge has made in class in previous semesters. I can't quote him exactly, but he said something like:
"When transistors are run at low collector currents, they tend to have low f_{T} s."
What does this mean? Well, f_{T} concerns the result of the following experiment:

We ask ourselves, what is the frequency at which the current gain $\left|\frac{i_{0}}{i_{i}}\right|$ falls to unity? That frequency is called the " f_{T} " of transistor, and is given by the expression

$$
f_{T}=\frac{1}{2 \pi} \frac{g_{m}}{C_{\pi}+C_{\mu}}
$$

People quote this number as a general indication of how "fast" a transistor is. Generally speaking, it will be easier to design a high-bandwidth amplifier using a transistor with a higher, rather than lower f_{T}. Note that since the output is short-circuited, the Miller effect never comes into play. This causes C_{π} and C_{μ} to be treated equally for the sake of f_{T}, but we know that for real voltage amplifiers C_{μ} can be more painful.

6.301 Solid-State Circuits

Recitation 14: Op-Amps and Assorted Other Topics
Prof. Joel L. Dawson

Looking at this expression, we can express parts of it in terms of the collector current I_{C}.

$$
\begin{aligned}
& g_{m}=\frac{I_{C}}{V_{T}}=g_{m} \tau_{F}+C_{j e} \\
&=\frac{I_{C}}{V_{T}} \tau_{F}+C_{j e} \\
& f_{T}=\frac{1}{2 \pi} \frac{\frac{I_{C}}{V_{T}}}{\tau_{F} \frac{I_{C}}{V_{T}}+C_{j e}+C_{\mu}}
\end{aligned}
$$

We see that in the limit of $I_{C} \rightarrow 0, f_{T} \rightarrow 0$, while in the limit of $I_{C} \rightarrow \infty, f_{T} \rightarrow \frac{1}{2 \pi} \frac{1}{\tau_{F}}$. Below is a sketch of f_{T} vs. I_{C} as predicted by this simple theory; next to it is a graph from a measured device.

Now, at last on to the class exercise.

6.301 Solid-State Circuits

Recitation 14: Op-Amps and Assorted Other Topics
Prof. Joel L. Dawson

CLASS EXERCISE

Consider the simple op-amp shown below. Which is the inverting input, and which is the noninverting input?

This is a seemingly simple exercise, but tracing things through helps you begin to understand how these things are put together.

Now, notice that the input stage is loaded with a current mirror. We know, based on our knowledge of the "simple" current mirror, that I_{1} and I_{2} are related by

$$
I_{2}=\frac{I_{1}}{1+\frac{2}{\beta}}
$$

If the two inputs are the same (the differential input voltage is zero), $I_{1}=I_{3}$. This means that $I_{3} \neq I_{2} \ldots$ which means trouble? Fortunately not. This is one of those cases where the designer relies on the op-amp being in a feedback connection. Take, for example, a follower:

6.301 Solid-State Circuits

Recitation 14: Op-Amps and Assorted Other Topics

In the op-amp on the last page, we expect $I_{2}<I_{3}$ for zero differential input. Connected as above, though, this would drive the output, and therefore the inverting input, low. When the inverting input is drawn low, it causes I_{2} to increase. The system quickly equilibrates to $I_{2} \approx I_{3}$, and if we measure the voltages we might measure something like:

Particularly in ICs it is not uncommon to implement an entire op-amp in a single stage. There are many tricks for getting a lot of gain. It is sometimes useful to use cascoding to establish very highimpedance nodes.

6.301 Solid-State Circuits

Recitation 14: Op-Amps and Assorted Other Topics
Prof. Joel L. Dawson

Input stage that could be used for very high gain:

This concept is more commonly used with MOSFETS, especially in situations when you expect to drive a purely capacitive load.

MIT OpenCourseWare
http://ocw.mit.edu

6.301 Solid-State Circuits

Fall 2010

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

