MASSACHUSETTS INSTITUTE OF TECHNOLOGY

Department of Electrical Engineering and Computer Stuff

6.301 Solid State Circuits

Issued: Oct. 8, 2010
Problem Set 5
Due : Friday, Oct. 15, 2010

Suggested Reading: Read as many of the following as you can. All of the recommended references are on reserve at Barker Library.

1. Lundberg sections $11-18,21$ and 27 .
2. Grebene sections 4 and 7 .
3. Gray and Meyer sections 4.2, 6.2 and 7.3.6.

Problem 1: Current Mirrors.
For each of the following current mirrors, express $I_{o u t} / I_{i n}$ as a fraction of expanded polynomials in β, assuming all transistors are matched. Also, solve for the lower bound of VOUT such that all transistors remain Forward Active in terms of $V_{B E}$ and $V_{C E, s a t}$. You cannot neglect base currents.
(i) Improved Current Mirror:

(ii) Cascode Current Mirror:

(iii) Improved Wilson Current Mirror:

Problem 2: The following amplifier is in a stacked Emitter-Follower, Common-Base configuration. Assume $V_{B E, o n}=0.6 \mathrm{~V}, c_{\mu}=2 \mathrm{pF}, c_{\pi}=20 \mathrm{pF}, \beta_{n p n}=200$ and $\beta_{p n p}=100$. You may neglect r_{b} and r_{o}.

(a) Calculate the midband small-signal gain.
(b) Using the OCT method, estimate the upper -3 dB frequency.
(c) Using the SCT method, estimate the lower -3 dB frequency.

Problem 3: Operational Amplifiers. Consider the following non-inverting configuration:

We know that practical op amp circuits do not implement "ideal op amp" behavior. This is the op amp equivalent circuit including Input Offset Voltage $V_{O S}$, Input Bias Current $I_{I B}$, Input Offset Current $I_{O S}$, and Finite Gain A_{V} :

(a) For the non-inverting op amp configuration, solve $v_{O U T}$ in terms of $v_{I N}$ and the following nonidealities.
(i) Input Offset Voltage $V_{O S}$ (assuming no $I_{I B}$ or $I_{O S}$; and infinite gain)
(ii) Input Bias Current $I_{I B}$ (assuming no $V_{O S}$ or $I_{O S}$; and infinite gain)
(iii) Input Offset Current $I_{O S}$ (assuming no $V_{O S}$ or $I_{I B}$; and infinite gain)
(iv) Finite Gain A_{V} (assuming no $V_{O S}, I_{I B}$ or $I_{O S}$)
(b) It is possible to counteract the dependence on $I_{I B}$ found in part (a-ii) with a resistor in series with the non-inverting terminal. Find the value of R^{\prime} which eliminates the dependence on $I_{I B}$ found in part (a-ii).

MIT OpenCourseWare
http://ocw.mit.edu

6.301 Solid-State Circuits

Fall 2010

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

