MASSACHUSETTS INSTITUTE OF TECHNOLOGY
 Department of Electrical Engineering and Computer Science

6.301 Solid State Circuits

Fall Term 2010
Issued : Sept. 17, 2010
Problem Set 3
Due : Friday, Sept. 24, 2010

Suggested Reading: Read as many of the following as you can. All of the recommended references are on reserve at Barker Library.

1. Lundberg sections 4 and 5 .
2. Grebene section 5.1.
3. Gray and Meyer section 3.5.

Problem 1: Find the mid-band gain for each circuit below. Assume that $\beta=400, V_{\mathrm{BE}, \mathrm{ON}}=0.6 \mathrm{~V}$, and ignore r_{o}.
(a) Circuit a

(b) Circuit b

Problem 2: Simulate the CE-EF-CE amplifier in Circuit 1b (above) with HSPICE. Use the following data for your simulations: $I_{S}=10^{-15} \mathrm{~A}, \beta_{F}=200, V_{A}=100, \tau_{F}=0.1 \mathrm{~ns}, c_{j e o}=10 \mathrm{pF}$, and $c_{j c o}=2 \mathrm{pF}$. Turn in your HSPICE input file, and an Awaves plot showing the low and high frequency roll-offs.

Problem 3: For the differential amplifier shown below:

(a) Find the differential voltage gain $a_{v d}$ and the common mode voltage gain $a_{v c}$.
(b) Find both the differential and common mode input and output resistances ($R_{\mathrm{in}, \mathrm{d}}, R_{\mathrm{in}, \mathrm{c}}, R_{\mathrm{out}, \mathrm{d}}$, and $R_{\text {out }, \mathrm{c}}$).

Problem 4: For the single-ended differential amplifier shown below, assume that $\beta=200$ and $V_{\mathrm{BE}, \mathrm{ON}}=$ 0.6 V for both transistors, and that the DC common mode input voltage is zero. Neglect r_{o} for this problem.

(a) Express the differential voltage gain $a_{v d}$ as a function of the voltage drop V_{L} across R_{L}.
(b) If $V_{\mathrm{CE}, \mathrm{SAT}}=0.3 \mathrm{~V}$, what is the maximum $a_{v d}$ possible?
(c) Select R_{L} and R_{E} so that $R_{\mathrm{in}, \mathrm{d}}=1 \mathrm{M} \Omega$ and $a_{v d}=300$. What is the common mode rejection ratio (CMRR)?

Problem 5: For each circuit below, find the transfer function v_{o} / v_{i}, and draw the Bode plot (magnitude and phase).
(a) Circuit a

(b) Circuit b

(c) Circuit c

MIT OpenCourseWare
http://ocw.mit.edu

6.301 Solid-State Circuits

Fall 2010

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

