MASSACHUSETTS INSTITUTE OF TECHNOLOGY

Department of Electrical Engineering and Computer Science

6.301 Solid State Circuits

Fall Term 2010 Problem Set 3 Issued : Sept. 17, 2010 Due : Friday, Sept. 24, 2010

Suggested Reading: Read as many of the following as you can. All of the recommended references are on reserve at Barker Library.

- 1. Lundberg sections 4 and 5.
- 2. Grebene section 5.1.
- 3. Gray and Meyer section 3.5.
- **Problem 1:** Find the mid-band gain for each circuit below. Assume that $\beta = 400$, $V_{\text{BE,ON}} = 0.6$ V, and ignore r_o .
 - (a) Circuit a

(b) Circuit b

Problem 2: Simulate the CE-EF-CE amplifier in Circuit 1b (above) with HSPICE. Use the following data for your simulations: $I_S = 10^{-15}$ A, $\beta_F = 200$, $V_A = 100$, $\tau_F = 0.1$ ns, $c_{jeo} = 10$ pF, and $c_{jco} = 2$ pF. Turn in your HSPICE input file, and an Awaves plot showing the low and high frequency roll-offs.

Problem 3: For the differential amplifier shown below:

- (a) Find the differential voltage gain a_{vd} and the common mode voltage gain a_{vc} .
- (b) Find both the differential and common mode input and output resistances $(R_{in,d}, R_{in,c}, R_{out,d}, and R_{out,c})$.

Problem 4: For the single-ended differential amplifier shown below, assume that $\beta = 200$ and $V_{\text{BE,ON}} = 0.6V$ for both transistors, and that the DC common mode input voltage is zero. Neglect r_o for this problem.

- (a) Express the differential voltage gain a_{vd} as a function of the voltage drop V_L across R_L .
- (b) If $V_{\text{CE,SAT}} = 0.3$ V, what is the maximum a_{vd} possible?
- (c) Select R_L and R_E so that $R_{in,d} = 1M\Omega$ and $a_{vd} = 300$. What is the common mode rejection ratio (CMRR)?

- **Problem 5:** For each circuit below, find the transfer function v_o/v_i , and draw the Bode plot (magnitude and phase).
 - (a) Circuit a

(b) Circuit b

MIT OpenCourseWare http://ocw.mit.edu

6.301 Solid-State Circuits Fall 2010

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.