6.301 Solid State Circuits

Recitation 8: LM172 AGC AM IF Strip
Prof. Joel L. Dawson

The LM172 AGC AM IF strip gives us a rather rich set of circuit tricks to add to our toolbox. One useful function to be able to realize in analog systems is a variable gain, where the gain is varied by an analog signal. For example, take the following op-amp circuit:

In the small-signal view of the world, the MOSFET looks like a variable resistor (if we bias things right). So the transfer function becomes

$$
\frac{V_{O U T}}{V_{I N}}=-\frac{R_{f}}{R_{I}\left(V_{B}\right)}
$$

Because R_{I} is a function of V_{B}.

For our class exercise, let's explore a bipolar-friendly expression of this concept.

6.301 Solid State Circuits

Recitation 8: LM172 AGC AM IF Strip
Prof. Joel L. Dawson

CLASS EXERCISE: Consider the emitter-coupled pair:

Remembering that $g_{m}=\frac{q I_{C}}{k T}$, derive the gain of this amplifier as a function of V_{E}. (Workspace)

There are other ways to implement this variable gain idea. In lecture yesterday, Prof. Roberge spoke of "current stealing" as a way of varying the gain. We can examine that concept here in a simpler context:

6.301 Solid State Circuits

Recitation 8: LM172 AGC AM IF Strip
Prof. Joel L. Dawson

When $V_{G}=0$, the output current from Q_{A} gets split evenly between Q_{1} and $Q_{2} \ldots$.the gain is therefore $\frac{1}{2} g_{m A} R_{L}$, as half of the output signal current is "stolen" by Q_{1}. Looking in Gray and Meyer, we can find the function of I_{C} that actually winds up going through R_{L} as

$$
\frac{I_{C 2}}{I_{C}}=\frac{\frac{\beta_{2}}{1+\beta_{2}}}{1+\exp \left(-\frac{V_{G}}{V_{T}}\right)}=\frac{\alpha_{2}}{1+\exp \left(-\frac{V_{G}}{V_{T}}\right)}
$$

The gain for this circuit is thus

$$
a_{v}=\left(\frac{\alpha_{2}}{1+\exp \left(-\frac{V_{G}}{V_{T}}\right)}\right) g_{m} R_{L}
$$

6.301 Solid State Circuits

Recitation 8: LM172 AGC AM IF Strip
Prof. Joel L. Dawson
which for

$$
\begin{aligned}
& V_{G} \gg \frac{k T}{q}\left(=V_{T}\right) \rightarrow a_{v} \approx g_{m} R_{L} \\
& V_{G} \ll-\frac{k T}{q} \rightarrow a_{v} \approx 0
\end{aligned}
$$

The LM172 has yet another approach to solving this problem. Look at Q_{2} and Q_{3}, and see an emitter follower $\left(Q_{2}\right)$ with a dynamic load (impedance looking into the emitter of Q_{3}).

Now, again consulting Gray and Meyer,

$$
I_{C 3}=\frac{\alpha_{F} I_{E}}{1+\exp \left(-\frac{V_{\text {CONTROL }}}{V_{T}}\right)} \quad, \quad I_{C 2}=\frac{\alpha_{F} I_{E}}{1+\exp \left(\frac{V_{\text {CONTROL }}}{V_{T}}\right)}
$$

For an emitter follower with resistance R_{E} in the emitter, the voltage gain is

$$
a_{v}=\frac{(\beta+1) R_{E}}{r_{\pi 2}+(\beta+1) R_{E}}
$$

6.301 Solid State Circuits

Recitation 8: LM172 AGC AM IF Strip
Prof. Joel L. Dawson

But here, $R_{E}=\frac{r_{\pi 3}}{\beta+1}$. Assuming all $\beta \mathrm{s}$ are equal,

$$
a_{v}=\frac{r_{\pi 3}}{r_{\pi 2}+r_{\pi 3}}
$$

Recalling that r_{π} is inversely proportional to I_{C}

$$
r_{\pi}=\beta \frac{V_{T}}{I_{C}}
$$

We can qualitatively sketch $r_{\pi 2}$ and $r_{\pi 3}$ as a function of $V_{\text {CONTROL }}$:

The corresponding gain graph for this circuit would then look something like

There's also an op-amp hidden in this chip. Can you find it?

6.301 Solid State Circuits

Recitation 8: LM172 AGC AM IF Strip
Prof. Joel L. Dawson

Look at Q_{11}, Q_{12}, and Q_{14}

MIT OpenCourseWare
http://ocw.mit.edu

6.301 Solid-State Circuits

Fall 2010

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

