6.301 Solid-State Circuits

Recitation 21: Current-Feedback, or Transimpedance, Amplifiers
Prof. Joel L. Dawson

By now, you've practically grown up hearing about a "constant gain-bandwidth product." Where does that come from? And is it really a physical law?

The answer to the second question is that it is not a physical law. While it is true that you will often find it easier to get high gain for low bandwidths, this is more a consequence of the topology choices that we make than an expression of nature's laws. For instance, there is something called a "distributed amplifier," for which gain trades off with delay rather than bandwidth.

So what about the first question?
CLASS EXERCISE:
A simple inverting amplifier using an op-amp can be approximately modeled as follows:

Here, G is the ideal gain, and the dynamics of the op-amps are captured by $\frac{k}{s}$. Show that as the gain G is varied, this system exhibits a constant gain-bandwidth product.
(Workspace)
Hint:

6.301 Solid-State Circuits

Recitation 21: Current-Feedback, or Transimpedance, Amplifiers
Prof. Joel L. Dawson

Op-amps are often "compensated" such that their dynamics are dominated by one low-frequency pole. $\mathrm{Op}-\mathrm{amps}$ are almost everywhere....hence the common belief in a fundamental gain-bandwidth product.

The current-feedback amplifier happens to be an amplifier that does not follow the constant gainbandwidth "rule"...

Current-Feedback Amplifiers

Let's look at the implementation of a typical tranimpedance amplifier.

6.301 Solid-State Circuits

Recitation 21: Current-Feedback, or Transimpedance, Amplifiers
Prof. Joel L. Dawson

The underlying assumption is that i, i_{2}, and i_{N} together satisfy KCL. Thus,
(1) $\quad i_{1}+i_{N}=i_{2}$
(2) $i_{1}=i_{2}+i_{C}$
$(1) \rightarrow(2) \quad \grave{\mu}_{1}=\dot{j}_{1}+i_{N}+i_{C}$

$$
i_{C}=-i_{N} \Rightarrow v_{0}=i_{C} z=-Z i_{N}
$$

Pretty simple. It turns out that we can use this circuit in many instances just like a voltage op-amp. Let's see how.

A start to the analysis is to observe that, as in the case of the voltage op-amp, $V_{+}=V_{-} \quad(=0)$. The reasons are different, of course. For the voltage op-amp, it was negative feedback, combined with infinite gain, that forced $V_{+}=V_{-}$. Here, $V_{+}=V_{-}$by construction, because we have placed a voltage buffer between them.

6.301 Solid-State Circuits

Recitation 21: Current-Feedback, or Transimpedance, Amplifiers
Prof. Joel L. Dawson

Very well. We write KCL at the inverting input:

$$
\frac{v_{I N}}{R_{1}}+\frac{v_{0}}{R_{2}}=i_{N}
$$

Recall that $v_{0}=-Z i_{N} \Rightarrow i_{N}=-\frac{v_{0}}{Z}$

$$
\begin{aligned}
\frac{v_{I N}}{R_{1}}+\frac{v_{0}}{R_{2}} & =-\frac{v_{0}}{Z} \\
\frac{v_{I N}}{R_{1}}+\frac{v_{0}}{R_{2}}+\frac{v_{0}}{Z} & =0 \\
v_{0}\left(\frac{1}{Z}+\frac{1}{R_{2}}\right) & =-\frac{v_{I N}}{R_{1}} \\
v_{0}\left(\frac{R_{2}+Z}{Z R_{2}}\right) & =-\frac{v_{I N}}{R_{1}} \\
v_{0} & =-\frac{Z R_{2}}{R_{2}+Z} \frac{1}{R_{1}} v_{I N}
\end{aligned}
$$

Now the idea behind a transimpedance amp is that Z, the transimpedance, is far and away the biggest impedance around.

$$
\begin{aligned}
& Z \gg R_{2} \\
& v_{0}=-\left(\frac{Z R_{2}}{R_{2}+Z}\right) \frac{1}{R_{1}} v_{I N} \\
& v_{0} \approx-\frac{R_{2}}{R_{1}} v_{I N} \quad \begin{array}{l}
\text { Just like a voltage } \\
\text { op-amp! }
\end{array}
\end{aligned}
$$

Page 4

6.301 Solid-State Circuits

Recitation 21: Current-Feedback, or Transimpedance, Amplifiers

It turns out that with the transimpedance amplifier we are not subject to the constant gainbandwidth product rule.

Block diagram:

Rearranging:

So you can fix your bandwidth by choosing R_{2}, and set your gain by choosing R_{1} in relation to R_{2}.
We'll close by looking at a common input buffer structure.

6.301 Solid-State Circuits

Recitation 21: Gurrent-Feedback, or Transimpedance, Amplifiers Prof. Joel L. Dawson

Buffer circuit topology: (sometimes called a "diamond circuit")

For design project, read course notes about slew rate for transimpedance amplifiers.

MIT OpenCourseWare
http://ocw.mit.edu

6.301 Solid-State Circuits

Fall 2010

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

