MASSACHUSETTS INSTITUTE OF TECHNOLOGY

Department of Electrical Engineering and Computer Stuff

6.301 Solid State Circuits

Fall Term 2010
Issued : Nov. 15, 2010
Problem Set 8
Due: Tuesday, Nov. 23, 2010

Suggested Reading: Read as many of the following as you can. All of the recommended references are on reserve at Barker Library.

1. Lundberg sections 33-37.
2. Gray and Meyer section 4.4.

Problem 1: In the following circuit, assume $I_{2}=1 \mathrm{~mA}$ and $\beta=100$.

(a) Express I_{O} in terms of I_{1} and I_{2}.
(b) Assume we can tolerate a maximum I_{O} error due to β of 50 percent. For what range of I_{1} is this circuit valid?

Problem 2: Circuit Dependencies.
When we design a circuit, we prefer that it operate over a wide range of temperature. In the following circuits, assume that $\frac{1}{R} \frac{d R}{d T}=600 \mathrm{ppm} /{ }^{\circ} \mathrm{C}$ and $\frac{d V_{B E}}{d T}=-2 m V /{ }^{\circ} \mathrm{C}$. For each of the following circuits, find $\frac{d I_{O}}{d T}$ (Assume $V_{B E}=600 \mathrm{mV}$).
(a) Assume $V_{B B}$ is temperature independent.

(b) Assume the current source, I, is temperature independent.

Problem 3: Wiggler ADCs.
Given a folding amplifier that implements the following function

where V_{F} is 5 V , indicate the succession of grey codes at the output of a comparator when the input ramps from -5 V to 5 V when the folding amplifier is used in the following configuration.

MIT OpenCourseWare
http://ocw.mit.edu

6.301 Solid-State Circuits

Fall 2010

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

