MASSACHUSETTS INSTITUTE OF TECHNOLOGY

Department of Electrical Engineering and Computer Stuff

6.301 Solid State Circuits

Fall Term 2010 Problem Set 8 Issued : Nov. 15, 2010 Due : Tuesday, Nov. 23, 2010

Suggested Reading: Read as many of the following as you can. All of the recommended references are on reserve at Barker Library.

- 1. Lundberg sections 33-37.
- 2. Gray and Meyer section 4.4.

Problem 1: In the following circuit, assume $I_2=1$ mA and $\beta=100$.

- (a) Express I_O in terms of I_1 and I_2 .
- (b) Assume we can tolerate a maximum I_O error due to β of 50 percent. For what range of I_1 is this circuit valid?

Problem 2: Circuit Dependencies.

When we design a circuit, we prefer that it operate over a wide range of temperature. In the following circuits, assume that $\frac{1}{R} \frac{dR}{dT} = 600 ppm/^{\circ}C$ and $\frac{dV_{BE}}{dT} = -2mV/^{\circ}C$. For each of the following circuits, find $\frac{dI_O}{dT}$ (Assume $V_{BE} = 600 \text{ mV}$).

(a) Assume V_{BB} is temperature independent.

(b) Assume the current source, *I*, is temperature independent.

Problem 3: Wiggler ADCs.

Given a folding amplifier that implements the following function

where V_F is 5V, indicate the succession of grey codes at the output of a comparator when the input ramps from -5V to 5V when the folding amplifier is used in the following configuration.

MIT OpenCourseWare http://ocw.mit.edu

6.301 Solid-State Circuits Fall 2010

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.