6.301 Solid-State Circuits

Recitation 19: More on Translinear Circuits
Prof. Joel L. Dawson

We're going to continue today with more on "Pythagorators," and then talk about an industry design: The LH0091 True RMS to DC converter. It's a very interesting application of some of these translinear ideas. In the middle of the class, though, we'll try our hand at a small translinear design problem.

Five-Transistor Pythagorator

What is I_{0} in terms of I_{x} and I_{y} ? Well, we see a Gilbert loop right away in $Q_{1}-Q_{4}$. Must use the more general form:

$$
\begin{gathered}
\frac{I_{x}}{2 A_{E}} \cdot \frac{I_{x}}{2 A_{E}}=\frac{I_{3}}{A_{E}} \frac{\left(I_{3}+I_{y}\right)}{A_{E}} \\
\frac{1}{4} I_{x}^{2}=I_{3}\left(I_{3}+I_{y}\right)
\end{gathered}
$$

6.301 Solid-State Circuits

Recitation 19: More on Translinear Circuits
Prof. Joel L. Dawson

Need the relationship between I_{3} and other variables of interest. We can write

$$
I_{0}=I_{3}+I_{5}
$$

Q_{4} and Q_{5} form a current mirror (which, incidentally, is the simplest possible Gilbert loop):

$$
\begin{aligned}
& I_{5}=I_{4}=I_{3}+I_{y} \\
& I_{0}=2 I_{3}+I_{y} \Rightarrow I_{3}=\frac{I_{0}-I_{y}}{2}
\end{aligned}
$$

Substituting back into our first expression:

$$
\begin{aligned}
\frac{1}{4} I_{x}^{2} & =\left(\frac{I_{0}-I_{y}}{2}\right)\left(\frac{I_{0}-I_{y}}{2}+I_{y}\right) \\
& =\frac{1}{4}\left(I_{0}{ }^{2}-2 V_{y} I_{0}+I_{y}{ }^{2}\right)+\frac{1}{2} I_{0} I_{y}-\frac{1}{2} I_{y}{ }^{2} \\
\frac{I_{x}{ }^{2}}{\not A} & =\frac{I_{0}{ }^{2}}{4}-\frac{I_{y}{ }^{2}}{4}=\frac{1}{A}\left(I_{0}{ }^{2}-I_{y}{ }^{2}\right) \\
I_{0}{ }^{2} & =I_{x}{ }^{2}+I_{y}{ }^{2} \Rightarrow I_{0}=\sqrt{I_{x}{ }^{2}+I_{y}{ }^{2}}
\end{aligned}
$$

Question of the day: How did someone come up with that? Now let's try some on our own.

6.301 Solid-State Circuits

Recitation 19: More on Translinear Circuits
Prof. Joel L. Dawson

CLASS EXERCISE 1 (to be worked on individually):
Design a translinear circuit that performs the function

$$
i_{0}=4 \cdot i_{i}
$$

(Workspace)

CLASS EXERCISE 2 (to be worked on in pairs):
Design a translinear circuit that gives the following input-output relation:

$$
i_{0}=k i^{3}
$$

6.301 Solid-State Circuits

Recitation 19: More on Translinear Circuits
Prof. Joel L. Dawson

Now let's turn our attention to National's LH0091 True RMS to DC converter. It is called this because its output is

$$
v_{0}=\sqrt{\frac{1}{R C} \int\left|v_{I}\right|^{2} d t}
$$

To see how this happens, turn your attention to $Q_{1}-Q_{4}$ indicated on the schematic:

See the Gilbert loop? $I_{1} I_{2}=I_{3} I_{4}$
But $I_{1}=I_{2}=\frac{\left|v_{v}\right|}{R}$, and $I_{4}=\frac{v_{0}}{R}$. This gives $\frac{\left|v_{1}\right|^{2}}{R^{2}}=i_{3}\left(\frac{v_{0}}{R}\right)$.
Looking back at the schematic, we can tie v_{0} and i_{3} together:

Page 4

6.301 Solid-State Circuits

Recitation 19: More on Translinear Circuits
Prof. Joel L. Dawson

So now we can fully analyze the circuit:

$$
\frac{\left|v_{I}\right|^{2}}{R}=i_{3} \frac{v_{0}}{R}
$$

Integrate both sides

$$
\frac{1}{R^{2}} \int\left|v_{I}\right|^{2} d t=\frac{1}{R} \int i_{3} v_{0} d t
$$

Now assume v_{0} changes slowly compared to v_{I}, so that we can write

$$
\begin{gathered}
\frac{1}{R^{2}} \int\left|v_{I}\right|^{2} d t=\frac{v_{0}}{R} \int i_{3} d t \\
\frac{1}{R^{2}} \int\left|v_{I}\right|^{2} d t=\frac{v_{0}}{R} C v_{0} \\
v_{0}=\sqrt{\frac{1}{R C} \int\left|v_{I}\right|^{2} d t}
\end{gathered}
$$

MIT OpenCourseWare
http://ocw.mit.edu

6.301 Solid-State Circuits

Fall 2010

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

