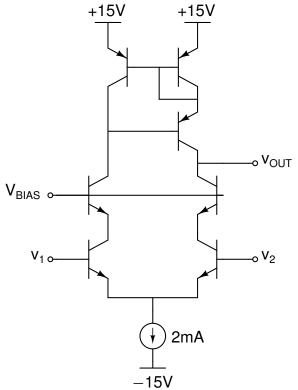
MASSACHUSETTS INSTITUTE OF TECHNOLOGY

Department of Electrical Engineering and Computer Stuff

6.301 Solid State Circuits

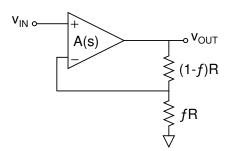

 $\begin{array}{l} \mbox{Fall Term 2010} \\ \mbox{Problem Set 6} \end{array}$

Issued : Oct. 29, 2010 Due : Friday, Nov. 6, 2010

Suggested Reading: Read as many of the following as you can. All of the recommended references are on reserve at Barker Library.

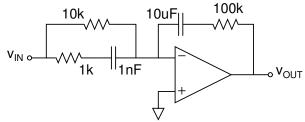
- 1. Lundberg sections 21–24 and 27.
- 2. Grebene section 7.
- 3. Gray and Meyer sections 4.3, 7.4 and 8.

Problem 1: Actively Loaded Differential Pair



Find $\frac{v_{out}}{v_1-v_2}$ at midband, assuming $\beta_{npn}=200$, $\beta_{pnp}=50$, $V_{A,npn}=100$ V, $V_{A,pnp}=50$ V, Common-Mode Voltage $V_{CM}=0$ and $V_{BIAS}=4$ V.

Problem 2: Op Amp Log Circuit Assume that the following circuit is operated at room temperature (T = 300K).



- (a) When $R_1=15.7R_2$, v_O is of the form $v_O=A \log_{10}(x)$. Find A and x.
- (b) Solve for R_1 in terms of R_2 such that v_0 exhibits a $log_2(x)$ behavior.
- **Problem 3:** Op Amp Frequency Response Assume that the following op amp has a finite gain with frequency response $A(s) = \frac{a_o}{\tau s + 1}$ (where $a_o = 10^6$ and $\tau = 10^{-6}$) and that $f = [1 \ 0.1 \ 0.01 \ 0.001]$.

- (a) Solve for the closed-loop DC gain and upper -3dB Frequency for each value of f.
- (b) Sketch the Bode plot (magnitude only) of $\frac{v_{OUT}}{v_{IN}}(s)$ for each value of f.
- (c) Sketch the unit step response of $v_{OUT}(t)$ for each value of f. Make sure to label important features in your sketches including magnitudes, slopes, breakpoint frequencies, and times.

Problem 4: Lead-Lag Op Amp Configuration

Sketch the Bode plot (magnitude and phase) of $\frac{v_{OUT}}{v_{IN}}(s)$. Make sure to label the magnitudes of each asymptote and its breakpoint frequency. Assume the op amp is ideal.

MIT OpenCourseWare http://ocw.mit.edu

6.301 Solid-State Circuits Fall 2010

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.