MASSACHUSETTS INSTITUTE OF TECHNOLOGY

Department of Electrical Engineering and Computer Stuff

6.301 Solid State Circuits

Fall Term 2010
Issued : Oct. 29, 2010
Problem Set 6
Due : Friday, Nov. 6, 2010

Suggested Reading: Read as many of the following as you can. All of the recommended references are on reserve at Barker Library.

1. Lundberg sections $21-24$ and 27.
2. Grebene section 7 .
3. Gray and Meyer sections 4.3, 7.4 and 8.

Problem 1: Actively Loaded Differential Pair

Find $\frac{v_{\text {out }}}{v_{1}-v_{2}}$ at midband, assuming $\beta_{n p n}=200, \beta_{p n p}=50, V_{A, n p n}=100 \mathrm{~V}, V_{A, p n p}=50 \mathrm{~V}$, Common-Mode Voltage $V_{C M}=0$ and $V_{B I A S}=4 \mathrm{~V}$.

Problem 2: Op Amp Log Circuit Assume that the following circuit is operated at room temperature ($T=$ $300 K$).

(a) When $R_{1}=15.7 R_{2}, v_{O}$ is of the form $v_{O}=A \log _{10}(x)$. Find A and x.
(b) Solve for R_{1} in terms of R_{2} such that v_{O} exhibits a $\log _{2}(x)$ behavior.

Problem 3: Op Amp Frequency Response Assume that the following op amp has a finite gain with frequency response $A(s)=\frac{a_{o}}{\tau s+1}\left(\right.$ where $a_{o}=10^{6}$ and $\left.\tau=10^{-6}\right)$ and that $f=\left[\begin{array}{lll}1 & 0.1 & 0.01 \\ 0.001\end{array}\right]$.

(a) Solve for the closed-loop DC gain and upper -3 dB Frequency for each value of f.
(b) Sketch the Bode plot (magnitude only) of $\frac{v_{O U T}}{v_{I N}}(s)$ for each value of f.
(c) Sketch the unit step response of $v_{O U T}(t)$ for each value of f.

Make sure to label important features in your sketches including magnitudes, slopes, breakpoint frequencies, and times.

Problem 4: Lead-Lag Op Amp Configuration

Sketch the Bode plot (magnitude and phase) of $\frac{v_{O U T}}{v_{I N}}(s)$. Make sure to label the magnitudes of each asymptote and its breakpoint frequency. Assume the op amp is ideal.

MIT OpenCourseWare
http://ocw.mit.edu

6.301 Solid-State Circuits

Fall 2010

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

