MASSACHUSETTS INSTITUTE OF TECHNOLOGY

Department of Electrical Engineering and Computer Stuff

6.301 Solid State Circuits

Fall Term 2010 Problem Set 7 Issued : Nov. 6, 2010 Due : Friday, Nov. 12, 2010

Suggested Reading: Read as many of the following as you can. All of the recommended references are on reserve at Barker Library.

- 1. Lundberg sections 30 and 33–36.
- 2. Grebene sections 7.3 and (skim) 9.
- 3. Gray and Meyer sections 6.2–6.4 and 10.3.
- **Problem 1:** A basic operational amplifier circuit with an NPN input stage is shown on the next page. Calculate the following amplifier parameters.
 - (a) Input Bias Current.
 - (b) DC Small-Signal Differential Gain.
 - (c) Common-Mode Rejection Ratio.
 - (d) Compensation capacitor size to achieve 45 degrees of phase margin for unity-gain feedback. Hint: phase margin can be found from a Bode plot as the difference between the phase and -180 degrees when the magnitude is unity. That is, for 45 degrees of phase margin, the phase of the system must be -135 degrees when the magnitude is one.

	NPN	PNP
β	200	40
V_A	$50 \mathrm{V}$	20 V
$ au_F$	2.5 ns	25 ns
r_b, r_c	0	0
c_{μ}, c_{je}, c_{cs}	0	0

Assume the following transistor parameters:

Problem 2: Repeat Problem 1 for the following PNP input operational amplifier. Create a summary table on the first page of your problem set comparing the values found in each layout.

Problem 3: For each of the following circuits use the "Gilbert Principle" to determine I_o as a function of the other circuit variables. All of these circuits simplify to simple expressions.

A differential output is denoted by an I_o superimposed on an arrow, and double emitter arrows with $2A_E$ indicate that transistor has double the emitter area of the other transistors, thus its I_S is twice as large.

Finally, use the method of open circuit time constants to estimate the -3dB frequency for the circuit in part (a) only.

Problem 4: Find $I_o = f(I_x)$, assuming well-matched transistors, negligible base currents and $I_1 = 1$ A. Also, assume Q_A and Q_B have respective emitter areas $24A_E$ and $2A_E$ while all other transistors have emitter area A_E .

What famous function does I_o approximate for small I_x ?

MIT OpenCourseWare http://ocw.mit.edu

6.301 Solid-State Circuits Fall 2010

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.