MASSACHUSETTS INSTITUTE OF TECHNOLOGY

Department of Electrical Engineering and Computer Stuff

6.301 Solid State Circuits

Issued : Nov. 6, 2010
Problem Set 7
Due : Friday, Nov. 12, 2010

Suggested Reading: Read as many of the following as you can. All of the recommended references are on reserve at Barker Library.

1. Lundberg sections 30 and 33-36.
2. Grebene sections 7.3 and (skim) 9 .
3. Gray and Meyer sections 6.2-6.4 and 10.3.

Problem 1: A basic operational amplifier circuit with an NPN input stage is shown on the next page. Calculate the following amplifier parameters.
(a) Input Bias Current.
(b) DC Small-Signal Differential Gain.
(c) Common-Mode Rejection Ratio.
(d) Compensation capacitor size to achieve 45 degrees of phase margin for unity-gain feedback. Hint: phase margin can be found from a Bode plot as the difference between the phase and - 180 degrees when the magnitude is unity. That is, for 45 degrees of phase margin, the phase of the system must be -135 degrees when the magnitude is one.

Assume the following transistor parameters:

	NPN	PNP
β	200	40
V_{A}	50 V	20 V
τ_{F}	2.5 ns	25 ns
r_{b}, r_{c}	0	0
$c_{\mu}, c_{j e}, c_{c s}$	0	0

Problem 2: Repeat Problem 1 for the following PNP input operational amplifier. Create a summary table on the first page of your problem set comparing the values found in each layout.

Problem 3: For each of the following circuits use the "Gilbert Principle" to determine I_{o} as a function of the other circuit variables. All of these circuits simplify to simple expressions.
A differential output is denoted by an I_{o} superimposed on an arrow, and double emitter arrows with $2 A_{E}$ indicate that transistor has double the emitter area of the other transistors, thus its I_{S} is twice as large.
Finally, use the method of open circuit time constants to estimate the -3 dB frequency for the circuit in part (a) only.
(a)

(b)

(c)

(d)

Problem 4: Find $I_{o}=f\left(I_{x}\right)$, assuming well-matched transistors, negligible base currents and $I_{1}=1 \mathrm{~A}$. Also, assume Q_{A} and Q_{B} have respective emitter areas $24 A_{E}$ and $2 A_{E}$ while all other transistors have emitter area A_{E}.
What famous function does I_{o} approximate for small I_{x} ?

MIT OpenCourseWare
http://ocw.mit.edu

6.301 Solid-State Circuits

Fall 2010

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

