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Remember from recitation �: delay complicates the design of feedback systems. We call G(s)H(s) the loop 
transmission L(s). Recalling what we know from 6.003, what happens when we pass a sinusoid ejωt through 

<
DELAY 

Σ G 

First, a word about loop transmission, and why it is important. 

This is out first clue that the details of the loop transmission will be very important to us in our study of 

Now on to the main topic, which is the modeling of physical systems using block diagrams. 

= |L(jω)|e-jφ(ω)e jωt 

= |L(jω)|ejωt-jφ(ω) 

= |L(jω)| ejω(t-
φ(ω)

)ω 

(Assume negative phase shift)

H 

y(t) 

L(s)? We get: 

L(jω)ejω 

frequency-dependent 
delay!! 

feedback systems. 
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In this class we study linear dynamical systems. A classical “state space” description of an unforced dynami
cal system looks something like this: 

ν ν1 1 
ν ν2 2 

ν ν n n
…

…

are the state variables, and the matrix A is constant. 

+....+a2
…

v +....+a2

Block diagrams are a powerful tool for understanding physical systems of all kinds. Notice that in this par
ticular example, the block diagram makes it immediately clear that feedback is involved. 

Ad 
=
dt 

n×n 
matrix 

The νі 

dv1 
dt =a11v1 + a v v12 1v v 

We can represent this expression as 
either a system of equations 

dv  + a
dt 

2 =a v v21 1 22 2v v 

dv1 

∑ dt ∫ 

a13 

+ + 

v+
or in the form of a block diagram. 1av 122 

v3 

...and so on. 

Let’s do some modelling. 
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+xEXAMPLE �: 
F 

т FWIND 
^ steady wind in the 

-x direction 
Output variable of interest: x (position)
Equations approach: mx = -F-F¨ 

WIND 

⎛ F F
WIND ⎞ 

x = dt dt ⎜ ⎟∫ ∫ ⎝ m 
− 

m ⎠

Block diagram (which we can write down without doing equations first!) : 

F
 ∑ 
1 
m-

ẍ 1 
s2 

x 

FWIND 

In our minds, if we wish, we can think of this as an analog circuit. In this case, F and µmд could be voltages, 
�and the        could be realized as a pair of integrations. If we built a circuit like this as a way of modelling a  ms2 

physical system, we would have a rudimentary example of an analog computer. 

Now we’ve got our block diagram. Suppose that we wanted to control the position of this block using force 
as an input. One could imagine a feedback contoller:

∑ 
1 
m 

1 
s2 

x x∑ A 
¨F 

FWIND 

-

Would this work well? Neglect friction for now, and use Black’s Formula: 
“Look”...position sensor 

-
xCMD 

X A/ms2 A ±j√A

X = 

1+A/ms2 = 
ms2+A 

⇒POLES at  m

CMD 

OSCILLATES! 
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As we go along in 6.302, we’ll study ways to deal with situations like this, i.e. have a control strategy that 
does not lead to oscillation. For now, remember the steps that we took: 

�. Looked at the PHYSICS of the situation. 
2. Wrote out a block diagram.
3. Began formulating our control solution.


IN-CLASS EXAMPLE:


Suppose we have a free body falling through a viscous medium, and we are concerned with its velocity over 

time.


Free body diagram:


m 

βv 

mд 

x+ 

Draw a block diagram expressing the velocity in terms of all known information. 
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EXAMPLE 2: Emitter degeneration 

RLIC iC v+ + OUT 
v rOUT v πIN д  (v -v ) R+ - - m in E L v vvIN EE-

R REE 

From 6.002 we know how to solve this using KCL and KVL. Can we generate a block diagram directly? (for 
simplicity, ignore base current) 

∑ 
ivv ∑ Cin in д m - -


vE 
vE 

1 2 

∑ 
i

д m 

RE 

iv ∑ Cд m 

RE 

-RL 
vin C vin OUT 

- -
vv EE 

3 4 

out mBlack’s Formula: v д 
= - ( ) Rv L 

in 1+ д Rm E 

v R

for дmRE >> 1. v

out ≈ -
R

L


in E 

Familiar result from circuit theory. 
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DC MOTORS AND GEAR TRAINS


xx x 

B < i a 

B field could be constant, or con
trolled by the user. i is the cur-a 
rent in the armature windings. 

+ 
v a 
-

Force on a current-carrying wire in a magnetic field is 

F = ∫I(dl× B) = ia LB 

wire length 

Torque T on the rotor is therefore
T = r × F

T = N · RLBi
a 

Let’s lump all of the constants we can’t contol, NRLB, into one constant K :t

T = K it a 

Perfect. This paves the way for us to write down the mechanical dynamics of a shaft attached to this motor. 
Recall: 

T = αJ = Jω = JΘ 

Where α = angular acceleration, ω = angular velocity, Θ is rotational position, and J is the moment of inertia 
of the shaft. 
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{

Doing a current source drive, then, we could write the shaft speed ω as 

T
K 1 1

t J s 

For your labs, we’ll ask you to consider the effect of a gear train: 

Small Gear 

1:m
Lossless, inertia-
free gear train. 

For every turn of the BIG GEAR, the SMALL GEAR turns m times. This implies ω

does the motor “see”? We can figure this out using a very powerful 
method of physical reasoning: utilize conservation of energy. 

Let’s say the output shaft was spun up from rest. Its net change in kinetic energy is therefore: 

∆ΚΕ = ½ J

See text for another way to arrive at the same result. 

ω


ωS 

ωB J o 

Big Gear 

S = mωB . 

Now we ask, what moment of inertia JI 

ω0 B 
2 

To the motor, then, it must appear that it did ½ J
We require: 

½ J (mω )2 = ½ J ω 2 
I B 0 B 

ω
 2 worth of work, even though its shaft speed is ω  = mωB .0 B S

JJ  = 0 
I m2 
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