6.302 Feedback Systems

Recitation 8: Root Locus, continued
Prof. Joel L. Dawson

We've been talking about how root locus methods allow us to see how the closed-loop poles move as we vary the loop gain. But what about the closed-loop zeros??

The closed-loop zeros are the zeros of $G(s)$ and the poles of $H(s)$. The locations of theses zeros do not very with loop gain k. Notice that we do not keep careful track of the closed-loop zero locations with root locus methods.

RULE \#5: As k gets very large, $P-Z$ branches go off to infinity (rule 2). These branches approach asymptotes as angles to the real axis of

$$
\alpha_{n}=\frac{(2 n+1) 180^{\circ}}{P-Z}
$$

Where $n=0 \ldots . .(P-Z-1)$ and the centroid of these asymptotes is on the real axis at

$$
\sigma_{\mathrm{a}}=\frac{\Sigma p_{i}-\Sigma z_{i}}{P-Z}
$$

Page 1

6.302 Feedback Systems

Recitation 8: Root Locus, continued
Prof. Joel L. Dawson

EXAMPLE: $L(s)=\frac{k(s+1)}{s^{3}}$
Asymptotes: $\mathrm{n}=\{0,1\} \rightarrow 90^{\circ}, 270^{\circ}$

Centroid: $\frac{0+0+0-(-1)}{2}=\frac{1}{2}$

RULE \#6: Let's try to derive this one in class, or at least part of it. Suppose that we have a $3^{\text {rd }}$ order pole sitting on the real axis. What are the angles of departure?

$$
L(s)=\frac{k}{(s+1)^{3}}
$$

What is Θ ?

Page 2

6.302 Feedback Systems

Recitation 8: Root Locus, continued
Prof. Joel L. Dawson

Rule 6 is a generalizetion of this result. If the mth order pole is to the left of an even number of poles/ zeros, the departure angles are

$$
\alpha_{n}=\frac{(2 n+1) 180^{\circ}}{m} \quad n=\{0,1, \ldots m-1\}
$$

If to the left of an odd number of singularities,

$$
\alpha_{n}=\frac{2 n \cdot 180^{\circ}}{m}
$$

want to introduce one more rule... a complete list can be found in the text.
GRANT's RULE: If there are two or more excess poles than zeros $(P-Z) \geq 2$, then for any gain k, the sum of the real parts of the closed-loop poles is constant.

$$
\begin{aligned}
& P(s)=(s+a)(s+b)(s+c)(s+d)=0 \\
& P(s)=s^{4}+\omega s^{3}+x s^{2}+y s+z=0
\end{aligned}
$$

Coefficient ω is the sum of the roots.

$$
\begin{gathered}
P(s)=1+L(s)=1+k \frac{n(s)}{d(s)}=0 \\
d(s)+k n(s)=0
\end{gathered}
$$

for $P-Z \geq 2, k$ does not have an impact on ω.
\Rightarrow The average distance from the $j \omega$ axis remains constant,

6.302 Feedback Systems

Recitation 8: Root Locus, continued
Prof. Joel L. Dawson

EXAMPLE:

$$
L(s)=\frac{k(s+4)}{s(s+2)(s+3)}
$$

Number of asymptotes: $\mathrm{P}-\mathrm{Z}=2$
Angle of asymptotes: $\frac{(2 \mathrm{~m}+1) \cdot 180^{\circ}}{2}=90^{\circ}, 270^{\circ}$
Centroid of asymptotes: $\quad \sigma_{\mathrm{a}}=\frac{\sum \mathrm{pi}-\sum \mathrm{zi}}{\mathrm{P}-\mathrm{Z}}=\frac{0-2-3+4}{2}=-0.5$

Introduction to Compensation: Making Things Better

Root locus techniques are one of many tools that we use to design feedback systems to work the way we want them to.

A feedback design problem might go something like this: you're given a "plant," or something you must control; the variable of interest (e.g. velocity, position, etc.), and pecs on performance (maximum overshoot, rise time, bandwidth).

Page 4

6.302 Feedback Systems

Recitation 8: Root Locus, continued
Prof. Joel L. Dawson

Let's say that you're asked to control a plant that has a complex pair of poles:

If you hadn't already taken 6.302, your first thought might be to put in a gain:

That didn't work: we just get an oscillator higher and higher frequency. What about negative gain (positive feedback??)? New angle condition: $\Delta \mathrm{L}_{0}(\mathrm{~s})=0$

Entire real axis is on locks, as is imaginary axis between poles.

Page 5

Cite as: J oel Dawson, course materials for 6.302 Feedback Systems, Spring 2007.
MIT OpenCourseWare (http://ocw.mit.edu/), Massachusetts Institute of Technology. Downloaded on [DD Month YYYY].

6.302 Feedback Systems

Recitation 8: Root Locus, continued
Prof. Joel L. Dawson

Hmm. Try adding a real pole? (To make the numbers nice, real pole @ $-\omega_{0}$)

(Notice how we use angle condition to handle conjugate pair of poles).

Running out of options. We can put in a zero, but we know that no physical system can have more zeros than poles. But let's try the next best thing: a zero @ $-\omega_{0}$ and a remote pole. If the pole is far enough away, we can ignore it in the region near the origin.

Page 6

6.302 Feedback Systems

Recitation 8: Root Locus, continued
Prof. Joel L. Dawson

So if we pick k right, we could wind up with only real closed-loop poles.

Notice that we haven't figured out any quantitative information (just what is k, for example?). But root locus helped us to come up with a compensation strategy.

