MASSACHUSETTS INSTITUTE OF TECHNOLOGY

Department of Electrical Engineering

6.331 Advanced Circuit Techniques

Laboratory 2 Power Converters Issued : March 15, 2002 Due : Friday, April 5, 2002

Design, build, and demonstrate a switching power supply that meets the following specs. (You may choose to build either the boost or flyback topology.)

Specifications

- Output voltage: for the boost 20 V, for the flyback -10 V
- Steady state error: Zero (use an integrator in the loop).
- Output voltage ripple: $\leq 200 \text{ mVpp}$ (peak-to-peak)
- Input voltage range: 8 V $\leq V_{in} \leq 16$ V
- Input ripple current (calculated): $\leq 10 \text{ mA rms}$
- Output power: 5 watts
- Small signal bandwidth: $\geq 5 \text{ kHz}$
- Small signal step overshoot: $\leq 10\%$

Lab Hints

Build your converter in stages rather than attempting to construct and test the entire loop in one smoke-producing flip of the switch.

- 1. Build the switching section
 - use ceramic capacitors for the main filtering caps in your converter. use electrolytics only for damping legs.
 - drive the switch with a function generator (D = 0.5 or whatever)
 - start with a small input voltage ($V_{in} = 0.5$ V or so)
 - if the waveforms look ok, gradually increase V_{in}
 - use the function generator's symmetry control to vary D, and convince yourself that the converter is operating correctly.
- 2. Build the controller section
 - test the controller section using "fake" inputs

- use lab kit supplies to power controller circuitry (not V_{in} supply)
- verify proper operation before attempting to close the loop
- 3. Consider start-up details before closing the loop.
 - \bullet soft-start
 - $\bullet\,$ current-limit
 - duty-cycle limit
- 4. Pray, sacrifice a token 3904, then power up the closed-loop system